
Universidad de Sevilla
Departamento de Electrónica y Electromagnetismo

Modular and scalable

implementation of AER

neuromorphic systems

Memoria presentada por:

Carlos Zamarreño Ramos

para optar al grado de Doctor por la Universidad de Sevilla

Sevilla, 2011

Modular and scalable
implementation of AER

neuromorphic systems

Memoria presentada por

Carlos Zamarreño Ramos

para optar al grado de Doctor por la Universidad de Sevilla

Sevilla, 2011

Directores:

Dra. Teresa Serrano Gotarredona

Dr. Bernabé Linares Barranco

Dr. Alejandro Linares Barranco

Tutor por la Universidad de Sevilla:

Dr. Antonio José Acosta Jiménez

Departamento de Electrónica y Electromagnetismo

Universidad de Sevilla

Agradecimientos

En primer lugar quiero agradecer a mis directores de tesis Teresa Serrano Gotarredona,
Bernabé Linares Barranco y Alejandro Linares Barranco por su inestimable ayuda
durante estos años de duro trabajo. Siempre han estado dispuestos a ayudarme en los
numerosos problemas que han ido surgiendo en el camino y me han guiado durante el
mismo hasta llegar a escribir estas ĺıneas. Siempre estaré en deuda por todas las cosas
aprendidas estos años que me han introducido en el dif́ıcil campo de la microelectrónica.

Las palabras no son suficientes para mostrarle la gratitud merecida a mis padres.
Ellos me han apoyado en los momentos más dif́ıciles impidiéndome tirar la toalla y
haciéndome ver las cosas en perspectiva. Sin ellos, esta tesis no hubiera sido posible.
Es también de justicia agradecer a mis amigos por haberme acompañado en este camino
y hacer que la vida merezca la pena.

Seŕıa injusto no nombrar en este agradecimiento a mis compañeros del Instituto de
Microelectrónica de Sevilla. Gracias por las interminables discusiones técnicas y todo
lo que he aprendido gracias a ellas, pero, sobre todo, gracias por haberme hecho sentir
como en mi casa. Sois tantos que seŕıa imposible enumeraros sin dejarme a alguno.
Muchos habéis dejado de ser compañeros de trabajo para convertiros en amigos.

I must also thank to professor Jose Silva Martinez and people from the Analog and
Mixed Signal Center at Texas A&M University for letting me be part of their group for
two months. I also have to mention Raghavendra Kulkarni for sharing his experience
in the high speed I/O design with me and other members in the group for fruitful
discussions on different topics and their warm hospitality.

También es hora de agradecer al Ministerio de Educación y Ciencia a través de las
becas FPU (Formación del Profesorado Universitario) por su apoyo financiero durante
estos últimos cuatro años. De la misma forma, es necesario también nombrar al CSIC
(Consejo Superior de Investigaciones Cient́ıficas) por el apoyo brindado a través de las
becas de iniciación a la investigación que disfruté durante mi penúltimo y último año
de los estudios de Ingenieŕıa de Telecomunicación.

i

ii Agradecimientos

Contents

Agradecimientos i

1 Introduction 1
1.1 Frame-constraint vs. Frame-free Event-based Vision Sensing and Pro-

cessing . 3
1.2 The AER protocol . 4
1.3 Multiple AER chips assembly . 6
1.4 Structure of this dissertation . 8

2 Existing Large Scale Neuromorphic Hardware Platforms 11
2.1 Introduction . 11
2.2 SpiNNaker project . 12
2.3 BrainScaleS project . 13
2.4 Multi-chip AER systems . 17
2.5 Convolutional Neural Networks . 19
2.6 Scalability properties of convolutional neural networks 21
2.7 NeuFlow vision system . 22
2.8 AER convolution chips . 24
2.9 Conclusion . 26

3 Spiking Neural Networks Hardware Implementation 29
3.1 Introduction . 29
3.2 Routing in Structured-Grid-AER . 36

3.2.1 Destination-driven Routing Algorithm 38
3.2.2 Source-driven Routing Algorithm 39
3.2.3 Comparison between both algorithms 40

3.3 Router Design Details . 42
3.3.1 Destination-Driven Router . 42
3.3.2 Source-Driven Router . 43
3.3.3 FPGA Implementations Comparison 45

3.4 Network Extension to Multiple FPGA 46
3.5 System level design considerations . 50

3.5.1 Hardware resources requirements 50
3.5.2 Event traffic estimation . 51
3.5.3 Example of use . 53

iii

iv Contents

3.6 Experimental Results . 54

3.6.1 Full-Duplex Rocket-I/O-Based Parallel-Serial AER Interface . . 56

3.6.2 Routers with Parallel-Serial Interfaces 58

3.6.3 Single-FPGA Implementation of Gabor Filter Array 60

3.6.4 Multi-FPGA Implementation of Gabor Filter Array 61

3.6.5 Testing Single-FPGA Maximum Capacity 63

3.6.6 Multi-Module Multi-Layer Convolutional Neural Network Recog-
nition Example . 65

3.7 Conclusion . 68

4 The Event-Driven Bit-Serial Inter-Chip AER link 71

4.1 Introduction . 71

4.2 Overview of clock-data-recovery (CDR) schemes 72

4.3 High Speed Serial AER link . 76

4.4 Transmitter design . 77

4.4.1 Serializer . 77

4.4.2 High Speed Manchester Encoder 80

4.5 Receiver design . 80

4.5.1 Clock Extraction circuit . 81

4.5.2 Delay tuning circuit . 83

4.5.3 Control voltage memorization circuit 86

4.6 Experimental results . 88

4.7 Conclusion . 95

5 Current Mode Switchable I/O Circuitry for Low Power Serial Trans-
mission of AER Streams 97

5.1 Introduction . 97

5.2 Switchable high speed serial links . 98

5.3 AER protocol modification . 100

5.4 Driver circuit . 103

5.5 Receiver circuit . 107

5.6 Experimental results . 109

5.7 Conclusion . 115

6 Voltage Mode Switchable I/O Circuitry for Low Power Serial Trans-
mission of AER Streams 119

6.1 Introduction . 119

6.2 Voltage Mode versus current mode drivers 120

6.3 Driver circuit . 121

6.4 Power management for switching drivers 123

6.5 Receiver circuit . 125

6.6 Experimental results . 126

6.7 Conclusion . 132

Contents v

7 Future Outlook: The Node Board 135

7.1 Introduction . 135

7.2 Board architecture . 136

7.2.1 Parallel connectors . 136

7.2.2 High speed serial transmission 138

7.2.3 Configuration resources . 141

7.2.4 Power supply design . 143

7.3 Experimental results . 144

7.4 Multiple NB Assembly . 146

7.5 Conclusion . 149

8 Conclusions 151

9 List of Publications 155

10 Appendix I: AER convolution modules in FPGA 157

10.1 Introduction . 157

10.2 Sequential convolution module . 158

10.3 VHDL code for the convolution block 159

10.3.1 Entity declaration . 160

10.3.2 Blocks and signals declaration 160

10.3.3 Forgetting effect FSM and configuration parameter assignation . 163

10.3.4 Neuron State Update FSM . 164

10.3.5 Auxiliary blocks connection . 168

10.3.6 Auxiliary blocks VHDL description 171

11 Appendix II: Matlab functions for NoC VHDL generation 179

11.1 Introduction . 179

11.2 Matlab code . 180

11.2.1 Main function . 180

11.2.2 Top entity generation . 182

11.2.3 Signals defintion . 185

11.2.4 Tie handshaking signals of unused channels 186

11.2.5 Clock generation block instantation 186

11.2.6 Input splitter instantiation . 186

11.2.7 Convolution module . 187

11.2.8 Configuration module instantiation 187

11.2.9 Output multiplexer instantiation 188

11.2.10 Input splitter VHDL description 188

11.2.11 Output multiplexer VHDL description 191

11.2.12 Configuration block VHDL description for the destination-driven
routing . 192

11.2.13 Configuration block VHDL description for the source-driven rout-
ing . 196

vi Contents

References 201

1
Introduction

Artificial vision systems aim to extract high level information from complex non-
structured scenes. Once reality is captured by some general or specific purpose plat-
form, sophisticated algorithms establish relationships between high dimensional data
and a low dimensional space where information can be easily retrieved. In robotic
systems, the loop can be closed by using relevant features extracted from the com-
puter vision algorithm to act over the observed reality and produce a control action.
Achieving real time operation in the execution of these algorithms becomes relevant
in these situations where artificial systems have to interact with their environment.
Surveillance, industrial process control, automatic robot navigation or even modern
video games are examples about fields of application of vision systems.

Hardware implementations of computer vision algorithms use to rely on high per-
formance digital systems. The development of CMOS (Complementary Metal Oxide
Semiconductor) technology has enabled the implementation of high performance vi-
sion processing engines which have been successfully introduced in the mass market.
Moore’s law established that the number of transistors on a chip will double about every
two years. Processing power, measured in millions of instructions per second (MIPS),
has steadily risen because of increased transistor density coupled with improved mul-
tiple core processor micro-architectures. Moore’s Law also means decreasing costs per
transistor since more transistors can be built on the same silicon wafer. The market of
vision systems has been driven by this technological development during the last years.

However, Moore’s law does not seem to be enough to satisfy the real time and
low power requirements of modern vision systems. As CMOS technology is reaching
the quantum limits of materials, it is believed that scaling down transistor dimensions
will not drive the technological development of computing capabilities in the long run.
Strong research efforts are being focused on architectural improvements of computer
systems (e.g. multi-core technology) and exploring the post-CMOS era (e.g. nano-
technologies). Limitations of mainstream solutions to keep delivering more and more

1

2 Introduction

computing power throughout the next years pave the way for the research in new
approaches for high performance vision processing systems.

The main drawback of using traditional computing architectures in vision systems is
their intrinsic sequential nature. Conventional digital systems are intended to store an
algorithm program and to execute a sequence of instructions one after the other. Due
to the mathematical complexity and high parallelism of computer vision algorithms,
this is a non-efficient solution in terms of computing resources utilization. Limitations
of conventional computing infrastructures have led researchers to seek inspiration in
nature. Human brain clearly outperforms artificial systems in sensory information
processing tasks due to its massively parallel organization.

The essential block of a traditional computer is the Central Processing Unit (CPU).
This circuit reads instructions and data from dedicated memories, performs operations
encoded by the instructions over the fetched data and stores results back in proper
locations. By contrast, the human brain is composed by a huge amount of low com-
puting power processing units, neurons, which are connected between them through
synapses, which form up a highly dense connection network. This architecture is very
well suited for highly parallel tasks, such as sensory information processing. The main
goal of neuromorphic engineering is to mimic this organization to build artificial sys-
tems which can carry out sensory processing tasks with similar performance than the
human brain.

However, translating the massive parallelism of living brains into hardware systems
is cumbersome due to the limited number of on-chip metal layers existing in modern
VLSI (Very Large Scale of Integration) technologies and package pins to connect with
off-chip components. Neuromorphic engineers have tried to develop large scale sys-
tems which emulate the brain organization and overcome this connectivity limitations
of manufacturing by using the advantages of modern VLSI technologies in terms of
communication bandwidth. As typical firing rates of neurons are in the order of a few
Hz, a lot of them can be multiplexed in high speed communication channels which
can work in the GHz range. Exploiting this fact, there is a strong research interest in
extending the integration densities of current neural systems and opening the door for
the implementation of complex vision tasks with them.

In this Chapter, we will further discuss the advantages of the spike-based bio-
inspired vision processing and information encoding over the frame-based approach of
conventional systems. However, the computational power of neural system to achieve
all these advantages comes from the massive integration of neurons and synapses. Neu-
romorphic engineers have developed protocols to communicate spikes between large
arrays of neurons using minimum hardware resources to overcome the connectivity
limitations of CMOS technologies. In this field, the AER (Address Event Representa-
tion) protocol has been extensively used by the neuromorphic community and it will be
analyzed in a dedicated Section. Finally, we will briefly present a hardware infrastruc-
ture capable of assembling a large amount of neuromorphic chips which communicate
between them using the AER protocol. We will discuss the research challenges imposed
by this architecture in order to achieve a reliable and low power consumption operation,
while keeping the performance figures of spike-based vision processing systems.

1.1 Frame-constraint vs. Frame-free Event-based Vision Sensing and
Processing 3

Reality Sensor Transmission

Tframe

Computation

Frame-based

computing

system

Event-based

computing

system

Figure 1.1: Conceptual illustration of frame-constraint (top) vs. a frame-free event-based
(bottom) vision sensing and processing system.

1.1 Frame-constraint vs. Frame-free Event-based

Vision Sensing and Processing

Artificial vision systems capture and process sequences of frames. For example, a video
camera captures images at about 25-30 frames per second. Then they are processed
frame by frame, pixel by pixel, to extract, enhance and combine features. Finally,
operations in feature space would be performed until a desired recognition is achieved.
This frame-based processing is slow, specially if many operations need to be computed
for each input image or frame [1, 2]. Living brains do not operate on a frame by frame
basis. In the retina, each pixel sends spikes (also called events) to the cortex when
its activity level reaches a threshold. Pixels are not read by an external scanner, but
they decide when to send an event. All these spikes are transmitted as they are being
produced, and do not wait for an artificial “frame time” before sending them to the
next processing layer.

Fig. 1.1 illustrates the conceptual difference between a frame and an event-based
sensing and processing system. In the top row, a frame-constraint camera captures
a sequence of frames, each of which is transmitted to the computing system. Each
frame is processed by a sophisticated image processing algorithm for achieving some
recognition. The computing system needs to have all pixels values of a frame before
starting any computation. In the bottom row, an event-based vision sensor operates
without frames. Each pixel sends an event (usually its own x,y coordinate) when it
senses some property (change in intensity [3], contrast with respect to neighboring
pixels [4], . . .).

Events are sent out to the computing system as they are produced, without waiting
for a frame time and the computing system updates its state after each event. Fig. 1.2

4 Introduction

0

Tframe

Reality T1 T2 T3 time
event

Frame-based

sensor

time

timeFrame-based

computing system

T1+Δ

TFC
Recognition

0
Reality T1 T2 T3 time

event

Event-based

sensor

time

timeEvent-based

computing system

Recognition
Δ’

Trcg T’
FC

Tev

td

Figure 1.2: Comparison of timing issues between a (top) frame constraint and a (bottom)
frame-free event-based sensing and processing system.

illustrates the inherent difference in timings between both concepts. In the top, (frame-
constraint) reality is binned into compartments of duration Tframe. During the first
frame T1 an event happens (such as a flashing shape), but the information produced
by this event does not reach the computing system until the full frame is captured (at
T1) and transmitted (with an additional delay ∆). Then the computing system has to
process the full frame, handling a large amount of data and requiring a long “frame
computation time” TFC before the “recognition” information is available.

In the bottom of Fig. 1.2, pixels “see” directly the event in real time and send out
their own events with a delay ∆′ to the computing system. Events are processed as
they flow with an event latency Tev (in the order of ns). More relevant events usually
come out first or with higher frequency. As soon as sufficient meaningful events are
received and processed, it is possible to achieve recognition. Consequently, recognition
time Trcg can be smaller than the total time of the events produced. Note that the
recognition is possible before frame time T1, resulting in negative T ′FC when compared
to the recognition delay in a frame-constraint system [5].

1.2 The AER protocol

AER is a promising emergent hardware technology which shows potential for providing
the computing requirements of large scale multi-layer systems. AER was first proposed
in 1991 in one of the CalTech research labs [6] and has been used since then by a wide
community of neuromorphic hardware engineers. AER has been used fundamentally

1.2 The AER protocol 5

A
R

B
IT

E
R

+
E

N
C

O
D

E
R

D
E

C
O

D
E

R

D1

D2

D2

D1

D2

D2

Fast

Digital

Bus

Emitter chip Receiver chip

Req

Ack

Req

Ack

Address ADDn-1 ADDn

Address

Figure 1.3: Rate-encoded point-to-point AER inter-chip communication link.

in image sensors, for simple light intensity to frequency transformations [3], time-to-
first-spike coding [7, 8], foveated sensors [9], spatial contrast [4, 10] and more elaborate
transient detectors [11]. But AER has also been used for auditory systems [12–14],
competition and winner-take-all networks [15, 16], convolution processors [17–23] and
even for systems distributed over wireless networks [24].

Fig. 1.3 shows the event communication in a point-to-point AER link. The aim of
this link is to achieve unidirectional virtual connectivity from a neuron ensemble placed
in one chip onto another one placed in a different chip. There are many spike coding
schemes [7, 25, 26]. For example, neurons in the emitter chip can code their output as
trains of spikes whose instantaneous frequency is proportional to their activation level.
Other more efficient coding schemes have been proposed, such as rank-order coding
[25] where the order of the events carries the information, instead of neuron spiking
frequency. The continuous-time states of neuronsDi in the emitter chip are transformed
into sequences of fast digital pulses (spikes or events) of minimal width (in the order
of ns) but with much longer inter-spike intervals (in the order of ms). Spikes produced
by all neurons are collected by a circuitry which arbitrates them to avoid collisions,
and encodes the spikes as digital addresses corresponding with the destination neuron.
Communication between chips is carried out using an asynchronous classic four phase
handshaking protocol.

In this protocol, the emitter chip generates a request signal Req when it wants to
transmit a new spike event. After latching the incoming event address, the receiver
chip acknowledges this request with signal Ack. The transmitter disables the request
signal, causing the same action at the receiver side and allowing the beginning of a new
communication cycle. The receiver chip decodes the input address and sends a spike
to the corresponding neuron within the array. Therefore, the AER protocol enables
the connectivity between two sets of n neurons placed in different chips using only
log2(n) + 2 physical wires. The receiver neurons just have to integrate the input spikes
to reconstruct the sender’s activation state.

6 Introduction

1.3 Multiple AER chips assembly

Let us suppose that we come out with a new spike based neural network architecture
that we want to implement in hardware to carry out some high level information
processing task. This network will have some neural computational units (neurons,
synapses, complex neural circuits,. . .) which will be implemented in AER chips. To
map the neural network topology onto a general purpose hardware infrastructure, we
require a communication layer to efficiently distribute the spikes among chips. Fig.
1.4-(a) shows an example of a hierarchical multi-layer feed-forward neural system. The
connectivity between blocks will vary from one application to another, but the neural
computational units remain the same as long as they can be customized by defining
proper configuration parameters. This programmability will define the neuron and
synapses dynamics needed to carry out the desired computation.

It would be therefore desirable to have a hardware infrastructure where arbitrary
connectivity patterns can be mapped. This way, a lot of different applications can
be targeted using the same hardware by simply defining the architecture and blocks
configuration parameters. In this dissertation, we envision a 2D mesh assembly of AER
chips over the same PCB (Printed Circuit Board) where individual units only exchange
events with their neighbors, as shown in Fig. 1.4-(b). As shown in Fig. 1.4-(c), each
chip in the network would have an AER spike-based processor (analog or digital) and a
routing engine which would provide the network intelligence. When a new event arrives
at any network node, this router should either decide the next hop for the event to
reach the final destination, or identify it as having reached its destination and forward
it to the local spike processor. By separating the event communication layer from the
event processing layer we achieve the connection programmability required to map a
great variety of neural systems within the same hardware infrastructure.

The spike processor will also have configuration parameters to adapt the neural
computation characteristics to the target application. Apart from the spike processor
and the router programmability, other important aspects of this architecture are the
scalability and the expandability issues. The 2D mesh grid can be easily expanded by
connecting other AER systems or units around the multi-chip PCB neighborhood. As
the network layer in charge of the event communication would be fully programmable,
the system can be configured to send out events to other boards if required. As neu-
romorphic engineering is still an active research field, there is still room for new AER
chips and concepts. Consequently, this expandability and scalability property is very
interesting for adapting the system to the future developments of this research field.

Building this multi-chip assembly of AER chips over the same PCB to test new
spike based neural network concepts is a long term research goal in our group. Several
technical challenges arise when translating these system level ideas to a hardware im-
plementation. The circuit level design must be carefully taken into account in order to
ensure the system reliability and an affordable power consumption as a large amount
of chips want to be assembled over the same PCB. This dissertation will address some
of this implementation challenges as a first step of a long walk towards a fully operative
multi-chip AER system. The infrastructure should be capable of mapping large scale

1.3 Multiple AER chips assembly 7

(a)

(b)

Spike

processor
ROUTER

North output port

South output port

E
a

s
t o

u
tp

u
t p

o
rt

W
e

s
t
o

u
tp

u
t
p

o
rt

Config

pheripheral

(c)

Figure 1.4: Hierarchical Multi-Module Neural System mapped onto a 2D grid of AER
Hardware modules (a) Conceptual schematic topology architecture of target neural system.
(b) 2D grid of AER hardware modules interconnected through PCB traces. (c) Schematic
diagram of each module, including an event router plus event processor and configuration
circuitry.

8 Introduction

spike based neural networks for complex vision processing tasks.

1.4 Structure of this dissertation

This dissertation is divided into 6 Chapters, apart from this introductory part. Chapter
2 describes the existing large scale neuromorphic hardware platforms. Moreover, we
introduce some basic concepts about convolutional neural networks and spike-based
implementation of convolution processors. That will be useful in subsequent Chapters
where this neural network paradigm will be used as an example of system integration
on the proposed multi-module architecture. The other Chapters are focused on the
research challenges that the large scale of integration of neuromorphic chips impose:

• Communication layer design: in Chapter 3 the routing algorithms, the ad-
dressing scheme and the routers circuit design for a 2D grid assembly will be
extensively discussed, taking into account the particular characteristics of the
AER traffic. In order to validate the suitability of this communication layer
for the neuromorphic system implementation, we implemented a large scale as-
sembly of spike based convolution modules in a commercial FPGA hardware
infrastructure. We present a system level study of this particular example and
experimental results to validate the performance of the proposed communication
layer.

• AER chips miniaturization: classic AER links use parallel buses as the phys-
ical communication layer. However, this is not a scalable solution when hundreds
of these chips need to be integrated on the same hardware infrastructure. For
low pin-count, low cost and low power chip design it is a good choice to use LVDS
(Low Voltage Differential Signaling) serial-bit AER links, instead of parallel ones.
Conventional LVDS links with embedded clock need to transmit continuously to
keep the link sender and receiver synchronized. However, in AER systems events
are asynchronous and sparse. Consequently, considerable extra power savings can
be achieved if the links are turned OFF during inter-event pauses, and quickly
back ON when a new event needs to be transmitted. In Chapter 4, a Manchester-
encoding Serializer/Deserializer scheme is proposed to overcome the limitations
of mainstream serial link solutions. This circuit can turn the link OFF and back
ON with zero-bit acquisition time, exploiting the asynchronous nature of the
AER traffic and scaling the power consumption with the transmitted event rate.
Chapter 4 describes the circuit design and presents experimental results for a
0.35µm CMOS prototype.

• Low power consumption: the burst mode SerDes proposed in Chapter 4 uses
conventional high speed LVDS drivers and pads. These circuits consume several
mWs per link even when no data is transmitted. Power down modes on such
drivers’ large current sources can be very slow, thus losing the benefits of burst
mode AER SerDes links. Chapters 5 and 6 describe two switchable implemen-
tations of the I/O circuits to increase the power reduction benefits of turning
off the communication circuits activity during pauses. These Chapters deal with
the circuit design techniques required to keep the I/O circuitry performance in

1.4 Structure of this dissertation 9

terms of speed and latency, but scaling down the power consumption with the
transmitted event rate. Extensive experimental results are also provided to check
the feasibility of the applied design techniques.

• Prototyping hardware infrastructures: Chapter 7 presents the design of a
prototyping board intended to easily and quickly assemble multi-chip AER sys-
tems, the Node Board. This FPGA-based board is intended to implement the
network layer tasks of the individual modules shown in Fig. 1.4-(b) and pro-
vide a hardware-level configurable architecture to study real large-scale network
implementations using existing AER chips. Moreover, users can also implement
their own spike processing algorithms on the FPGA to test new functionalities
and features on their future chips. The Node Board is a useful tool to easily
and quickly develop all the features of the multi-chip system before going to an
eventual silicon integration.

10 Introduction

2
Existing Large Scale Neuromorphic

Hardware Platforms

2.1 Introduction

In the last years we have witnessed the development of new bio-inspired solutions
to build high performance large scale vision systems. Large scale hardware imple-
mentation of neural systems is becoming a major research area to achieve a similar
performance than biology. Advantages of bio-inspired sensory information processing
come from the high degree of parallelism existing in living brains. For example, the
human brain is made of a huge amount (in the order of 1011 [27]) of computational
units, the neurons, massively inter-connected (it is believed that there are around 1015

connections between neurons in the brain [28]). Building artificial systems that can
perform complex information processing, such as in the human brain, will require to
assemble millions of artificial neurons and synapses. Present silicon VLSI technologies
do not offer enough connectivity resources and neuron integration density to mimic
realistic large scale neural systems.

Several current research projects aim at the exploration of novel computational as-
pects of large scale, biologically inspired neural networks. These architectures integrate
over a million neurons, operating in real time or even with a speed-up with respect to
the biological archetypes on full custom or modified general purpose hardware. In this
Chapter, several approaches to build large scale neural systems will be reviewed. All
of them face the problem of integrating a lot of artificial neuron silicon circuits over
a spike-based network which provides the communication layer between all computing
units. Hardware implementations have to deal with the physical neuron and synapses
implementation, event routing through the spike-based network, system programma-
bility in terms of neuron dynamics and synapse connections, observability,. . . However,

11

12 Existing Large Scale Neuromorphic Hardware Platforms

this common problem can be addressed from very different point of views, leading to
the approaches described in the following Sections.

Once we have drawn the big picture, we will focus the attention over a very promis-
ing framework to build scalable and expandable neural vision processing infrastruc-
tures: the convolutional neural networks (ConvNet). ConvNets are a very mature tool
among the frame-based pattern analysis and machine learning community, and are ex-
ploited in numerous commercial products [29–38] and research labs [2, 39, 40]. The
interesting scaling properties of these kind of neural networks will be analyzed. A re-
ported hardware accelerated platform [41, 42] to implement large scale ConvNets will
be described to establish the state of the art in this particular field. In contrast with
this frame-based solution, a spike-based alternative to implement the convolutional
modules will be presented at the end of this Chapter. The ConvNet paradigm will
be extensively used along this dissertation as an example of large scale spiking neural
network suitable to be implemented in scalable and expandable AER multi-module
systems.

2.2 SpiNNaker project

The biological processing of a neuron can be modeled by a digital processor. Axon
connectivity can be represented by messages, or information packets, transmitted be-
tween a large number of processors which emulate the parallel operation of the billions
of neurons comprising the brain. Using this philosophy, the SpiNNaker project aims
to build a large scale fully digital multi-chip system which mimics the human brain’s
biological structure and functionality. SpiNNaker chips do not physically implement
artificial neurons, but emulate the neural dynamics by solving differential equations in
a numerical domain. In this environment, neurons operate in real time and there is no
requirement for explicit synchronization in the computation because neurons indepen-
dently fire events when their action potential reaches a certain threshold.

Fig. 2.1 shows the mesh topology of the multi-chip SpiNNaker system [43]. Neu-
ral models, routines written in assembly code, run in software on embedded ARM968
processors. Neurons communicate by means of spike packets directly supported by
a multi-cast, packet-switched and self-timed network. Each SpiNNaker chip contains
several of these ARM processors which communicate with each other asynchronously
through a fabric NoC (Network on Chip). The chip can send out spikes to its coun-
terparts through a packet-switched network connected using a 2D toroidal triangular
mesh. To emulate biological system’s very high connectivity, the on-chip routers pro-
vide multicast routing.

Fig. 2.2 shows a block diagram of a multi-core SpiNNaker chip [44]. Each one can
contain up to 18 identical ARM9 processing cores running at 200MHz. The core is
directly connected to on-chip memory blocks which store the synaptic tables. They
retrieve the proper synaptic weights every time that an event is received by analyzing
the spike address. Moreover, they accelerate the interruption routines execution which
calculates the neuron dynamics. One of the cores on each chip is selected to perform

2.3 BrainScaleS project 13

SpiNNaker

Chip

SDRAM

0,2 1,2 2,2

1,1 2,10,1

1,0 2,00,0

Figure 2.1: Mesh topology of the SpiNNaker system.

system management tasks. The other processing cores run independent event-driven
neural processes, each of them simulating single neuron dynamics. A direct memory
access (DMA) control manages the access of individual cores to the on-chip commu-
nication NoC. The neural state, as well as parts of synaptic tables for neurons, are
stored in an off-chip SDRAM whose access is granted by an on-chip controller PL340
SDRAM I/F. Ethernet ports are used to provide connectivity for debugging and traffic
injection with a host PC.

The key block for large scale processor core assembly is the packet router, which is
in charge of the on-chip and off-chip communication management. It has 18 ports for
internal use of the ARM cores and six ports to communicate with 6 adjacent chips. All
are full-duplex ports which implement asynchronous self-timed protocols. The router
is designed to support point-to-point and multicast communications. The multicast
engine helps to reduce pressure at the injection ports and reduces significantly the
packet traffic through the network compared with a pure point-to-point alternative.
To implement high fan-out connections, the routing decisions are based on the spike
source neuron identifier. This synaptic connections are embedded in the 1024-word
routing tables inside the routers which are configured by the user.

2.3 BrainScaleS project

The BrainScaleS project is a continuation of a previous one, called FACETS (Fast
Analog Computing with Emergent Transient States), which aims to build accelerated
time large scale spiking neural networks hardware. The acceleration factor ranges from
103 to 105 compared to the biological real time (BRT). Besides this accelerated time
capability, the BrainScaleS system differs in its hardware implementation from the

14 Existing Large Scale Neuromorphic Hardware Platforms

Output

select

Routing

engine

Packet

decode

Packet router

AHB master AHB slave

Router

control

RtrClk2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

8Gbps

4Gbps

2Gbps

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

Proc0

CommCtlr

AXI master

Proc1

CommCtlr

AXI master

Proc2

CommCtlr

AXI master

Proc3...

CpuClk CpuClk CpuClk

Comms

NoC

(input)

Proc0

CommCtlr

AXI master

Proc1

CommCtlr

AXI master

Proc2

CommCtlr

AXI master

CpuClk CpuClk CpuClk

Comms NoC

(output)

System NoC

AXI slave APB slave

PL340 SDRAM I/F

Mem

Clk System

RAM

System

ROM
Ethernet

Watch-

dog

System

controller

APB slaveAHB slaveAHB slaveAHB slave AHB slave

System AHB

PLL

CpuClk
MemClk

RtrClk

JTAG

debug

10MHzTest

Reset
I/O PortEther MII

1G DDR SDRAM

Output

Links

Input

Links

Figure 2.2: SpiNNaker chip organization. The top half contains the multicast router
that distributes spikes to cores on the same and neighboring chips. The ARM cores and their
peripherals occupy the bottom half.

SpiNNaker solution. In this case, the neural computation emulation is carried out
through analog circuits which mimic the synapse and neuron dynamics and a large
scale spike-based digital network is implemented in a wafer-scale system to enable the
necessary high density of neuron connections. Fig. 2.3 shows a 3-D representation
of the wafer-scale neuromorphic hardware system developed in the framework of the
FACETS project.

Fig. 2.4 shows the integration hierarchy of the wafer-scale system [45]. Due to
the high acceleration factor required, communication bandwidth in-between the com-
putation units, the Analog Network Chips (ANC), can exceed 1011 neural events per
second. Handling this very high throughput is a very demanding task which is accom-
plished in this case through switch-based wafer-scale interconnections to implement
local connectivity, along with a spike-based digital network for long range connections.
In this technology, silicon wafers containing the individual chips are not cut into dies.
Instead, chips are interconnected directly on the wafer. This integration technique can

2.3 BrainScaleS project 15

Figure 2.3: Wafer-scale neuromorphic hardware system 3-D assembly.

be designed to have enough fault tolerance and low power consumption for a very large
scale neural system implementation.

The HICANN chip, shown in the lower left corner of Fig. 2.4 (hierarchy level 2), is
the basic building block of the wafer-scale system. It contains the mixed signal neuron
and synapse circuits as well as the necessary support circuits and the host interface
logic. The interconnections between the HICANN chips run vertically and horizontally
through the chip, with cross-bar switches at their intersections. Users can configure the
network topology by specifying on/off states for these switches. The hierarchy level 1
(shown in the top left part of Fig. 2.4) refers to the arrangement of the HICANN chips
on the wafer. Eight HICANN chips can be integrated on a single reticle. An extra post-
processing step in the regular CMOS process is required to build the horizontal and
vertical wires which connect the wafer reticles. This additional step consists of a metal
layer deposition atop the fabricated wafer. Apart from the on-wafer chip connection,
these wires also link the wafer-scale system with a higher level mother board which
manages the spike communication.

The right part of Fig. 2.4 shows the ANNCORE (Analog Neural Network Core)
structure. It contains 128K synapses and 512 membrane circuits which can be grouped
together to form neurons with up to 16K synapses and 8 neurons. On the other side,
using the maximum number of neurons of 512 limits the number of input per neuron to
256. As each neuron has a very high number of input signals, the bandwidth required to
handle the spike events throughput is not affordable (it can be estimated in the order of
164Gevent/s [45]). The ANNCORE uses a combination of space and time multiplexing
to make this communication demand feasible. The spatial density is achieved thanks
to the high density of connections that the wafer-scale integration enables. Up to 256
differential bus lanes can be used to send spikes towards groups of 64x64 synapses.
Temporal multiplexing is used as the final step to reach the necessary numbers. Each
wire pair carries events from 64 pre-synaptic neurons by serially transmitting 6 bits

16 Existing Large Scale Neuromorphic Hardware Platforms

Hierarchy level 2: chip-scale

A
N

C

 1

A
N

C

 2

A
N

C

 3

A
N

C

 4

A
N

C

 5

A
N

C

 6

A
N

C

 7

A
N

C

 8

Hierarchy level 1: wafer-scale

Upper half of

ANNCORE

256x256

synapses 256

membrance

circuits

Lower half of

ANNCORE

256x256

synapses 256

membrance

circuits

64 repeaters with time recovery

128 vertical L1 bus lanes

64 inputs to synpase drivers

Outputs from 8 neuron-L1 interfaces

Sparse crossbar between horizontal

and vertical L1 buses

32 repeaters with time recovery

64 horizontal bus lanes

Passive sparse switch matrix

Connections to adjacent HICANN

Unspecified part contains digital

standard cell logic

Synpase

array

256x256

Analog STDP readout

and RAM interface

Digital STDP

update control

Analog STDP readout

and RAM interface

Digital STDP

update control

S
y
n

a
p

s
e

 d
ri
v
e

rs

S
y
n

a
p

s
e

 d
ri
v
e

rs

S
y
n

a
p

s
e

 d
ri
v
e

rs

S
y
n

a
p

s
e

 d
ri
v
e

rs

256 membrane circuits

256 membrane circuits

Digital event generation

Neuron builder

Digital event generation

64x64 pre-

synaptic

inputs

64x64 pre-

synaptic

inputs

Up to 8

neuron à L1

interfaces

64x64 pre-

synaptic

inputs64x64 pre-

synaptic

inputs

S

S S

S
S
S

S

S

S
S

S
S

Hierarchy level 3: neuron

population-scale

DAC

Decoder

Decoder

 DAC

DAC

Decoder

Decoder

 DAC

4 strobe lines

4 bit address

reticle

Connection created by

wafer post-processing

Figure 2.4: Wafer-scale system hierarchy levels of neural elements integration.

neuron numbers. No time stamps are required if the communication links provide
enough bandwidth to satisfy the accelerated time requirement.

A custom backplane connects the wafer units to each other. The motherboard
contains Digital Network ASICs (DNC) [46] which interface the analog cores on the
wafer and several FPGAs (Field Programmable Gate Array) interconnecting the wafer
boards between them in a virtual spike-based network. These FPGA chips implement
the necessary communication protocols to exchange event packets between the different
network wafers and the host computer to analyze results. The intention in a later stage
of development is to connect the neuromorphic hardware described in this subsection
with high performance numerical computers to further extend the system multi-scale
emulation capabilities. The merging of the two computational concepts into a hybrid
system provides a new experimental platform where different levels of neural modeling
can be integrated over the same experiment. Moreover, new sensory stimuli and motor
feedback can be introduced to perform cognitive tasks.

2.4 Multi-chip AER systems 17

2.4 Multi-chip AER systems

The AER protocol is not only a useful tool to implement point-to-point connectivity
between neuromorphic chips, but it can also be used to assemble several AER modules
to perform a sensory information processing task. Several research groups have pro-
posed solutions to implement large scale systems where individual units communicate
with each other using the AER protocol. An efficient communication layer to control
the event transfer and system configuration is needed to assemble a large amount of
neuromorphic blocks. Using the asynchronous digital approach provided by the AER
protocol, neuromorphic engineers seek novel hardware infrastructures which have low
power consumption and good scalability and expandability properties.

The simplest way to implement hierarchical systems using AER modules is using
a mapper-based solution, as it is shown in Fig. 2.5. Events traffic is controlled by a
central master element which virtually connects the physical elements with the infor-
mation contained in a mapping table. Chips output events are merged into a single
AER bus and the mapper assigns a destination address on the global addressing map
defined for the system. Fig. 2.5-(a) shows a multi-chip system intended to be used in
a model for orientation selectivity [15]. A PCI-AER board is the key element for the
communication because it acts as a bridge between the host PC, a neuromorphic retina
(TMPDIFF in Fig. 2.5-(a)) and a recurrent competitive network of integrate-and-fire
neurons with short-term dynamic synapses (IFWTA chip in Fig. 2.5-(a)).

Fig. 2.5-(b) shows the mapper-based platform which manages a dynamically re-
configurable silicon array of spiking neurons with conductance-based synapses [47]. In
this case, an FPGA which implements a controller unit (MCU) collects events from an
integrate and fire neurons array (I&F) and interacts with an external interface (DIO),
a RAM memory which contains a routing table where the connectivity is described and
a digital-to-analog converter (DAC) which sets the analog biases of synaptic param-
eters while the corresponding event indicated by the MCU is delivered to the target
neurons within the array.

This idea can be extended to a multi-dimensional structure by adding extra levels
of routing hierarchy, as shown in Fig. 2.5-(c) [48]. Output events coming out from the
local mapper AER block can be re-directed to the same array or to neurons located in
other arrays. A higher level router receives events from different arrays. This second
level routing algorithm chooses the proper array which must process the event or, if
extra layers are needed, events are sent to the next router in the hierarchy level. The
infrastructure can be scaled up to N dimensions by adding extra levels of hierarchy.

Fig. 2.6 illustrates another approach to implement large scale AER systems. Spikes
are broadcast in a 1-D grid to multiple arrays of silicon neurons in a daisy chain man-
ner. When an AER chip receives an incoming event, it decides if the event must
be processed by itself or if it must be transmitted to its neighbor. The grid can be
considered expandable because, unlike a bus, its capacity does not decrease as more
chips are added because physical connections are point-to-point. An asynchronous
communication infrastructure is used to minimize the latency that the event broad-
cast introduces. Events addresses identify the neuron which generated the spike and

18 Existing Large Scale Neuromorphic Hardware Platforms

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

L1 BUS

L2 BUS L3 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

L1 BUS

L2 BUS L3 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

L1 BUS

L2 BUS L3 Router

(a) (b)

(c)

TMPDIFF IFWTA

PC

DAC

USB

LCD
DVI

PCI

AERAERAER ANALOG

VISUAL

STIMULI

GENERAL

PURPOSE

CUSTOM

PCBs

NEUROMORPHIC

VLSI

PCI-

AER

DAC

I&FMCU

Driving potential

(digital)

postsynaptic

neuron addr.

synpatic weight

spike addr.

RAM

presynaptic

neuron addr.

synpase

parameters

postsynpatic

neuron addr.

DIO

incoming

spike addr.

outgoing

spike

addr.

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

IFAT L1 Router

IFAT L1 Router

IFAT L1 Router

L2 Router

L1 BUS

L2 BUS L3 Router

L3 BUS

Figure 2.5: Mapper based multi-chip AER solutions. (a) Model for orientation selec-
tivity hardware implementation (b) Block diagram of the IFAT (Integrate and Fire Array
Transceiver) system. (c) 3-D network extension of the previous concept.

information is transmitted in a word-serial manner through the network [49–51].

Fig. 2.7 shows the experimental set-up of a multi layer vision system for ball
tracking built with the CAVIAR philosophy [52]. The approaches discussed until this
point implement the physical connections between blocks in a virtual manner. On
the contrary, the CAVIAR system uses pre-wired connections between blocks which
communicate through point-to-point links. Splitter and merger blocks are used to
increase the blocks fan-out by replicating their output traffic without any extra latency
penalty or to multiplex different source traffic into a single AER flow, respectively.
Mapper elements are also used to sweep between addressing spaces. This arrangement
also provides easy ways to monitor the system traffic by inserting monitoring blocks
in internal test points. A photograph of the system composed by a DVS retina, 4
convolution chips, one WTA (Winner Take All) chip, one delay line and one learning
chip is shown at the bottom part of Fig. 2.7.

2.5 Convolutional Neural Networks 19

R
E

C
E

IV
E

R

T
R

A
N

S
M

IT
T

E
R

MERGE

SPLIT

R
E

C
E

IV
E

R

T
R

A
N

S
M

IT
T

E
R

MERGE

SPLIT

R
E

C
E

IV
E

R

T
R

A
N

S
M

IT
T

E
R

MERGE

SPLIT

Figure 2.6: The broadcast mesh AER grid for expandable neuromorphic chips networks.

2.5 Convolutional Neural Networks

Architectures presented in previous Sections are designed to connect arrays of artifi-
cial neurons and synapses, built as digital or analog silicon circuits, allowing to map
any kind of spiking neural network topology (only restricted by the hardware limita-
tions). However, researchers have demonstrated that efficient vision systems can be
built exploiting the projection field concept, illustrated in Fig. 2.8. Each neuron in one
layer connects to a projection field of neurons in the following layer. The weights of
synaptic connections follow a pattern which is independent of neuron position within
a sending layer. Thus, the projection field based computation allows to simplify the
synaptic connectivity of the neurons and improve the scalability of neural systems
without compromising the computational power.

Vision processing based on projection fields is similar to convolution based process-
ing [53], at least for the earlier cortical layers. For example, it is widely accepted that
the first layer of the visual cortex V1 performs an operation similar to a bank of 2D
Gabor-like filters at different scales and orientations [2] whose actual parameters have
been measured [54–56]. This fact has been exploited by many researchers to propose
powerful convolution based image processing algorithms [1, 2],[57–62]. In 1959 Hubel
and Wiesel reported their findings on projection field processing in early stages of vi-
sual cortex, receiving the 1981 Nobel Prize. Based on these findings, ConvNets were
originally proposed by Fukushima in 1969 [57]-[58] and further developed by Yann Le-
Cun [59] and other groups, as a type of continuous-time gradient-based learning neural
paradigm, with great success in a variety of (industrial) applications as well as research.

Examples of industrial applications and developments are, to mention a few: (1)
NEC with products for face/person detection, age and gender recognition for vend-
ing machines [37, 38], as well as prototypes for cancer cell detection or mobile phone
imaging applications, (2) France Telecom/Orange with face detection and recognition,
text detection and recognition [31], various mobile phone applications, (3) Vidient
Technologies with products for video surveillance, human detection and tracking, (4)
Canon with cameras with embedded video surveillance, (5) Microsoft with handwrit-
ing recognition [32–36], (6) AT&T/Lucent-Technologies NCR with products for check

20 Existing Large Scale Neuromorphic Hardware Platforms

AER

motion

retina

USB

monitor
Conv

chip

USB

 monitor

USB

mapper

AER

object

chip

AER

delay

line

chip

AER

learning

chip

USB

mapper
Splitter

Conv

chip

Conv

chip

Conv

chip
Merger

USB

 monitor

USB

mapper
USB

mapper

microcontroller

Moving

stimulus

mirrors

Figure 2.7: Experimental setup of multilayered AER vision system for ball tracking (final
demonstrator of CAVIAR FET project).

Projection field

Figure 2.8: Typical structure of a feed forward convolutional neural network.

2.6 Scalability properties of convolutional neural networks 21

recognition [30]. Examples of state-of-art research exploiting ConvNets are (1) Poggio
at MIT with object recognition and scene analysis [2], (2) Seung at MIT with image
segmentation and biological image analysis (brain circuit reconstruction) [39] (3) NEC
Labs with natural language processing and understanding [29], (4) NYU with biologi-
cal image analysis, object recognition and visual navigation for robots [40]. All these
developments are based on frame-based image processing, using sensory input from a
conventional video camera.

On the other hand, in 1996, Thorpe demonstrated that the human visual system is
capable of performing object recognition tasks at such speeds that any neuron involved
only had time to fire one spike [63]. Based on this finding, he developed a framework
for spiking ConvNets, which is presently being exploited commercially for high speed
object recognition software [64].

In the field of VLSI circuit design we have witnessed, during the past years, im-
portant developments in the field of spiking neural hardware, and specifically neural
spiking hardware for ConvNet processing [20, 21, 52] of visual information sensed by
highly efficient spiking sensors [11]. It is now becoming apparent that the combination
of ConvNet theories and knowledge, the framework of spiking information sensing and
processing and the state-of-the-art hardware technologies will result in highly efficient
systems for sophisticated cognitive tasks, similar to the human brain.

2.6 Scalability properties of convolutional neural

networks

Fig. 2.8 shows a typical ConvNet architecture. It usually contains a reduced number
of sequential layers (4-10), each of which performs several 2D filtering operations in
parallel. Early stages extract simple features (such as edge orientation and scale), which
are progressively combined into more complex shapes and figures at later stages. Early
stages usually operate with small but dense kernels, while later stages use longer range
but sparser ones [2]. To increase the knowledge (dictionary of shapes and figures) of the
system one simply adds more 2D filters in later layers. Example of ConvNet systems
for face and character recognition applications may have several ten to hundreds filters
per layer.

What is interesting about ConvNets, compared to other neural networks, is their
graceful scaling capability. To increase knowledge one simply has to increase the num-
ber of convolutional modules in a layer. Thus, number of neurons (pixels) scales linearly
with the number of modules. On the other hand, the latency of the computing structure
(if implemented as parallel hardware) is determined mainly by the number of sequen-
tial layers, which is a reduced number and does not change for a given application.
Therefore, speeds do not degrade by adding more modules per layer (more knowledge)
at least in first order. In other neural network architectures, the number of synapses
scales quadratically with the number of neurons. Consequently, ConvNets seem very
appealing for configurable, modular and scalable spiking hardware implementations.

22 Existing Large Scale Neuromorphic Hardware Platforms

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

MUX

Mem% ∑π

+

Control

& config

Smart

DMA

Off-chip

memory

Configurable route Global data lines Runtime config bus (indication on the width)

PT PT PT

PTPTPT

PT PT PT

64-bit CPU

Figure 2.9: A runtime reconfigurable dataflow grid of processing tiles (PTs).

2.7 NeuFlow vision system

NeuFlow is a frame-based hardware architecture for large-scale multi-layered synthetic
vision systems based on filter banks which exploits the already analyzed advantages
of ConvNets. This vision processor is a dataflow engine which can perform real time
detection, recognition and localization in mega-pixel images processed as pipelined
streams. Fig. 2.9 shows the high level architecture of the vision processor, where its
main blocks have been highlighted. The design is a custom single instruction multiple
data (SIMD) processor based on a 64 bit CPU with hardware-accelerated instructions.
Operations are highly optimized and make use of the parallelism available in hardware.

The key blocks of the computing architecture are described below:

• Processing tiles (PTs): they are independent processing tiles laid out on a
two-dimensional grid. The PTs contain a routing multiplexer (MUX) and local
operators, which can range from adders, multipliers or dividers to multiply-and-
accumulate arrays (to efficiently compute convolutions) or non-linear mapping
engines (to efficiently compute non-linear functions). These operators are fully
pipelined to produce one result per clock cycle. Each node has its own configu-
ration parameters, routes or settings, despite of a unique address to identify it
within the array.

• Control Unit: an agile re-configuration procedure is one of the key aspects
of the hardware acceleration capabilities. The grid offers restricted connectivity

2.7 NeuFlow vision system 23

Table 2.1: ConvNet implementations comparison: 1-Intel DuoCore: laptop-class CPU,
2.7GHz, optimized C-code, 2-neuFlow on Xilinx Virtex 4/6 (actual measurements) 3-NeuFlow
on IBM 65nm process (post place and route simulations), 4-two GPU implementations: low
power GT335nm and high-end GTX-480.

Intel neuFlow neuFlow nVidia neuFlow nVidia

2Core Virtex4 Virtex6 GT335m IBM 65nm GTX480

Peak GOP/sec 10 40 160 182 1200 1350

Actual GOP/sec 1.1 37 147 54 1102.5 294

FPS 1.4 46 182 67 1365 374

Power(W) 30 10 10 30 3 220

Embed(GOPs/W) 0.037 3.7 14.7 1.8 367.5 1.34

because each tile can only be connected to its neighbors and to a few global
N-to-N data lines. Instead of a hard-wired solution, the communication relies on
a NoC to efficiently broadcast configuration packets. The control unit interfaces
the NoC to reconfigure the grid at runtime with reconfiguration times in the
order of tens of µs.

• Smart DMA: this multi-port memory management block is specifically designed
for image manipulations. The streaming engine interfaces any kind of memory
module (internal or external) and offers Nx16 bit asynchronous read/write ports
on the other side. This design allows simultaneous streams from/to the same
memory locations. A dedicated arbiter is used to multiplex/demultiplex access
to the external memory with high bandwidth.

The typical execution of an instruction on this system is the following: 1) the CPU
configures each tile to be used for the computation and each connection between the
tiles and their neighbors and/or the global lines, by sending a configuration commands
to each of them, 2) it configures the streaming engine to pre-fetch the data to be
processed, and to be ready to write results, 3) when the streaming engine is ready, it
triggers the streaming out, 4) each ALU processes its respective incoming data, and
passes the results to another tile, or back to the streaming engine, 5) the CPU is
notified of the end of the operations when the streaming engine has completed. The
behavior of each port in the smart DMA block can be configured separately by using
the configuration bus.

Table 2.1 shows a comparison between possible implementations of ConvNets in
existing hardware platforms. The results correspond to the computation of 16×10×10
filter bank over a 4×500×500 input image. NeuFlow implementations on Virtex-4 and
Virtex-6 FPGAs have been tested in hardware and results for the IBM 65nm prototype
are estimated using data taken from the technology. The neuFlow is a good example
on how ConvNets can be used for high level processing tasks, such as object or human
face recognition, outperforming the conventional hardware platforms for vision system.

24 Existing Large Scale Neuromorphic Hardware Platforms

2.8 AER convolution chips

Convolutions are computationally expensive. It seems unlikely that the high number
of convolutions which might be performed by the brain could be emulated fast enough
by software programs running on the fastest of today’s computers. NeuFlow offers a
powerful hardware platform to implement ConvNets which can perform highly sophis-
ticated vision processing tasks. However, it still relies on the frame concept for the
computation. Along this Chapter, the event-based neuromophic approach advantages
have been presented over the frame-based concept. Exploiting the opportunities given
by the event-based computation, ConvNets performance in terms of processing speed
and power consumption can be improved. Event-driven hardware convolution units
become essential building blocks to assemble ConvNet architectures which operate on
spike-driven bases.

Some AER convolution processing chips with hardwired kernels (slightly tunable)
have been proposed in the literature [17, 18]. However, it was not until arbitrary-
shape-kernel convolution chips became available (with [19] or without kernel symme-
try restrictions [20]) that their potential for building large scale AER ConvNets for
arbitrary pattern and object recognition applications became apparent. Several AER
fully-programmable-kernel convolution chips have been reported; either mixed-mode
based on pixel-level charge packet integration [20, 21], or fully digital with in-pixel
accumulator and adder to emulate leaky integrate-and-fire neurons [22, 23].

Fig. 2.10 shows the conceptual diagram of a fully digital AER convolution chip
[22, 23]. It contains a synchronous controller with an internal clock, a 32x32 4-bit
words static kernel-RAM, a kernel parameter lookup table (LUT), a column reader,
a 2’s complement block, a left/right column shifter, an array of 64x64 pixels, and an
asynchronous event read out block [65]. Event-driven convolutions are performed as
follows. Pixels (x,y) in the Pixel Array (see Fig. 2.10) hold their state in a con-
tinuous and dynamic manner. When the module receives an input event described
by (xin, yin, sin, kin), kernel kin (which is a 2D matrix stored in the Kernel-RAM) is
added/subtracted to the Projection Field of pixels around Event Address (xin, yin).
Input event sign sin determines whether the kernel is added or subtracted. When a
pixel reaches a positive (or negative) threshold, it is reset to its reseting level, and a
positively (or negatively) signed output event is sent through the AER output port
with the pixel coordinates. Independently to the input event flow, all pixels “suffer”
from a constant rate leak which will drive their state to a resting level when no input
events modify the pixel state.

Event-driven convolution modules need about 100ns to 1µs to process each event,
depending on the kernel size. Each convolution chip needs to collect a given number
of space-time correlated input events to provide an output event, depending on the
module settings. For high-speed processing, one can set this number to be around ten
events or less. In general, more relevant pixels in the sensor have stronger signals and
send out their events sooner or more frequently. Consequently, more relevant events
will be processed first by later convolution chips. This way, in an object recognition
hierarchical ConvNet, recognition can be achieved as soon as the sensor provides enough

2.8 AER convolution chips 25

S
y
n

c
h

ro
n

o
u

s
 c

o
n

tr
o

l
b

lo
c
k

+

C
o

n
fi
g

u
ra

ti
o

n
 r

e
g

is
te

rs

Ack_in
Rqst_in

Address_in + sign

Kernel number

Controller

clock

Column blocker

 +

 left/right shifter

+

 2's complement

x

y

P
ix

e
l
a

rr
a

y

Kernel RAM Kernel LUT

Projection

field

Event

address

Top periphery Out

Block

R
o

w
 a

rb
it
e

r

Address out + sign

Rqst_out

Ack_out

A
s
y
n

c
h

ro
n

o
u

s
 A

E
R

-o
u

t

Figure 2.10: Event-based convolutional module architecture.

significant space-time correlated events. We refer to this as the “pseudo-simultaneity”
property of event-driven convolution processing.

The second interesting property of implementing event-driven convolutions (or other
operators, in general) is its modular scalability. Since event flows are asynchronous,
each AER link between two convolutional modules is independent and needs no global
system synchronization. Event-driven architectures are greatly simplified by this fact
because the need of time-stamping events is avoided and there is no global clock. For
this reason, the “pseudo-simultaneity” property of individual convolution modules also
applies to large scale multilayer and multimodule systems.

The third interesting property of spike based hardware, in general, is that since
processing is per-event, power consumption is, in principle, also per-event. Since events
usually carry relevant information, power is consumed when relevant information is
sensed, transmitted and processed. This is not completely true in convolution chips
due to the leak mechanism which remains active, even when there are no input events.
That leads to a fixed amount of background event-independent power consumption,
apart from a variable term which depends on the chip input activity.

Besides the neuFlow platform, some researchers have reported other GPU or FPGA-
based hardware realizations of sophisticated frame-based ConvNets for recognition type
of applications. They showed extraordinary performance figures, for both recognition

26 Existing Large Scale Neuromorphic Hardware Platforms

Table 2.2: Frame-based ConvNets for face detection
Nasse [66] NEC [67] Yale/NYU [41, 42]

Hardware GPU Nvidia GeForce 8800GT FPGA Virtex-5 FPGA Virtex-6

Input image size 640x480 540x480 512x512

total neurons 4.9 106 4.4 106 2.4 106

total synapses 930 106 530 106 115 106

peak MAC/s N/A 3.37 109 160 109

delay 209ms 160ms 6ms

rates and processing times. Table 2.2 summarizes recognition delays of three exam-
ple systems which perform face recognition with ConvNets, implemented either with
GPUs [66] or FPGA’s [67], [41, 42], when using VGA-like size input images. Nasse’s
implementation on an Nvidia GeForce 8800GT GPU needs 209ms per input frame.
NEC’s system implemented on a Virtex-5 FPGA requires 160ms, while Yale/NYU’s
Neuflow system in a recent Virtex-6 FPGA can do a similar task in 6ms.

The main advantage of frame-based realizations is that the hardware can be time
multiplexed by fetching intermediate data between the processor and the external mem-
ory, at the cost of slowing down speed performance. Time-multiplexing is not possi-
ble with event-driven hardware as each neuron holds its state at each instant. On
the other hand, one main advantage of event-driven hardware is that, because of the
“pseudo-simultaneity” property, processing delay is kept approximately constant as
hardware scales up. Another advantage is that up-scaling is simple by simply assem-
bling more modules through asynchronous interconnect AER buses. However, large
scale event-driven ConvNets are still under development. In this Dissertation, a scal-
able implementation of these networks will be proposed to overcome this limitation.
The infrastructure can be used as hardware platform to map any large scale event-
driven convolution-based architecture.

2.9 Conclusion

In this Chapter we have presented the state of art large scale spiking neural network
implementations by reviewing some architectures proposed in the literature from a
system level perspective. Several inter-module communication schemes suitable to
transmit spikes between neurons have been studied and compared in order to identify
the design challenges which arise from the large scale implementation. On the other
hand, we have discussed the characteristics of ConvNets as a scalable architecture
for the hardware realization of neuromorphic vision systems. Frame and spike based
ConvNets approaches have been described to show the potential of this kind of neural
networks and highlight the differences between them.

The next Chapter will be devoted to the design of a spike driven network suitable
for the inter-module communication of AER modules. A 2D mesh assembly of AER
chips will be analyzed as a suitable method for the inter-module interconnection. This

2.9 Conclusion 27

module assembly provides the designers of neuromorphic systems enough degree of pro-
grammability to fit random connectivity patterns into a fixed hardware infrastructure.
At the same time, the system design must be scalable and expandable to consider a
broad range of application scenarios. Moreover, a lightweight implementation of net-
working circuits is mandatory to reduce the area and power headroom introduced by
the system connectivity.

28 Existing Large Scale Neuromorphic Hardware Platforms

3
Spiking Neural Networks Hardware

Implementation

3.1 Introduction

In previous Chapters, the need to build large scale neuromorphic systems which can
perform brain-like signal processing tasks in a much more efficient way than with tradi-
tional computers was justified. The state-of-the-art systems which have been proposed
throughout the last years were presented, emphasizing on the design constraints that
the large scale of integration imposes. The ConvNet paradigm was also introduced as
a suitable framework to build scalable and efficient neural vision processing hardware
architectures. Frame-based and spike-based convolution modules were described and
compared in terms of their computational properties. From this point on, we will fo-
cus on spike-based implementation of large scale ConvNets by developing a hardware
infrastructure where software networks can be directly mapped and take advantage of
the spike-driven computation.

As computational power of neural networks increases when the number of neurons
and synapses rises, an scalable and expandable solution would be desirable. At the
same time, configuration and testability also become important issues to obtain a really
useful hardware which can be used by a wide community of researchers. This Chapter
will be devoted to define the system level design of large scale event-driven neural
units composed by a huge amount of neurons which communicate spikes using AER
events. Prior to explain our solution, we will further analyze the network architectures
proposed by other groups, although their basic properties were exposed in Chapter 2.

In general, AER processing modules require at least one AER input port and one

29

30 Spiking Neural Networks Hardware Implementation

M
ap

pe
r

A
E

R
_

in

A
E

R
_

o
u

t

A
E

R
_

in

A
E

R
_

o
u

t

A
E

R
_

in

A
E

R
_

o
u

t

MS

S

M

S

S M

A
E

R
_

o
u

tA
E

R
_

in

A
E

R
_

o
u

tA
E

R
_

in

A
E

R
_

o
u

tA
E

R
_

in

A
E

R
_

o
u

tA
E

R
_

in

(c)
M

S

Merger

Splitter

1

2

3

5

4

7

6

S

M

Ev7

Ev6

Ev1

Ev1

Ev1

Ev2

Ev3

Ev2

Ev2

Ev2+Ev3+Ev7

Ev3

Ev2+Ev4

Ev4

Ev4

Ev7

Ev3+Ev4+Ev7

Ev4

Ev7Ev7

Ev5

Ev5+Ev6

AER_out

A
rb

it
e

r

AER_out

D
e

c
o

d
e

r

AER_in

AER_out

Mapper

(a)

Fflat

Fout

Fflat

Router

Array

(e)

Mapper

AERi AER’i

AERoAER’o

AERi AER’i

AERoAER’o

AERi AER’i

AERoAER’o

(b)

AER_out

A
rb

it
e

r

AER_out

D
e

c
o

d
e

r

AER_in

AER_out

L1-mapper

in out

AER_out

A
rb

it
e

r

AER_out

D
e

c
o

d
e

r

AER_in

AER_out

L1-mapper

in out

AER_out

A
rb

it
e

r

D
e

c
o

d
e

r

L1-mapper

in out

A
rb

it
e

r

D
e

c
o

d
e

r

L2-mapper

in out

AER_out

AER_out

AER_in

(d)

Fpp

Fpp

Fpp

Fpp

Fpp

Fpp

Fpp

Fpp

Figure 3.1: Illustration of different multi-module AER assembly options: (a) Flat-AER,
(b) Router-Grid-AER, (c) Broadcast-Grid-AER, (d) Hierarchical-Fractal-AER, (e) Pre-Wired
Structured-AER.

AER output port. As neuromorphic systems scale up in size, complexity, and function-
ality, researchers have been developing more complex and smarter AER “variations” to
maintain efficiency, reconfigurability and reliability of the ever growing target systems
they want to build. We can distinguish several solutions, summarized in Table 3.1 from
a system level design point of view.

The simplest form of a generic AER concept, “Flat-AER”, for use in a large scale
multi-module spiking neuromorphic system is illustrated in Fig. 3.1(a). Each mod-
ule can contain, for example, an array of neurons. Each neuron is assigned a unique
global address, which identifies the module it belongs to and its position inside the
module. This way, the address space of all modules input and output AER ports is
the same. All modules share a single external AER bus [15, 47, 73, 74]. The con-
nectivity among neurons is configurable and set by a look-up-table in the external
programmable “Mapper”. Multi fan-out can be programmed in the mapper by re-
peating multiple destination addresses for each incoming address. Similarly, synaptic

3.1 Introduction 31

T
a
b
l
e
3
.1

:
M

u
lt

i-
M

o
d

u
le

A
E

R
A

d
d

re
ss

in
g

S
ch

em
es

F
la

t
A

E
R

[4
7
]

B
ro

a
d

ca
st

G
ri

d
A

E
R

[6
8
–
7
0
]

P
re

-w
ir

ed
S

tr
u

ct
u

re
d

A
E

R
[5

2
]

H
ie

ra
rc

h
ic

a
l

F
ra

ct
a
l

A
E

R
[4

8
]

R
o
u

te
r

G
ri

d
A

E
R

[7
1
]

C
ro

ss
-

P
o
in

t
In

te
rc

.
[7

2
]

S
tr

u
c.

G
ri

d
A

E
R

Addressing

A
d

d
re

ss
sp

ac
e

fl
a
t

fl
a
t

lo
ca

l
lo

ca
l

fl
a
t

lo
ca

l
fl

a
t

B
ro

ad
ca

st
to

al
l

m
o
d

u
le

s
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o

L
o
ca

l
R

ou
ti

n
g

T
ab

le
s

to
d

efi
n

e
gl

ob
al

n
et

w
or

k
N

o
N

o
N

o
Y

es
Y

es
Y

es
Y

es

S
in

gl
e

gl
ob

al
m

ap
p

er
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o

ModuleProps.

is
ol

at
ed

n
eu

ro
n

s
Y

es
N

o
N

o
Y

es
N

o
N

o
N

o

n
eu

ro
n

s
w

it
h

sy
n

ap
se

s
N

o
Y

es
Y

es
N

o
Y

es
Y

es
Y

es

ev
en

ts
w

it
h

sy
n

ap
ti

c
w

ei
gh

ti
n

g
Y

es
N

o
N

o
Y

es
N

o
N

o
N

o

p
ro

je
ct

io
n

fi
el

d
s

w
it

h
sy

n
ap

ti
c

w
ei

gh
ti

n
g

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

p
h
y
si

ca
l

sy
n

ap
se

s
N

o
Y

es
N

o
Y

es
N

o
Y

es
N

o

32 Spiking Neural Networks Hardware Implementation

weighting can also be implemented by programming destination address repetitions.
However, event repetition (for either fan-out or weighting) severely penalizes the AER
bus communication bandwidth. To overcome this, some reported neuron chips allow
for an additional synaptic weight parameter together with the event address [47, 75],
which could be programmed into the mapper as well.

Alternatively, some other reported neuron chips include a built-in mechanism to
perform a given fan-out and synaptic weighting from a single input event (such as pre-
wired diffusive networks [17, 18] or more elaborated computational hardware [20–22]).
In this case, the mapper would only need to repeat an event if it is destined to neurons
belonging to different modules. Normally, event addresses represent neurons. However,
in some reported neuron chips which include a number of physical synapses per neuron
[15], the input address represents one specific synaptic input. In this case, the address
spaces at the mapper input and output would be different, as they represent different
elements.

Flat-AER is simple and easy to build, configure, and use. It requires a mapper
memory with as many positions as neurons in the system. However, the main limitation
of flat-AER is communication bandwidth. Since every single event produced by any
neuron has to travel through the single AER bus and Mapper, the maximum system
total event traffic is limited by the bus bandwidth. If Ntot is the total number of
neurons, fn is the mean spike rate per neuron and Fout the average fan-out per neuron
(spike repetitions introduced by the mapper to emulate the projection fields and/or
synaptic weighting), the event arrival rate λ at the Mapper output channel is [76]
λ = NtotfnFout. If Fflat is the physical channel bandwidth, then the channel service
rate is µ = Fflat and the average time an event waits to be serviced is (assuming
an M/M/1 queue model [77]) t̄q = 1/ (µ− λ). Consequently, the absolute maximum
number of events per unit time Ev this approach can handle is obtained for λ = Fflat
and is

Evmax = Ntotfn

∣∣∣
max

=
Fflat
Fout

(3.1)

or the maximum allowable number of neurons is

Ntot max =
Fflat
fnFout

(3.2)

Note that, in general, Fout = nRF × nW (nRF is the receptive field size and nW is
the synaptic weight dynamic range) can become significantly large. For example, if the
receptive field has size of nRF = 11 × 11 neurons and weights can have integer values
ranging from nW = 32 to 1, then Fout = 3872.

Reported AER-bus bandwidths are presently below 100Meps (mega events per
second) for point-to-point links, although there are reported cases using high density
channels and multiplexing techniques which achieve higher event rates [46, 73]. There-
fore, flat-AER allows for a total communication bandwidth between about 108 eps and
104 eps, depending on fan-out.

3.1 Introduction 33

Having several modules sharing the same physical lines degrades the speed propor-
tionally to the number of modules [69]. This can be overcome by using Broadcast-Grid-
AER.

“Broadcast-Grid-AER” uses multiple point-to-point AER buses [68–70] and Fig.
3.1(b) shows its corresponding 1-D version. Each neuron in each module has also a
unique global flat address. Each module has an AER input event path and an AER
output event path, each with an AER input port and an AER output port. AER
input events received at the input AERi port are sent to the module neuron array but
are also passed through to the next module, via output port AERi’. This way, input
events “hop” from module to module through independent AER point-to-point links.
Consequently, the speed at each AER link is optimum and events are copied more
efficiently in a pipeline fashion. Output events generated in each module also “hop”
from module to module until reaching the Mapper, through AERo and AERo’ ports.
In this scheme all input events coming from the Mapper are broadcast to all modules,
and each module checks if it is destined to the local neural array [68, 69]. However, the
overall network connectivity information is contained in the global mapper, and can
be totally reconfigured by reprogramming the mapper (as in the flat-AER approach).

One main claim in this approach is that channel bandwidth of each point-to-point
link Fpp is improved proportionally to the number of chips Nch in the network (for the
1D case), with respect to the flat-AER case where Nch chips share the same AER bus1,
as in Fig. 3.1(a). More precisely, for typical PCBs, the bandwidth of a point-to-point
link is

Fpp ≈ 2 (Nch − 1)Fflat (3.3)

The network has now Nch point-to-point links, which allows for a total communication
bandwidth of Fpp × Nch. However, each event has to be copied to each link, so that
maximum event rate is

Evmax = Ntotfn

∣∣∣
max

=
FppNch

FoutNch

=
Fpp
Fout

(3.4)

Thus, the bandwidth improvement comes from improving Fpp with respect to
Fflat, which is proportional to the number of chips [69].

Both Flat-AER and Broadcast-AER-Grid use a common global flat address space
and allow, in principle, for any arbitrary interconnect topology. However, practical
neuromorphic systems have a pre-established hierarchical structure, depending on the
functionality they implement. This fact has been exploited by other researchers to
assemble scalable multi-module systems through independent AER-links, where each
link is a physical plugged-in point-to-point bus-wire [52]. This is illustrated in Fig.
3.1(c), where AER splitters (blocks labeled “S” in Fig. 3.1(c)) and mergers (blocks
labeled “M” in Fig. 3.1(c)) are also used for branching or de-branching links. A splitter
block receives one input AER channel and replicates the traffic for n different output
channels, while a merger block multiplexes n input AER channels into a single output
channel.

1For a more detailed explanation see [69]

34 Spiking Neural Networks Hardware Implementation

In this “Pre-Structured AER” approach the address space is local to the neurons
writing to or reading from an AER link. Optionally, local mappers can be inserted in a
link to adapt address spaces from an output to an input (for example, to perform sub-
sampling, address rotations, bit reallocations, etc.). In this approach no global Mapper
is required, as the connectivity is pre-wired, and events do not need to travel over all
links. The number of links scales with the number of modules, so that communication
bandwidth saturation is much less likely to occur as systems scale up. However, sys-
tem reconfiguration is painful as it has to be done manually by re-plugging bus-wires,
splitters, mergers, mappers, and processing modules.

In this case each point-to-point channels receives events from only a small fraction of
modules/chips. In general, we can define an effective number of independent channels
Meff as a fraction of the total number of chip modules Meff = αNch. Then the network
maximum communication bandwidth would be

Evmax = αNchFpp (3.5)

Parameter Fout does not appear anywhere, since now we assume that projection
fields and synaptic weighting are implemented inside each module. As an example,
Fig. 3.1(c) has 7 modules, each generating an output event rate Evi. The distribution
of splitters and mergers determine the potential bottlenecks as

Ev1max ≤ Fpp , (Ev2 + Ev4)max ≤ Fpp

(Ev2 + Ev3 + Ev7)max ≤ Fpp , (Ev5 + Ev6)max ≤ Fpp

(Ev3 + Ev4 + Ev7)max ≤ Fpp (3.6)

under these constraints, the absolute maximum capacity of this particular network is

Evmax =

(∑
Evi

)
max

= (3.7)

=

(
1 +

1

2
+

1

4
+

1

2
+

1

2
+

1

2
+

1

4

)
Fpp = 4Fpp

Thus, in this case α = Meff/Nch = 0.57. Therefore, in this approach the optimum
point-to-point bandwidth Fpp is further improved, proportionally to the number of
chips (by a factor αNch).

Joshi et al. suggested recently a “Hierarchical-Fractal-AER” approach [48],
illustrated in Fig. 3.1(d), which extends the basic Flat-AER concept of Fig. 3.1(a) in a
hierarchical fashion. It exploits the assumption that nearby neurons are more heavily
interconnected than more distant ones. Address space is expanded as events need to
climb up in the hierarchy. This way, more intense local traffic is performed very fast
in parallel at the numerous lower level modules, while longer range but sparser traffic
needs to traverse levels of hierarchy and is slower. Neglecting the traffic at the higher

3.1 Introduction 35

hierarchies and if ML1 is the number of lowest level L1 parallel sections and NL1 the
number of chips per L1 section, then the absolute maximum network bandwidth would
be

Evmax = ML1
Fhier
Fout

(3.8)

with Fpp ≈ 2 ((Nch/ML1)− 1)Fhier. This way, maximum network bandwidth can be
expressed as

Evmax =
1

2

ML1

NL1

Fpp
Fout

(3.9)

Depending on the ratio ML1/NL1 an important improvement with respect to Flat-AER
can be achieved.

Another approach, illustrated in Fig. 3.1(e), is what we call here “Router-Mesh-
AER” [71]. Here again neurons have a global flat address which identifies their module
and their address within the module, but there is no external Mapper through which all
events have to pass. Instead, the mapping table is contained within a “Router” in each
module. The router also decides the ports through which an event is sent to reach its
destination module. Therefore, events are not broadcast to all modules, but optimum
“hop” paths are established in a multi-cast fashion. The main problem is that a very
large mapping table needs to be programmed in each module. However, to simplify
these tables, optimizations can be computed for each module router depending on
the system topology, and default routing paths can be established for event addresses
not listed in the tables [71]. This mesh approach has been traditionally used in NoC
(Network on Chip) [78] topologies to assemble high performance multi-core processor
systems for high performance computing applications [79–81].

Another approach being developed presently, but at wafer scale [72], exploits mas-
sive programmable cross-point interconnects to reconfigure the network topology. We
have included this method also in Table 3.1 for comparison, although we are focus-
ing more on multi-chip systems. Nonetheless, this wafer scale approach also includes
off-wafer re-routing (and event re-timing) means for longer range interconnects [46].

In all of the previously listed methods which use a global flat address space, the
event includes a module ID corresponding to the module where the event was gener-
ated. Let us call this “Source-driven” coding. However, it is also possible to label the
event with the ID of the destination module instead. Let us call this “Destination-
driven” coding. In this Chapter we will consider a type of Pre-Wired Structured-AER
approach, but instead of having manually pluggable links, modules are arranged in a
2D-Grid while inter-module links are configured through in-module routers. We call
it “Structured-Grid-AER”. The approach is similar to the “Router-Grid-AER” ex-
cept that the module router tables only contain information of the module-to-module
links, instead of the full inter-neuron connectivity. We will analyze both ‘source-driven’
and ‘destination-driven’ codings and will show experimental results on example vision
processing systems implemented on Virtex-6 FPGA prototyping boards, based on Con-
volutional Neural Networks (ConvNets).

36 Spiking Neural Networks Hardware Implementation

Interface Interface Interface Interface

InterfaceInterfaceInterfaceInterface

In
terface

In
terface

In
terface

In
terface

AER

retina

In
terface

In
terface

In
terface

In
terface

AER

node

(1,1)

AER

node

(2,1)

AER

node

(3,1)

AER

node

(4,1)

AER

node

(1,2)

AER

node

(2,2)

AER

node

(3,2)

AER

node

(4,2)

AER

node

(1,3)

AER

node

(2,3)

AER

node

(3,3)

AER

node

(4,3)

AER

node

(1,4)

AER

node

(2,4)

AER

node

(3,4)

AER

node

(4,4)

Figure 3.2: 2D Network Topology for Structured-Grid-AER. Each node is identified by
the address field (xNODE, yNODE).

3.2 Routing in Structured-Grid-AER

Fig. 3.2 shows the 2D network topology we use for Pre-Structured-Mesh-AER. Modules
communicate bidirectionally and orthogonally with their neighbors through point-to-
point links. If the mesh has M1 ×M2 chip modules, the total number of inter-module
links is Nl = 2[(M1− 1)M2 + (M2− 1)M1] = 4M1M2− 2(M1 +M2). Each event needs
to hop through a number of links to travel from its source module to its destination
module. Let’s call nh the average number of hops per travelling event. This average
number nh is application specific, but would usually be in the order of a fraction of M1

and M2. The network absolute maximum bandwidth is2

Evmax =
Nl

nh

Fpp
FMout

(3.10)

where FMout is the module fan-out (number of destination modules an event has to
reach).

Each module is identified by a 2D index (xNODE, yNODE). From now on let us
call each module in this 2D grid an AER-node. The internal structure of an AER-node
is shown in Fig. 3.3. It contains a Router, a local Event Processor (or neuron/synapse

2By approximating Nl ≈ 4Nch and nh ≈ (2/3)
√
Nch, we can get a feeling on how maximum

network bandwidth scales with the number of chip modules, since then Evmax ≈ 6
√
NchFpp/FMout.

3.2 Routing in Structured-Grid-AER 37

Event

processor
ROUTER

North port

South port

E
a

s
t p

o
rt

W
e

s
t
p

o
rt

Configuration

processor

SPI

Figure 3.3: Example of AER node for a multi-node multi-link AER system.

array), and a Configuration Processor (to set configurable parameters in the Event
Processor or Router). The Router receives external events from the four neighbors
and based on its programmed routing tables decides whether to send them to the local
processors or send them to other neighbors. For events generated by the internal Event
Processor, the Router adds the corresponding node index and sends them through the
programmed ports.

Thus, the Router introduces a network layer between the processing units logic
layer and the physical layer implementation. A heading bit distinguishes between
configuration commands to be handled by the Configuration Processor, and data events
to be handled by the Event Processor. The Configuration Processor can also receive
commands through an SPI (Serial Peripheral Interface) connection.

Another heading information identifies the node 2D index (xNODE, yNODE) coded
in the event. This index identifies either the source node sending the event to the
grid (in case of a Source-Driven addressing scheme), or the destination node to which
send the event in the grid (in case of a Destination-Driven addressing scheme). Each
addressing mode has pros and cons which are analyzed throughout this Chapter. For
both cases, Fig. 3.4 shows the proposed 32-bit event format containing two fields:

• Routing header: the most significant bit is used to distinguish between data
event (first bit is ‘0’) or configuration command (first bit is ‘1’). The next 8
bits are used to code the destination or source node ID. Coordinates xADD and
yADD are represented using 4 bits each one.

• Upper layer data: the remaining 23 bits contain the event/command data. If
it is a configuration command, it contains a command description, for example,
a checksum, a command identifier and command parameters.

38 Spiking Neural Networks Hardware Implementation

AER addressRouting header

0 xADD addressyADD address

(a) Event frame

Config dataRouting header

Checksum1 xADD addressyADD address

(b) Configuration frame

Command ID Command Pars

AER data

Figure 3.4: Events format with headers added for routing purposes.

xADD > xNODE

xADD = xNODE

Event to local

processor

YES

yADD > yNODE

Event to East

Port

Event to West

Port

NO

yADD = yNODE
YES

YES NO

NO

YES NO

Event to North

Port

Event to South

Port

Figure 3.5: Destination-driven routing algorithm for handling incoming events. (xNODE,
yNODE) is the local node address and (xADD, yADD) is the received destination address.

3.2.1 Destination-driven Routing Algorithm

In this algorithm, the destination node address is written in the routing header. When
the event arrives to a network node, the router analyzes the addressing header and
decides the output port to which forward the event. If the destination address corre-
sponds to the node address, the event is sent to the local processor. If this is not the
case, the event is routed based on the algorithm represented in Fig. 3.5.

The algorithm compares the event destination address xADD and yADD with the
present node address xNODE and yNODE to decide the output port to which forward
the event. Using the geographical information contained in the destination address, the
event is routed to the neighbor node whose path to the destination is shorter in terms
of the number of hops. As the router only requires a comparison between two 4-bit
digital words, the hardware required can be very simple and the routing operation can
be performed on the fly. The algorithm in Fig. 3.5 gives priority to xADD and tends
to concentrate the traffic in horizontal rows. To avoid this, routers which give priority
to yADD can be alternated with those priming xADD, balancing the situation..

Besides managing the traffic coming from the chip neighborhood, the router also

3.2 Routing in Structured-Grid-AER 39

AER2

AER3AER1

VC1

AER4

VC2

VC3

Hardware

Mapping yOUT xOUT Out Port

yAER2 xAER2

yAER3 xAER3

yAER4 xAER4

1

2

3

VC1

VC2

VC3

AER1 routing table

Figure 3.6: Routing table for cloning output events in the destination driven algorithm.
Left: Example logic diagram (schematics) indicating the logic (virtual) connections between
a source module AER1 and three destination nodes AER2−4. Right: Routing table that
indicates the output event header to add (xOUT ,yOUT) and the port through which to send
it. V Ci (i=1,2,3) represents a virtual connection between the source node AER1 and the
destination nodes AERi−1. (xAERi,yAERi) (i=2,3,4) is the network address of node AERi.

inserts the headers for the new events created in the local processor. For each newly
created event, the local router clones it as many times as destination nodes (or virtual
connections V Ci) there are for this event. For each clone, or virtual connection V Ci,
the router adds the destination node address and sends it to one of the local output
ports. This is organized in a routing table which is consulted for every new event.
Every entry of this table has an output destination address and an output port that
must transmit the event. The routing table organization is illustrated in Fig. 3.6, for
the case of one node AER1 having three virtual connections V C1−V C3 to three other
nodes AER2-AER4. Fig. 3.7 shows the flow diagram of the output event management
in the destination-driven routing algorithm.

3.2.2 Source-driven Routing Algorithm

In the source-driven option, the router receives information about the source address
which generated the event. Hence, all nodes must store information about all the
possible source addresses that they can receive. When a new event is received, the
router searches for the source address in a local user configurable connection memory.
This memory codes all the operations which should be performed when a source address
is received: forwarding the event to one or more output ports, routing it to the local
processor, or both at the same time. The input routing algorithm for the source-driven
solution is shown in Fig. 3.8.

The user can program connectivity maps by setting the elements of the connection
memory. Each node stores locally its connection memory with its own routing actions
for all the possible source addresses. Each position of this memory corresponds with
each of the possible 8 bit source addresses and stores a 5-bit digital word. When one
of those bits is at high level, it indicates that the event must be transmitted through

40 Spiking Neural Networks Hardware Implementation

YES

Wait for new

output events

End of

routing table?

Add event

header

(xOUT,yOUT)

NO

Send to

‘Out Port’

Empty buffer

Events in

the buffer

Figure 3.7: Output event management in the destination-driven routing algorithm. Val-
ues for “xOUT”, “yOUT” and “Out Port” are read from the routing table, as in the Fig. 3.6
example.

the interface associated with the bit position.

This feature allows replication of events at network nodes when it is necessary. This
is done by activating several bits in the connection memory position of the received
source address. The event will be transmitted through the selected output interfaces.
The programmed tasks can be performed in a parallel way because they do not require
any shared resource. All the output virtual connections coming out from the same chip
can share the same route along the network and the event cloning implemented in the
destination-driven solution is not needed.

The local processor output event stream management is greatly simplified in the
source-driven solution. The source address is added to all events which must be trans-
mitted through the network. The only configuration parameter is the output port or
ports that transmit this information to get their final destination. Sending the same
event through different output ports can be used by the user to balance the network
traffic load and improves the overall latency by reducing the event rate on critical
physical links which otherwise can get saturated.

3.2.3 Comparison between both algorithms

Any node interconnection map can be implemented using any of the proposed routing
algorithms. However, each solution offers some advantages with respect to the other
one when performing some kind of connectivity features. We will focus the attention
over the impact of both algorithms on parameters, such as latency, network event traffic
(number of events transmitted through the network) and hardware resources needed
for the router implementation.

The main difference between both solutions arises when the logical network topology

3.2 Routing in Structured-Grid-AER 41

Wait for new

input events

To local

processor?

Access

routing table

No events

New event

Memory
(xS,yS)

To west

link?

To east

link?

To north

link?

To south

link?

Forward

event
Forward

event

Forward

event
Forward

event

Forward

event

YES YES YES YES YES

NO NO NO NO NO

Action word

Figure 3.8: Source-driven routing algorithm.

requires that a node has to be connected with several destination nodes. This situation
is illustrated in Fig. 3.6 where the output traffic generated by node AER1 must be
received by several target nodes. The destination-driven solution replicates the output
event for each output virtual connection. However, the source-driven solution permits
to send a single event and replicate it in the network nodes. For this reason, this last
solution makes a more efficient use of the network bandwidth resources. Moreover,
it offers to the system designer more flexibility when implementing traffic balancing
strategies.

In terms of hardware complexity, the source-driven implementation needs a more
sophisticated routing algorithm. The increased complexity leads to longer delays in the
router event processing, increasing the latency associated with the event transmission.
The destination-driven router takes this decision on the fly only taking into account the
node address and the information contained in the incoming event. The latency penalty
caused by the source-driven router is strongly dependent on the shared connection
memory implementation and its arbitration mechanism. This memory block is large
and results in an important area overhead.

The source driven algorithm provides to the system designer more freedom to
balance event traffic and design routes through the networks. For any source-to-
destination route, the designer can insert detours, dedbranchings, and local event
clonings at any intermediate node of route to balance and optimize overall traffic.
On the other hand, the destination driven algorithm creates pre-determined routes
along the network, and the designer can only change the output ports of the source
module of a route. Also, for the destination-driven case, the events that have to reach
several modules have to be cloned at the source module necessarily. However, in the
source-driven case, multiple module destination events can be cloned at intermediate
route points. This alleviates overall traffic and makes the average effective module

42 Spiking Neural Networks Hardware Implementation

fanout (FMout in eq. 3.10) smaller.

3.3 Router Design Details

The routing algorithms described above should be implemented efficiently and with a
minimum hardware cost. This Section describes hardware implementations focusing
on design issues which must be faced to reduce routing processing times, while keeping
lightweight implementations.

3.3.1 Destination-Driven Router

Fig. 3.9 shows a block diagram of the destination-driven router circuit. The traffic
through any of the input channels is processed by a ROUTERIN block which imple-
ments the lightweight destination-driven routing algorithm. A highly parallel hardware
architecture has been chosen to reduce routing processing times. The goal is to sepa-
rate the data paths of event streams which do not need to use the same channel to be
forwarded. For example, a stream transferred from the west to the east port is never
interfered by another one being transmitted from the north to the south port. This
is only possible if shared routing resources are reduced to a minimum by replicating
them in the architecture.

Routing is defined by user provided parameters. The first parameter is the node
address which is used to identify the node in the network topology. The second param-
eter is the routing table containing the information to communicate with the node’s
target destinations. Every entry in this routing table is a 10 bit word, whose 8 less
significant bits are used to code the destination address and the 2 most significant bits
are used to specify the corresponding output ports (as in Fig. 3.6).

The basic building blocks of the destination-driven router architecture are:

• ROUTERIN: this block receives the input stream coming out from the input
channel and implements the routing algorithm described in Fig. 3.5. It decides
the output interface to which forward the event, by comparing the input event
address (xADD, yADD) with the user-specified local node address (xNODE, yN-
ODE). The AER handshaking protocol is also used to internally transfer the
events between different blocks. Handshaking is used here for flow control pur-
poses as the individual processor operation is stopped when a network commu-
nication link cannot transmit events. In these overflow situations, the router
does not send the acknowledge back until there are free hardware resources to
process the event. Each ROUTERIN block has four independent output inter-
faces connected to the output channel access arbiters or with the local processor
arbiter.

• ARBITER: this block manages the access to the output channel for events
coming from the ROUTERIN blocks or from the local processor. The ARBITER
scans its four input AER interfaces to detect any new event. If an event is
detected, it takes control of the output channel. If another event from any other

3.3 Router Design Details 43

ROUTERIN

NORTH

ARBITER

NORTH

N
O

R
T

H
s

N
O

R
T

H
w

N
O

R
T

H
e

N
O

R
T

H
c

S
O

U
T

H
n

E
A

S
T

n

W
E

S
T

n

C
H

IP
n

R
O

U
T

E
R

IN

W
E

S
T

A
R

B
IT

E
R

W
E

S
T

WESTs

WESTn

WESTe

WESTc

SOUTHw

EASTw

NORTHw

CHIPw

R
O

U
T

E
R

IN

E
A

S
T

A
R

B
IT

E
R

E
A

S
T

EASTn

EASTw

EASTc

SOUTHe

WESTe

NORTHe

CHIPe

EASTs

ROUTEROUT
ARBITER

CHIP

C
H

IP
s

S
O

U
T

H
c

E
A

S
T

c

W
E

S
T

c

N
O

R
T

H
c

ROUTERIN

SOUTH

ARBITER

SOUTH

S
O

U
T

H
n

S
O

U
T

H
w

S
O

U
T

H
e

S
O

U
T

H
c

N
O

R
T

H
s

E
A

S
T

s

W
E

S
T

s

C
H

IP
s

Local processor

Routing

Table

C
H

IP
n

C
H

IP
w

C
H

IP
e

South port

W
es

t
p

o
rt E

ast p
o

rt

North port

Figure 3.9: Destination-driven router block diagram.

interface arrives while the output channel is busy, the resource is not assigned
until the current event releases the shared resource. If several input interfaces
want to take control of the shared resource at the same time and the block is busy
transmitting an event, the ARBITER gives lower priority to the last interface
attended. Therefore, the arbitration mechanism avoids that a fast input interface
takes full control of the shared resource. Note that all arbiters are synchronous
circuits driven by the common FPGA clock.

• ROUTEROUT: this block implements the algorithm described in Fig. 3.7 to
manage the events coming from the local processor. This block reads the routing
table row by row to add the proper header to the event, forwarding it through
the specified output interface. For this purpose, the ROUTEROUT block has
four output interfaces connected to the north, south, east and west arbiters. To
improve the router parallelism, the routing table is divided for every output port.
This way, if an event has to be transmitted through different output ports, this
can be performed in a parallel way.

3.3.2 Source-Driven Router

Fig. 3.10 shows the block diagram of the source-driven router. The basic building
blocks are very similar to those described for the destination-driver router. However,

44 Spiking Neural Networks Hardware Implementation

ROUTERIN

NORTH

ARBITER

NORTH

N
O

R
T

H
s

N
O

R
T

H
w

N
O

R
T

H
e

N
O

R
T

H
c

S
O

U
T

H
n

E
A

S
T

n

W
E

S
T

n

C
H

IP
n

R
O

U
T

E
R

IN

W
E

S
T

A
R

B
IT

E
R

W
E

S
T

WESTs

WESTn

WESTe

WESTc

SOUTHw

EASTw

NORTHw

CHIPw

R
O

U
T

E
R

IN

E
A

S
T

A
R

B
IT

E
R

E
A

S
T

EASTn

EASTw

EASTc

SOUTHe

WESTe

NORTHe

CHIPe

EASTs

ROUTEROUT
ARBITER

CHIP

C
H

IP
s

S
O

U
T

H
c

E
A

S
T

c

W
E

S
T

c

N
O

R
T

H
c

ROUTERIN

SOUTH

ARBITER

SOUTH

S
O

U
T

H
n

S
O

U
T

H
w

S
O

U
T

H
e

S
O

U
T

H
c

N
O

R
T

H
s

E
A

S
T

s

W
E

S
T

s

C
H

IP
s

Local processor

C
H

IP
n

C
H

IP
w

C
H

IP
e

South port

W
es

t
p

o
rt E

ast p
o

rt

North port

Shared

Connection

Memory

with access

Arbitration

CACHE

C
A

C
H

E

CACHE

C
A

C
H

E

Figure 3.10: Source-driven router block diagram.

the ROUTERIN and ROUTEROUT blocks have very different internal structure due
to the differences in the routing algorithm. In the source-driven solution, all blocks have
to read a shared connection memory containing the routing information. Implementing
an efficient shared access scheme to this memory can dramatically reduce the delay time
associated with the routing event processing. The router contains the following blocks:

• ROUTERIN: this block analyzes the events coming from the input channel to
extract the source address. A shared RAM connection memory of 256 positions
containing the routing algorithm information is accessed using this address. The
word read from the connection memory codes the output port(s) that the event
must be routed to. When this task is done, the behavior of this block is exactly
the same than in the destination-driven router.

• Local Cache: every event which is routed in the source-driven solution needs
a memory access and all ROUTERIN blocks can read the memory at the same
time. However, each input block will process a limited number of flows in a real
network. Hence, the addresses that every ROUTERIN block is going to read
will be repeated very often and it will be a reduced group of the complete space
of addresses. To speed up this process, the ROUTERIN block reads first a dedi-
cated cache memory which stores the most common accessed addresses content.
When the routing algorithm requires to access a shared memory position, the

3.3 Router Design Details 45

ROUTERIN block checks the cache memory and searches for this word. If it is
found in the cache, the event is routed and there is no need to access the shared
RAM. If the word is not found, the block reads the shared RAM and stores the
word on its own cache.

• ROUTEROUT is greatly simplified because an event does not have to be repli-
cated nor the same header has to be added to all events. In this case, every time
an event coming from the local processor is detected, the router node address is
added and the event sent to the corresponding output port(s).

• Shared Connection Memory: this block stores the configuration words which
code the routing actions to be taken for each possible source address. All
ROUTERIN blocks need to read this memory when they receive a source ad-
dress that they have not stored previously in their local cache. An arbitration
mechanism is needed to avoid conflicts when several ROUTERIN blocks need to
access the shared memory. This mechanism ensures that only one ROUTERIN
block has control over the address bus of the shared memory.

3.3.3 FPGA Implementations Comparison

In order to compare both router implementations in a multi-module system, we have
analyzed the impact of realizing different size networks on a Virtex-6 FPGA proto-
typing system. We have used as unit-module a VHDL description of an event-driven
programmable-kernel 2D AER-Convolution-processor for vision applications, capable
of handling programmable kernels of size up to 11× 11 on pixel arrays of size 64× 64
[82]. The VHDL code of this convolution module is listed in Appendix I. The Virtex-6
could hold up to 64 of these Convolution modules, programmed with any arbitrary
interconnection map. Fig. 3.11 illustrates the case of a 3× 3 Convolution network. In-
puts to the network are provided through 3 input ports, connected to an AER splitter
which receives a unique external input AER flow and replicates it over the three inputs.
The VHDL code generation to build the system in Fig. 3.11 has been automated with
a set of Matlab functions which describe the system features depending on the network
size which wants to be implemented. The Matlab code is shown in Appendix II.

Every network node includes one of the previously described routers, the convo-
lution block, and a dedicated configuration processor with an SPI. This interface is
fed by a global configuration controller that receives all the configuration data (like
router tables, and convolution processor parameters) from a host computer. The rest
of peripheral modules can connect one of their AER outputs to a multiplexer block
that connects to the FPGA outside. This way, such peripheral modules can send its
output to any of the multiplexer inputs to allow AER flow monitoring from the out-
side. Fig. 3.12 shows the FPGA occupation ratios for different network sizes (where
the number of nodes is Nn×Nn) in terms of occupied slices and memory resources. The
destination-driven routing solution needs less hardware resources in terms of memory

46 Spiking Neural Networks Hardware Implementation

Router

CONV

C

O

N

F

SPI SPI SPI

SPI SPI SPI

SPI SPI SPI

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

Router

CONV

C

O

N

F

S

P

L

I

T

T

E

R

M

U

X

Config block

SPI

Computer interface (serial port)

AER

input

AER

output

Figure 3.11: Block diagram for the network on chip implementation.

and slices than the source-driven implementation. Note that a 7× 7 grid of these Con-
volution modules implements a neural network with 7×7×64 = 196k neurons 3 and an
equivalent number of 196k × 11 × 11 = 24.3 million synapses. Since each convolution
module only has to store one 11 × 11 kernel of 8-bit words, the total physical RAM
memory to store 7×7 kernels is 5929 bytes. The RAM required to hold all 8-bit neural
states is 196KB. Consequently, what limits in this particular case is the number of
slices available in the FPGA and not its memory.

3.4 Network Extension to Multiple FPGA

Examples illustrated in the previous Section were synthesized on a single Virtex-6
FPGA. To allow modular scalability to arbitrary size multi-module networks, provisions
for multi-FPGAs (or multi-chips, in case of ASICs) need to be made. AER links
inside the FPGA have been made using parallel AER buses. However, this is not
realistic for a multi-FPGA realization because of the excessive number of resulting
pins. Fortunately, high-end FPGAs include state-of-the-art serial links, like the Rocket
I/O. In this Section we describe a way of extending each asynchronous bidirectional

3where k is 1024

3.4 Network Extension to Multiple FPGA 47

3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

N
n

S
lic

e
s

Destination-driven

Source-driven

3 4 5 6 7

500

1000

1500

2000

2500

3000

3500

4000

N
n

M
e
m

o
ry

 (
K

b
it
s
)

Destination-driven

Source-driven

Figure 3.12: Slice and memory occupation in an Nn×Nn node ConvNet implementation.
The LX240 Virtex-6 FPGA used in the experiments have 37680 slices and 14976 Kb of block
RAM.

AER link to use the available Rocket I/O serial interfaces, without using dedicated
handshaking lines (such as Ack and Rqst), nor an extra LVDS pair [83]. When the
event rate transmitted in one direction exceeds the processing speed of the receiving
module, a stop command is transmitted in the opposite direction. This way, flow
control is implemented for both directions by just using the two required LVDS cable
pairs for bidirectional serial transmission. For this purpose, we use the 8b/10b encoding
scheme, as this allows for 12 special characters, commonly called K-characters. We use
these characters to implement idles commas (to keep the link synchronized during
absence of address events) as well as flow control commands.

Fig. 3.13 shows the full duplex serial Rocket I/O AER link with flow control
capability. The Xilinx CORE Generator tool provides a wrapper to interface with the
FPGA dedicated hardware. It defines the signals that the user must generate in order
to send and receive data over this link. The data width interface, ND in Fig. 3.13, is
configurable by the user in 8, 16 or 32 bits. TXp-TXn and RXp-RXn represent the
serial output interface and REFCLKp and REFCLKn the reference clock used by the
Rocket I/O circuitry to generate the transmission frequency.

The FRAME GEN block handshakes the input parallel AER stream and sends
8ND bits at every rising edge of the master clock CLK provided by the Rocket I/O
circuitry. If there are no user data that must be transmitted, the interface transmits
a comma character represented by a K-character of the 8b/10b code. FRAME CAPT
receives the continuous data stream coming out from the channel to analyze it, discards
the commas and frames the parallel AER events, implementing the handshaking with
the next processing block. Signals Ktx and Krx are activated when a K-character is
transmitted or received, respectively. The receiver also uses the information provided
by signals DISPrx and NTrx to detect possible transmission errors. DISPrx indicates

48 Spiking Neural Networks Hardware Implementation

Rocket I/O

wrapper

FRAME_GEN

CLK

Ktx

DATAtx

FRAME_CAPT

AERin

32

reqIN

ackIN

ND

8ND

AERout

32

reqOUT

ackOUT

Krx

DATArx

ND

8ND

reqfc ackfc stop

DISPrx

ND

NTrx
ND

TXp

TXn

RXp

RXn

REFCLKpREFCLKnTX

RX

Figure 3.13: Full-duplex Rocket I/O based parallel-serial AER link with flow control
capability.

a disparity error in the 8b/10b words received and NTrx is active when the received
word is not a valid code character.

Fig. 3.14 illustrates the full-duplex flow control mechanism implemented through
signals reqfc, ackfc and stop in Fig. 3.13. The figure illustrates the case of ROUTER1
sending events to ROUTER2. The ROUTER2 RX2 FRAME CAPT block (see Fig.
3.13) writes each incoming event in a FIFO memory, which is read by the router when
there are new events to be processed. If the ROUTER1 TX1 transmission event rate is
faster than the ROUTER2 RX2 handling capabilities, the number of elements stored
in the FIFO will increase. If ROUTER1 TX1 keeps sending new events, the FIFO
would overflow and information would be lost. The FRAME CAPT block detects
when the number of elements is greater than a user-defined threshold Nmax and sends
a flow control message using a K-character using the ROUTER2 transmitting channel
TX2. This message request is done by activating reqfc and it will be processed with
the highest priority by the ROUTER2 TX2 FRAME GEN block. When the flow
control message is sent, the ROUTER2 TX2 FRAME GEN block acknowledges the
transmission using ackfc.

When the ROUTER1 RX1 FRAME CAPT block detects the flow control special
K-character, it automatically stops the event transmission asserting signal stop. In an
overflow situation, the AER acknowledge signal ackIN is not activated even when the
request signal is asserted and the AER data flow is stopped. The ROUTER2 RX2

3.4 Network Extension to Multiple FPGA 49

TX1

RX1

RX2

TX2

1) Saturation!

2-5) Flow

control

message

3-6) Stop

signal

ROUTER1 ROUTER2 FIFO

Nmax

Nmin
4) End of

Saturation!

Figure 3.14: Flow control mechanism in full-duplex link.

FRAME CAPT block monitors the receiving FIFO until the number of elements is
below a second user-defined threshold Nmin. From this point on, the overflow situation
is considered to be finished and the flow control message is sent to ROUTER1 RX1.
When it is received, stop signal is deasserted and the transmission flow starts over.

The ROUTER1 sender keeps transmitting events while the flow control mechanism
is being carried out. To ensure that no events are lost during traffic peaks, the time
needed to stop the transmitter when an overflow situation is detected must fulfill the
next inequality:

TDET1 + TPROP + TSTOP ≤ (NF −Nmax)TTX,EV (3.11)

where TDET1 is the time needed to detect the overflow situation and generate the flow
control message, TPROP is the channel propagation time and TSTOP is the time required
to stop the transmitter. The maximum number of FIFO elements is represented by
NF and TTX,EV is the transmission event period that is causing the overflow.

It would be desirable that the transmission begins after a flow control pause as soon
as possible. For this purpose, the flow control mechanism has to ensure that there will
be stored events in the FIFO waiting to be processed by the router after the recovery.
To maximize the receiver event rate, we can impose the following restriction on the
Nmin value:

TDET2 + TPROP + TSTART ≤ NminTRX,EV (3.12)

where TDET2 is the time needed to detect the end of an overflow situation, TSTART
is the time required to start the transmitter again and TRX,EV corresponds with the
receiver event processing time (or inverse of event rate).

50 Spiking Neural Networks Hardware Implementation

3.5 System level design considerations

Several analysis and optimization methodologies for 2D mesh connected networks have
been proposed in the literature [84, 85]. The 2D communication layer is analyzed from
a traffic management perspective using queuing theory to find network parameters such
as latency, queue delays or queue occupation rates. All these parameters are strongly
influenced by the application, because they depend on the network topology (physical
and logical) and the traffic rates generated by the processors. On the other hand,
optimization procedures for massively parallel architectures [86] have been successfully
applied to neuromorphic systems which integrate millions of neurons [74]. Here we
will rely on analysis techniques for 2D mesh networks, and use the results to suggest
ways to optimize the implementations. The study will be centered in our convolution
units network implementation, but it can be easily extended to other neuron arrays
approaches. We will analyze two point of views: hardware resources requirements and
even traffic.

3.5.1 Hardware resources requirements

The AER convolution modules and network circuits take a certain amount of resources
(logic area and memory) which must fit within the selected implementation platform.
This resource consumption will be related to the number of AER modules and the
neuron array sizes. In general, an Nunits AER system requires an area of

Atotal = Nunits (Aconv + Arouter) + Aprog (3.13)

Let every convolution module have a maximum kernel size of Nker ×Nker and every
weight be coded with W bytes. If convolution modules integrate an array of Narr×Narr

neurons whose state is represented by S bytes, the area taken by a ConvModule is given
by

Aconv = N2
arrS +N2

kerW + Alogic (3.14)

where Alogic is the area taken by the logic of the convolution module implementation,
which depends on Narr, W and S.

For the routers, as we discussed previously, the simplicity of the destination driven
algorithm needs less logic resources Alogic,dest than the source driven Alogic,sour. On
the other hand, the source driven approach needs extra memory to store the routing
actions for all possible source addresses in the network (coded in 5 bits). If Nadd bits
are used to code the network addresses, the router areas can be expressed as

Arouter,dest = Arlogic,dest (3.15)

Arouter,sour = Arlogic,sour +
5× 2Nadd

8
(3.16)

The total number of neurons which can be integrated in the system is NunitsN
2
arr

and the maximum number of kernel weights is NunitsN
2
ker. Taking into consideration

3.5 System level design considerations 51

A

(1,1)

D

(2,1)

G

(3,1)

B

(1,2)

E

(2,2)

H

(3,2)

C

(1,3)

F

(2,3)

I

(3,3)

A

B

C

D

E

F

G

H

I

10α

5α

5α

4α

6α

1α

3α

2α
0.5α

0.7α

(a) (b)

S
p

lit
te

r

Input

Figure 3.15: Example AER system to study the system level characterization methodol-
ogy. (a) Logical description of the network and event rates for each logical (virtual) channel.
(b) Physical implementation on the structured-grid-AER infrastructure. Parameter α is a
scaling factor to study the network using different traffic loads. Mapping of the logical mod-
ules (A to I) on the physical 2D grid.

the previous resource analysis, the total RAM memory M needed for both routing
algorithms can be written as

Mdest = Nunits

(
N2
kerW +N2

arrayS
)

(3.17)

Msour = Nunits

(
N2
kerW +N2

arrayS +
5× 2Nadd

8

)
(3.18)

3.5.2 Event traffic estimation

One of the most important parameters of any AER communication scheme is the event
transmission latency between processing blocks. The AER grid architecture used in
this Chapter can be studied using an analytical model for NoC performance analysis
[84], where routers are modeled as a collection of FIFO buffers with five input/output
channels (north, south, east, west and local interfaces). This model computes the
network queues occupation at every interface of all the routers assuming that event rates
for every network channel are known parameters. These rates are strongly dependent
on the specific application and can be easily estimated through a behavioral level
simulation.

For example, Fig. 3.15(a) shows the logic network topology of a specific pre-
structured AER system. This network can be simulated behaviorally to obtain the
average event rates at each connection (virtual channel). To map the logic network
onto the physical 2D mesh of nodes, the first step is the “placement” of modules, which
is illustrated in Fig. 3.15(b). The second step is to assign a route (or list of nodes) for

52 Spiking Neural Networks Hardware Implementation

events going from a source node s to a destination node d. Let’s call this list of route
nodes Πsd. Each route corresponds to a virtual connection in he logic network. Once
the module placement and route lists Πsd are established we know the event rates at
the input and output router channels.

Let lijr be the event rate at input channel i routed to output channel j in router r.
For every router, we can define a 5 × 5 forwarding probability matrix where element
fijr corresponds to the probability that an event which arrives at interface i leaves the
router through interface j. These probabilities can be computed for every router in the
network as

fijr =
lijr
λrj

i, j ∈ [1, 5] , r ∈ [1, Nunit] (3.19)

λrj =
5∑

k=1

likr (3.20)

In the network the events from different flows have to share common resources
to get their final destination. If two events want to use the same resource, arbiters
grant the access and make some events wait in their queues while the resource becomes
available. Using the forwarding matrix, we can compute the contention probabilities
cijr for every router, i.e., the probability that channels i and j compete for the same
output, as:

cijr =
5∑

k=1

fikrfjkr ∀i 6= j cij = 1 ∀i = j (3.21)

The router forwarding matrix Fr = [frij]5×5 and the contention matrix Cr = [cijr]5×5

describe the routers traffic management. It can be demonstrated [84] that the average
number of events per queue Nr = [Nrj]5×1 at every router can be computed as:

Nr = (I − trΛrCr)
−1 ΛrR̄r (3.22)

where scalar tr is the mean event processing time in the router and Λr = [λrj]j=r is a
diagonal matrix whose elements are the total event rates through the 5 input interfaces.[
R̄r

]
5×1

is the residual time matrix, which represents the amount of time that a new
event has to wait in queue until the event which occupied the shared resource at the
moment of the new event arrival finishes its processing. Solving eq. (3.22) and applying
Little theorem [87], we can compute the mean waiting time in channel j of router r as
Wrj = Nrj/λrj. This way, the total latency of one node-to-node hop is Nrj + tr + ttx,
where ttx is the transmission time through the inter-node physical channel. The total
latency of an event traveling from source node s to destination node d is therefore,

Lsd =
∑

(r,j)∈Πsd

(Wrj + tr + ttx) (3.23)

3.5 System level design considerations 53

This analysis methodology will be applied in a subsequent Section to an example
system where the network traffic will be estimated for a source driven and a destina-
tion driven solution. Moreover, we will discuss how to use this analysis procedure to
improve the network performance by varying some of the implementation parameters.
Note that, given a logical network together with virtual connections event rates, one
only needs to establish a node “placement” and the route lists {Πsd}. The rest of com-
putations (from eqs. (3.21) to (3.23) follow in a straight forward way, given parameters
tr, Λr, R̄r and ttx. The result is the route delays {Lsd} from which one can identify the
main timing bottleneck as its maximum:

Lmax = max {Lsd} (3.24)

The designer must now adapt the node “placement” and route lists {Πsd} to minimize
Lmax.

3.5.3 Example of use

Once we have theoretically described the network traffic analysis methodology, we will
briefly illustrate the system level analysis methodology presented in Section 3.5 with
the simple example shown in Fig. 3.15. This example is not optimized to achieve high
performance, but it only tries to show how we can analyze the network using queuing
theory and how this can help us in taking design decisions. Fig. 3.15(a) shows the
logical connections (virtual channels) between blocks (nodes) and the event rate at each
channel. Channel event rate has been scaled by term α to study traffic under different
load conditions. Traffic information can be obtained from behavioral simulations. The
logical topology can be mapped into the physical system as depicted in Fig. 3.15(b).
The routing algorithm and tables determine the event routes through the network and
we can use this information to estimate the total event rate through each physical
channel. Using this information, the forwarding Fr and contention Cr matrices can be
computed for each router using eqs. (3.21) and (3.21). The model is fed with all these
matrices and with some implementation parameters, such as the routers service time
tr or the physical channel transmission times ttx. Knowing all these parameters, we
can solve the traffic equation (eq. (3.22)) to estimate the mean number of packets at
every network queue Nr. This number provides information about the network traffic
distribution and allows to compute the queues mean waiting time Wrj. By applying
eq. (3.23) to every route we obtain the latency associated with every route Lsd, as well
as the mean and worst case latency for the whole network.

Fig. 3.16(a) shows the resulting mean network latency versus scaling factor α for
the example in Fig. 3.15. For low event rates, routers are fast enough to process
events on the fly and queues are empty most of the time. As a result, the mean
latency is constant and depends only on the mean number of hops and routing times.
In this situation, and for this particular example, the destination driven algorithm
presents lower mean latency than the source driven one because the routing algorithm
is faster. The mean latency starts to increase exponentially with acceleration factors
α ≈ 8 × 105 because queues must handle more events and their waiting times rise.

54 Spiking Neural Networks Hardware Implementation

For this particular system, the saturation point is almost the same for both routing
algorithms. However, Fig. 3.16(b) shows the same simulation for a 3×3 array of Gabor
filters where the input flow must be forwarded to all the nodes in the network. In this
case, the network saturates at α ≈ 5.8×105 for the destination driven algorithm, while
the source driven one saturates at α ≈ 7.4×105. In this case, the source driven routing
is more efficient for very high traffic. This is because in the destination driven case each
input event to the network has to be replicated once per destination module, while in
the source driven case each node can do local replication. In the source driven case the
number of actual events traveling over the physical links is therefore much less for this
particular application.

For the example in Fig. 3.15 the number of queued events in all routers when the
network saturates at α = 9 × 105 can be obtained by solving eq. (3.22). Fig. 3.17
represents, for each router, the 5 input interface queues. This allows to find the network
bottlenecks for every case. For the destination driven case, the west interface of router
A (RA in Fig. 3.17(a)) is the most loaded queue. As input events have to be replicated
to reach nodes A and D, the input event rate at RA west input interface is artificially
increased, overloading this channel. For the source driven algorithm represented in
Fig. 3.17(b), the west interface of routers RA and RD represent the system bottleneck.
Again, these two channels are the most overloaded due to the multiplexing of several
AER streams.

Fig. 3.18-(a) is an example of how the traffic analysis methodology can be used to
explore the network parameters design space. We have repeated the traffic simulations
varying the routing time tr for the destination driven case (same conclusions apply to
the source driven case). For longer service times, the mean latency increases because
each hop takes a longer time to route events. Moreover, the network becomes saturated
for lower event rates if the routers service time ttx is increased reducing the maximum
achievable event rate. Fig. 3.18-(b) performs the same simulation varying now the
transmission time through the channel. In this case, the saturation point remains at
the same point in all simulations, but the overall latency increases for low event rates.

3.6 Experimental Results

In this Section we provide experimental results by implementing the previous concepts
on Virtex-6 hardware using Xilinx ML-605 development boards. First we show char-
acterization results of the Full-Duplex Rocket-I/O-Based AER parallel-serial interface
described in the previous section. Afterwards, an example multi-module AER pro-
cessing system is described, implemented on a single FPGA, consisting of an array of
Gabor filters. Then, a second system, implementing a multi-layer feed-forward Con-
volutional Neural Network on a single FPGA, is described. Afterwards, we check the
maximum capacity of a single FPGA, and to finalize we provide results on a multi-layer
feed-forward ConvNet for character recognition.

3.6 Experimental Results 55

10
3

10
4

10
5

10
6

100

150

200

250

300

350

400

Scaling factor α

L
a

te
n

c
y
 L

s
d
 (

n
s
)

Destination driven

Source Driven

(a)

10
3

10
4

10
5

10
6

50

100

150

200

250

300

350

400

450

500

Scaling factor α

L
a

te
n

c
y
 L

s
d
(n

s
)

Destination driven

Source Driven

(b)

Figure 3.16: Mean network latency for different event rate scaling factors for the desti-
nation and source-driven routing algorithms (a) for the example system in Fig. 3.15 and (b)
for a 3× 3 array of Gabor filters.

56 Spiking Neural Networks Hardware Implementation

RA RD RG RB RE RH RC RF RI
0

0.5

1

1.5

2

2.5

3

N
u
m

b
e
r

o
f

e
v
e
n
ts

 (
N

rj
)

RA RD RG RB RE RH RC RF RI
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
u
m

b
e
r

o
f

e
v
e
n
ts

 (
N

rj
)

(a) (b)

Destination Driven Source Driven

Figure 3.17: Events in router queues for an acceleration factor α = 9×105. Vertical bars
indicate number of events in the order north-east-south-west-local interfaces for every router
Ri.

3.6.1 Full-Duplex Rocket-I/O-Based Parallel-Serial AER In-
terface

The ML-605 development board provides twenty independent full-duplex Rocket I/O
serial ports, eight of which are available through an 8x PCIe connector. We used a
dedicated board to adapt this connector to 16 independent SMA pairs, thus allowing
not only to independently test and characterize several transmitters and receivers, but
also to interconnect them. Some extra test circuits were added inside the FPGA,
such as an event generator and an event consumer/analyzer, both with independent
programmable event rate. This allows to force overflow situations and test the flow
control dynamics, while detecting errors between the sent and received events.

The timing characteristics of the serial link are given by its latency and maximum
event rate. To characterize latency, two independent Full-Duplex AER serial links are
interconnected (their two LVDS differential pairs), and the delay between ‘reqIN ’ (see
Fig. 3.13) of the first one to ‘reqOUT ’ of the second one is measured. This latency
includes the delay introduced by the 8b/10b encoders and decoders, phase alignment
buffers, comma detection circuits, To measure this latency, a very low event rate is
programmed, so that consecutive events are sufficiently spaced in time. The measured
latency was 232ns for a 2.5Gps bit rate, as shown in Fig. 3.19. The maximum event
rate supported by the Rocket I/O can be characterized by analyzing the input AER
handshaking (reqIN, ackIN) cycle duration which has been highlighted in Fig. 3.19 as
20ns. This results in 50Meps (mega events per second) maximum event rate for 32-bit
events.

3.6 Experimental Results 57

1 2 3 4 5 6 7 8 9 10

x 10
5

50

100

150

200

250

300

350

400

450

Scaling factor α

L
a

te
n

c
y
 L

s
d
 (

n
s
)

t
r
=40ns

t
r
=50ns

t
r
r=60ns

t
r
=80ns

t
r
=100ns

(a)

1 2 3 4 5 6 7 8 9 10

x 10
5

100

150

200

250

300

350

400

450

Scaling factor α

L
a

te
n

c
y
 L

s
d
 (

n
s
)

t
tx

=0ns

t
tx

=30ns

t
tx

=70ns

t
tx

=100ns

(b)

Figure 3.18: (a) Latency curves for the destination-driven solution for different routers
service times. (b) Latency curves for the destination-driven solution for different transmission
times Ttx.

58 Spiking Neural Networks Hardware Implementation

0 50 100 150 200 250 300 350

0

2

4

re
q
IN

,a
c
k
IN

 (
V

)

0 50 100 150 200 250 300 350

0

2

4

Time (ns)

re
q
O

U
T

 (
V

)
reqIN

ackIN

232 ns

20 ns

Figure 3.19: Interface input (reqIN,ackIN) and output request (reqOUT) when the link
operates with very sparse events to measure the input to output event latency.

Fig. 3.20 illustrates the flow control operation. The event generator in the transmit-
ter event rate is set intentionally to 26Meps, while the event consumer in the receiver
is set to have an event consumption rate of 20Meps. This leads to an overflow in the
receiving FIFO. It can be seen how the transmitter is stopped when the flow control
message is received and started over when the overflow situation is overcome. Two
different overflow behaviors are possible depending on the chosen Nmax or Nmin values.
If they are optimally programmed, there is no stop in the output event flow, as shown
in Fig. 3.20(a). On the other hand, pauses can appear if the receiver processes all
events stored in the FIFO before the flow control message arrives to the transmitter.
This situation is illustrated in Fig. 3.20(b).

3.6.2 Routers with Parallel-Serial Interfaces

The routers were complemented with four Full-Duplex Rocket-I/O-based AER parallel-
serial interfaces (see Fig. 3.13), to test the performance for multi-FPGA event routing.
Table 3.2 shows the Virtex-6 occupation statistics associated with both implementa-
tions. The total number of slices, memory blocks and Rocket I/O transceivers for the
Virtex-6 FPGA has also been included to give an idea of the occupation ratio taken
by the routers. For the destination-driven router, clock frequency could be set up to
250MHz resulting in 2.5Gbps serial bit rate. However, for the source-driven router,
clock frequency could only be set up to 200MHz because of the higher complexity,
resulting in a 2Gbps bit rate. The latency introduced by the routers can be measured

3.6 Experimental Results 59

by looking at the delay between the reqOUT signal of the input full-duplex Rocket-
I/O serial-to-parallel interface to the reqIN signal of the output full-duplex Rocket-I/O
parallel-to-serial interface. This latency was 12.5ns for the destination-driven router
and 20ns for the source-driven router, in case of non-overflow situations. The source-
driven case corresponds also to the case where the received address is in local cache.
Otherwise, the latency becomes 30ns.

0 500 1000 1500

0

2

4

re
q
IN

0 500 1000 1500

0

2

4

Time (ns)

re
q
O

U
T

(a)

0 500 1000 1500 2000

0

2

4

re
q
IN

0 500 1000 1500 2000

0

2

4

Time (ns)

re
q
O

U
T

(b)

Figure 3.20: Interface input (reqIN) and output request (reqOUT) in overflow with (a)
optimum Nmax-Nmin election and (b) non-optimum Nmax-Nmin election that leads to pauses
in the output flow

60 Spiking Neural Networks Hardware Implementation

Table 3.2: Router implementation statistics for the DD (destination-driven) and the SD
(source-driven) routers.

Resources DD router SD router Total FPGA
Occupied slices 1121 1400 37680

Occupied RAMB18E1 blocks 0 1 832
Rocket I/O transceivers 4 4 20

The destination-driven router can handle a maximum 32-bit event rate of 27Meps,
which corresponds to 37ns for handshaking cycle completion. On the other hand,
the source-driven router can handle up to 17.5Meps maximum event rate, or 57ns
handshaking cycle. Although event transmission in destination-driven routing is faster,
it is also true that events have to be transmitted multiple times when destinations are
multiple. In this case, if the multiple events are routed through the same port, there
will be an important delay penalty as shown in Fig. 3.21(a). However, it is also possible
most of the times to replicate the events through (up to four) different ports, as shown
in Fig. 3.21(b), to avoid this penalty.

3.6.3 Single-FPGA Implementation of Gabor Filter Array

As a first illustration of multi-module operation we have implemented on a single
Virtex-6 a 3× 3 array of orientation extraction 2D-Gabor filters of different scales and
angles, whose kernels are shown in Fig. 3.22. The implemented structure follows the
diagram in Fig. 3.11 and receives sensory input from an AER DVS retina [11, 88]. All
filter outputs are routed to one of the multiplexer inputs and captured off-chip with
an AER data logger [89]. Fig. 3.23 shows the sensor and the nine filter output events
collected during the same 160ms, when the retina is observing two walking people.

Event-driven convolution processors present the “pseudo-simultaneity” property
[22]: the input flow of events (representing the input scene) is simultaneous to the
output flow of events (representing the filtered input scene). This is because events are
processed as they arrive with delays shorter than the average inter-event time. For the
convolution modules we are using [82], event processing time for 11×11 kernels is about
3µs. The input event flow provided by a 128 × 128 pixel DVS retina when observing
people walking is in the range of 10-50keps (kilo events per second). Consequently, a
Gabor filter output event representing an angle at a given scale will be available as
soon as sufficient input events representing this feature are received plus the extra 3µs
for processing the last one. This is illustrated in Fig. 3.24, where stars represent input
events and circles output events. As can be seen, the output flow overlaps in time with
the input flow.

3.6 Experimental Results 61

3.6.4 Multi-FPGA Implementation of Gabor Filter Array

In order to illustrate the use and operation of the Full-Duplex Rocket-I/O-Based
Parallel-Serial Interfaces described in Section V.A, we implemented a 3 × 6 array of
Gabor filters in 2 FPGAs. The corresponding diagram is shown in Fig. 3.25.

The retina events are fed through port ‘AER input’ and an in-FPGA splitter repli-
cates them on three rows. Node routers are programmed so that these retina events

100 150 200 250 300 350

0

2

4

In
p
u
t

R
e
q
u
e
s
t

100 150 200 250 300 350

0

2

4

O
u
tp

u
t

R
e
q
u
e
s
t

Time(ns)

(a)

0 50 100 150 200

0

2

4

In
p
u
t

R
e
q
u
e
s
t

0 50 100 150 200

0

2

4

O
u
t

R
e
q
 L

in
k
 A

0 50 100 150 200

0

2

4

O
u
t

R
e
q
 L

in
k
 B

Time(ns)

(b)

Figure 3.21: (a) Output event replica when the same event must be transmitted to
different destinations using the same output port. (b) Parallel transmission of events coming
from the local processor that must be transmitted through different output ports A and B.

62 Spiking Neural Networks Hardware Implementation

Scale 1 Orientation 0º

2 4 6 8 10

2

4

6

8

10

Scale 1 Orientation 45º

2 4 6 8 10

2

4

6

8

10

Scale 1 Orientation 90º

2 4 6 8 10

2

4

6

8

10

Scale 2 Orientation 0º

2 4 6 8 10

2

4

6

8

10

Scale 2 Orientation 45º

2 4 6 8 10

2

4

6

8

10

Scale 2 Orientation 90º

2 4 6 8 10

2

4

6

8

10

Scale 3 Orientation 0º

2 4 6 8 10

2

4

6

8

10

Scale 3 Orientation 45º

2 4 6 8 10

2

4

6

8

10

Scale 3 Orientation 90º

2 4 6 8 10

2

4

6

8

10

Figure 3.22: Kernels in the bank of Gabor filters for the three chosen orientations and
scales.

are copied horizontally from node to node inside each FPGA and also from FPGA1
to FPGA2. To transfer the output events produced by each node (or Gabor filter),
the routers are also programmed to copy all output events horizontally from node to
node and from FPGA1 to FPGA2. At the right end of all three rows there is an in-
FPGA merger block that merges the three flows into a single port connected to the
outside, where an AER data logger board [89] is used to capture and timestamp events.
The flow between the two FPGAs is fed through three Full-Duplex Rocket-I/O-Based
Parallel-Serial Interfaces.

In order to analyze the impact of event hopping from node to node (either intra-
FPGA or inter-FPGA) we programmed the same Gabor filter into all nodes in the first
row. The Gabor filter output flow is routed to west and north channels at each node to
observe the output and measure the latencies between the first output node (1, 1) and
the other nodes (j, 1) with j = 2...6. These latencies can be measured by observing
the delays between request signals reqj (j = 2...6) and req1.

The delays of reqj with respect to req1 are shown in Fig. 3.26, for the destination
and source-driven algorithms. In this particular example, lower latencies are obtained
for the source-driven algorithm, although there is a higher number of events in the

3.6 Experimental Results 63

(a)

S
C

A
L

E

ANGLE

(b)

Figure 3.23: Event-driven Gabor filtering illustration. Background gray represents zero
activity pixels, brighter pixels are active pixels sending positively signed events, darker pixels
are active pixels sending negatively signed events. (a) Input scene captured by the DVS
retina, with pixel activity of both signs (b) Results of the 3 × 3 bank of Gabor filters and
sign rectification, so that only positive events result.

network. Every in-FPGA network hop adds a latency of 150ns for the destination-
driven algorithm and 70ns for the destination-driven one. For the inter-FPGA hops an
additional 350ns is added to the routing delay, for both routing algorithms.

3.6.5 Testing Single-FPGA Maximum Capacity

So far, we did program in each FPGA nine 64 × 64 pixel ConvModules to verify the
operation of routers and interfaces. In order to test the maximum capacity of one
Virtex-6 FPGA, we checked the maximum of Gabor filters it could hold, together
with their routers, peripheral interfaces, SPI configuration circuitry, and input splitter.
We used the destination-driven routers, as they are more efficient in terms of FPGA
resources. We were able to have the FPGA hold a total of 64 Gabor filters, each with
64 × 64 pixels and kernels of size 11 × 11. The ConvModule array, together with the
1x8 input splitter circuit, the configuration infrastructure through the serial port and
the output channels read-out occupy 32720 slices which represents 86% of the Virtex-6
FPGA capacity. Internal memory occupation is 15% for the 36K RAM blocks and
18% for the 18K RAM blocks. We programmed a Gabor filter array by sweeping four
scales and 16 angles. Fig. 3.27 shows the collected output events for the 64 filters
during the same 160ms time window, while the input DVS retina is observing the

64 Spiking Neural Networks Hardware Implementation

Figure 3.24: Illustration of pseudo-simultaneity of event-driven convolutional filtering
with a Gabor filter detection of −45o oriented edges. The two top subfigures represent
the x/y projection of events captured during 40ms and 6ms, respectively, while the bottom
subfigures show the x/time projection of the same events. Convolution module input events
are presented with stars and output events with circles.

S

P

L

I

T

T

E

R

AER

input
3x3

ConvNet

NoC

Parallel

to serial

AER

Parallel

to serial

AER

3x3

ConvNet

NoC

M

E

R

G

E

R

AER

output

FPGA1 FPGA2

(1,1) (4,1) (6,1)(2,1) (3,1) (5,1)

req1 req2 req3 req4 req5 req6

Figure 3.25: Diagram of 3x6 Gabor Filter Array Implementation in two FPGAs

3.6 Experimental Results 65

2 3 4 5 6
0

200

400

600

800

1000

Node

L
a
te

n
c
y
 (

n
s
)

Destination driven

Source driven

inter-FPGA

(serial link)

(FPGA2)

intra-FPGA

(FPGA1)

intra-FPGA

Figure 3.26: Latency between units for the experiment described in Fig. 3.25 for the
destination and source-driven routing algorithms.

same two persons walking than in Fig. 3.23(a). Note that, in this case, one single
FPGA is emulating a system with Nneurons = 64 × 64 × 64 = 2.62 × 105 neurons and
Nsynpases = Nneurons × 11× 11 = 3.17× 107 synapses.

3.6.6 Multi-Module Multi-Layer Convolutional Neural Net-
work Recognition Example

The previously described arrays of Gabor filters represent a one-layer neural system,
where all modules (filters) receive the same replica from the input sensor. The example
illustrated in this Section is a multi-layer Convolutional Neural Network that performs
a character recognition task which has been reported previously and verified using an
AER module simulator [90]. It is loosely based on Fukushima’s neocognitron [58] or
Serre’s hierarchical network [2]. We have used the same 64 × 64 convolution module
than above [82] to assemble the 36-node Convolution Neural Network shown in Fig.
3.28. For this a 2D-array of 6 × 6 AER-nodes was synthesized in a single FPGA.
The kernels programmed [90] are illustrated in Fig. 3.29. Kernels k1 to k13 perform
feature extraction for the 1st layer. Kernels Ker1 to Ker6 are used for the 15 filters
in the second layer. Convolution outputs are always half-wave rectified (events are
assigned a positive sign). The layer 2 output virtual channels (labelled 19 to 41 in
Fig. 3.28) are fed to four modules labelled AGGRi in Fig. 3.28. These are not
ConvModules, but plain arrays of integrate-and-fire neurons. Each AGGRi module
includes an AER-merger at its input to merge the traffic from several virtual channels,
while forcing their sign bit. For example, module AGGRi merges events from virtual
channels {19, 20, 21, 23, 33} and {25, 27, 32, 38, 40, 41}, while for a positive sign bit for
the first set and negative one for the second set. Finally, the 4th layer performs 4

66 Spiking Neural Networks Hardware Implementation

s=1 a=1

s=1 a=2

s=1 a=3

s=1 a=4

s=1 a=5

s=1 a=6

s=1 a=7

s=1 a=8

s=1 a=9

s=1 a=10

s=1 a=11

s=1 a=12

s=1 a=13

s=1 a=14

s=1 a=15

s=1 a=16

s=2 a=1

s=2 a=2

s=2 a=3

s=2 a=4

s=2 a=5

s=2 a=6

s=2 a=7

s=2 a=8

s=2 a=9

s=2 a=10

s=2 a=11

s=2 a=12

s=2 a=13

s=2 a=14

s=2 a=15

s=2 a=16

s=3 a=1

s=3 a=2

s=3 a=3

s=3 a=4

s=3 a=5

s=3 a=6

s=3 a=7

s=3 a=8

s=3 a=9

s=3 a=10

s=3 a=11

s=3 a=12

s=3 a=13

s=3 a=14

s=3 a=15

s=3 a=16

s=4 a=1

s=4 a=2

s=4 a=3

s=4 a=4

s=4 a=5

s=4 a=6

s=4 a=7

s=4 a=8

s=4 a=9

s=4 a=10

s=4 a=11

s=4 a=12

s=4 a=13

s=4 a=14

s=4 a=15

s=4 a=16

Figure 3.27: Output captured from 64 Gabor filter array. Four scales (s = 1, ...4) and 16
angles (a = 1, ...16) were swept. Gray scale represents number of events integrated in every
address position in a 160ms temporal window. Background gray is zero output, while bright
pixels represent active pixels. The rotated red bar in each subfigure indicates angle and scale
(thickness) of the corresponding Gabor filter.

convolutions in parallel, all with the same kernel KerC in Fig. 3.29.

The system was stimulated with bursts of events representing three different ver-
sions of letters A, C, H, and M. Bursts have between 200 to 400 events and last from
about 0.5 to 1ms. Fig. 3.30 indicates the main timing properties in this set-up. An
input stimulus burst lasts for a time Tburst. At one of the four output recognition
channels (nodes ‘46’ to ‘49’ in Fig. 3.28) the first output events appears at time Tfirst
and the output burst lasts until time Tlast. Table 3.3 summarizes the measured timing
results (Tburst, Tfirst, Tlast) as well as the number of events per output burst for each
letter representation. On average, correct recognition output spikes Tfirst appear at
about half the input stimulus burst 0.5 × Tburst and last for shortly after the input
stimulus burst has finished.

3.6 Experimental Results 67

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

Ker1

Ker2

Ker3

Ker4

Ker5

Ker6

Ker7

Ker7

Ker7

Ker7

Ker7

Ker7

Ker7

Ker8

Ker8

1

19

20

21

23

25

27

28

30

32

33

34

35

38

40

41

AGGRA

+

-

AGGRC

+

-

AGGRH

+

-

AGGRM

+

-

C filter

C filter

C filter

C filter

42

43

44

45

46

47

48

49

19 20 21 23 33

19 20 21 23
25 38 40 41

19 27 28
30 38 41

19 20 21 25 27 28
30 32 33 34

25 27 32
38 40 41

27 28 30
32 34 35

20 21 23 25
33 35

23 35 38 40 41

2

3

4

6

7

9

10

11

12

13

14

16

17

2

3

4

6

7

9

10

11

12

12

12

13

14

16

17

INPUT

1st layer 2nd layer 3rd layer 4th layer

Figure 3.28: Logical network topology for the four letters recognition system. Filters ki,
Keri and KerC are kernels programmed in the event-driven convolution modules of layers
1,2 and 4, respectively. Modules AGGRi are simple integrate-and-fire neurons which count
events produced at every address for any of their input channels, producing output events
when the count threshold is reached. Node numbers in the figure represent virtual AER
channels. Modules AGGRi include AER-mergers at their inputs, which force the sign bit of
incoming events.

Table 3.3: Test results for the letter recognition system.
Time Time

Burst first last # of # of # of # of
Input Time output output events events events events
Letter (µs) (µs) (µs) A C H M

A1 897 366 941 38 2 0 0
A2 777 589 812 17 0 0 0
A3 867 367 899 39 1 0 0
C1 596 334 619 4 65 0 0
C2 656 373 690 4 87 0 0
C3 476 289 495 5 26 0 0
H1 897 331 928 5 0 68 8
H2 777 460 776 1 0 41 1
H3 746 424 778 1 0 44 1
M1 927 281 885 6 0 5 47
M2 897 584 892 0 0 8 21
M3 837 400 786 0 0 11 28

68 Spiking Neural Networks Hardware Implementation

Layer 1 k1 Layer 1 k2 Layer 1 k3 Layer 1 k4 Layer 1 k5

Layer 1 k6 Layer 1 k7 Layer 1 k8 Layer 1 k9 Layer 1 k10

Layer 1 k11 Layer 1 k12 Layer 1 k13 Layer 2 Ker1 Layer 2 Ker2

Layer 2 Ker3 Layer 2 Ker4 Layer 2 Ker5 Layer 2 Ker6 Layer 2 Ker7

Layer 2 Ker8 Layer 4 KerC

Figure 3.29: Kernels used in the letter recognition system through all the network layers.

3.7 Conclusion

Throughout this Chapter, a scalable method for assembling arbitrary modular AER
neuromorphic systems by arranging modules in a 2D grid has been presented. Address
events include a module label, and modules include a simple router which routes the
events depending on the module labels. The approach is generic for ASIC and FPGA
based hardware implementations, but has been tested on single and multiple Virtex-6
FPGAs. Extensive experimental results are provided for AER-based vision process-
ing applications, such as multiple Gabor filtering and character recognition based on
convolutional type neural networks.

Experiments have been carried out in a generic development platform (ML605)
for Virtex-6 which provides us easy access to the FPGA resources through standard
connectors and interfaces. However, the general purpose nature of the prototyping
board leads to over engineered solutions, as shown in Fig. 3.31. The board includes
DDR, flash and EEPROM memory blocks, connectors for several standards (Ether-
net, USB, VGA, PCIe, . . .), an LCD display, expansion connectors, button, switches,
LED’s,. . . For the experiments described in this Chapter, only the PCIe expansion con-
nector, the configuration resources and the expansion connectors have been used. Due
to the large amount of resources contained in the ML605 board, the experimental set-
ups were bulky. This limits the number of FPGAs which can be integrated in the same

3.7 Conclusion 69

Tburst

t

Input

channel

Output

channel

TlastTfirst

t

0

0

Figure 3.30: Timing diagram of the letter recognition process. Tburst is the total duration
of the input stream which represents the input letter. The first output event in the recognition
channel appears at instant Tfirst, while the last one is generated at Tlast.

system.

However, the ultimate research goal to exploit the advantages of spiking neural
networks is migrating this research to VLSI systems, which present higher power, in-
tegration density and processing efficiencies. In the FPGA implementation described
in this Chapter, we have used conventional high speed serial links offered by Xilinx
to implement the off-chip event transmission. This solution provides minimum hard-
ware resources and high bandwidth, but it still suffers from long latencies and high
power consumption. The problem is more severe if these links want to be used in large
networks where hundred of chips have to be integrated along the same hardware infras-
tructure. The Rocket I/O circuitry is optimized for applications where the data flow
between transmitter and receiver is continuous and a large transmission bandwidth is
required. As idle commas are sent when there are no user data to transmit, the high
speed circuits keep consuming a large amount of power and the link energy efficiency
is reduced.

If the number of links scales up to hundred or thousand, the problem becomes crit-
ical if we want to ensure system reliability and an affordable power budget. Taking
advantage of the asynchronous nature of AER data, the individual links power con-
sumption can be scaled down with the instantaneous transmitted event rate. This must
be done without introducing long event transmission latencies and using low complex-
ity circuits. The next Chapter will address the problem of serializing the parallel AER

70 Spiking Neural Networks Hardware Implementation

Figure 3.31: ML605 general purpose Virtex-6 development board.

bus by proposing a novel event-driven serialization/deserialization (SerDes) architec-
ture. The design goals for the SerDes circuitry are: low event transmission latency,
scaling the power consumption with event rate and robustness.

4
The Event-Driven Bit-Serial Inter-Chip

AER link

4.1 Introduction

A system level design for large scale hardware spiking neural networks has been de-
scribed in Chapter 3. This infrastructure allows to map any arbitrary AER-based
neural network logical connectivity by properly configuring the modules which per-
form the computation. An FPGA-based platform was used for the system level design
prototyping, focusing the attention on the hardware implementation of spike-based
ConvNets. However, this is a power hungry and inefficient solution to perform the
event-based computation as we are not taking advantage of the higher speed and lower
power of VLSI AER chips, such as the spike-based convolvers [22, 23]. Moreover,
the Rocket I/O resources provided by the FPGA are not optimized to transmit asyn-
chronous nature AER traffic. The idea is to migrate the ideas exposed in Chapter 3
to a VLSI implementation where full custom AER chips can be merged with router
engines to assemble large scale multi-chip networks. However, further improvements
on the communication layer are needed to improve the scalability and reliability of the
structured AER grid.

Size and power consumption become important issues which must be carefully ad-
dressed in multichip environments. Serializing the AER parallel bus is mandatory to
improve the system scalability and reduce its hardware complexity. As only a few
output pins and PCB traces will be required to connect each chip with its neighbor-
hood with the serial solution, hundreds of these chips could be located within the same
printed circuit board. Keeping a low power consumption is also essential for a reliable
assembly of all hardware components. An important amount of the consumed power
will be due to the inter-chip communication layer which transfers events from one chip

71

72 The Event-Driven Bit-Serial Inter-Chip AER link

to another. A power efficient design of the circuits in charge of serializing, transmitting,
receiving and deserializing the serial AER flow becomes indispensable.

In this Chapter, we will describe a specialized scheme for Serializing/Deserializ-
ing the AER parallel bus which overcomes the limitations of solutions which have
been traditionally used for the industry. For this purpose, we first review the clock-
data-recovery (CDR) schemes reported in the literature to analyze their efficiency to
transmit AER information. After checking the limitations of traditional high speed
serial links when transmitting asynchronous data, the serial AER link architecture
will be described. A more detailed description of transmitter and receiver blocks will
be also provided along with the circuit level design techniques used for the physical
implementation. Finally, experimental results in a 0.35µm CMOS prototype will be
presented to validate the robustness and feasibility of the approach.

4.2 Overview of clock-data-recovery (CDR) schemes

In general, commercial high speed serial links require a continuous data flow between
transmitter and receiver in order to keep the link synchronized. When there are no
user data to be transmitted, an idle comma character is sent and the receiver uses
it to identify a pause and discard the received data. In this case, architectures use
a PLL or a DLL [91] to lock in frequency and phase with the transmission clock. If
no data edges are received, the PLL cannot lock with the transmission clock, and
data synchronization is lost. As a PLL or DLL is bandwidth limited for stability or
jitter issues, a lost of synchronization leads to hundreds of clock cycles of recovery [92].
This extra latency introduced by the PLL re-locking is not tolerable in event-driven
asynchronous AER systems, or systems which require to transmit data in bursts and
stop the transmission during data pauses.

There are several known solutions for burst-mode (or event-driven) CDR imple-
mentations [93]. They have a data-independent loop which tunes the transmission
frequency and keeps it tuned also in absence of data. The phase information is ex-
tracted from the data stream, but since there is no feedback with the frequency, proper
phase alignment is achieved after a few clock cycles. There are three main types of
burst-mode CDRs:

1. Oversampling CDRs [97, 98, 100, 101]: a PLL generates several phases of the
transmission clock and the input stream is sampled at these instants through a
bank of multi-phase samplers. A high speed digital circuit chooses the received
bit value analyzing all samples. The major drawbacks of this architecture are
that it requires many parallel blocks, each being very high frequency (faster than
the transmission frequency), and the jitter budget of the link is very stringent
for keeping all phases properly tuned.

2. Gated-oscillator CDRs [94, 95]: the synchronous clock is derived from a gated
oscillator triggered by pulses generated from the data stream edges. These
pulses cause the VCO to start its oscillation with an initial phase given by the
data, not requiring any loop to tune the delay.

4.2 Overview of clock-data-recovery (CDR) schemes 73

T
a
b
l
e
4
.1

:
L

ow
A

cq
u

is
it

io
n

T
im

e
V

L
S

I
C

D
R

C
ir

cu
it

s

G
a
te

d
O

sc
il

la
to

r
[9

4
]

In
je

c
ti

o
n

L
o
ck

in
g

[9
5
]

B
ro

a
d

b
a
n

d
P

L
L

[9
6
]

B
li

n
d

O
v
e
rs

a
m

p
li

n
g

[9
7
]

S
e
m

i-
b

li
n

d
O

v
e
rs

a
m

p
li

n
g

[9
8
]

P
re

se
n
t

W
o
rk

[9
9
]

T
ec

h
n

ol
og

y
25

0n
m

S
iG

e
B

iC
M

O
S

90
n

m
C

M
O

S
1
8
0
n

m
C

M
O

S
9
0
n

m
C

M
O

S
1
1
0
n

m
C

M
O

S
3
5
0
n

m
C

M
O

S

T
ec

h
n

ol
og

y
f t

20
0

G
H

z
18

0
G

H
z

1
2
0

G
H

z
1
8
0

G
H

z
1
5
0

G
H

z
1
5

G
H

z

B
it

R
at

e
(a

b
so

lu
te

)
10

.3
G

b
p

s
5-

1
0

G
b

p
s

2
.4

8
8

G
b

p
s

2
-3

.5
G

b
p

s
3
.2

G
b

p
s

0
.6

7
G

b
p

s

B
it

R
at

e
(r

el
at

iv
e

to
f t

)
0.

05
2
f t

0.
0
2
8
-0

.0
5
5
f t

0
.0

2
1
f t

0
.0

1
1
-0

.0
1
9
f t

0
.0

2
3
f t

0
.0

4
5
f t

A
re

a
(i

n
m
m

2
)

3×
3

0.
5
5
×

0
.5

5
1×

1
0
.1

3
×

0
.1

3
0
.4

4
×

0
.3

4
0
.9
×

0
.3

8

A
re

a
(i

n
λ
2
)

24
00

0×
24

00
0

12
1
7
2
×

1
2
1
7
2

1
1
1
1
1
×

1
1
1
1
1

2
9
4
0
×

2
9
4
9

8
0
0
0×

6
1
8
2

5
1
4
2×

2
1
7
1

S
u

p
p

ly
V

ol
ta

ge
3.

3V
(b

ip
ol

ar
)/

1.
8V

(C
M

O
S

)
1.

2
V

1
.8

V
1
.2

V
1
.2

V
3
.3

V

P
ow

er
co

n
su

m
p

ti
on

54
4m

W
70

m
W

5
4
m

W
5
m

W
@

2
.5

G
b

p
s

1
1
5
m

W
4
6
m

W
@

1
0
M

ep
s

A
cq

u
is

it
io

n
ti

m
e

1
b

it
8-

1
5

b
it

s
1
0
0

b
it

s
1

b
it

N
/
A

0
b

it

C
ID

to
le

ra
n

ce
16

0
b

it
s

N
/
A

in
fi

n
it

e
in

fi
n

it
e

N
/
A

in
fi

n
it

e

J
it

te
r

T
ol

er
an

ce
0.

27
U

Ip
p

N
/
A

N
/
A

9
3
U

I
@

L
F

0
.6

8
U

I
@

H
F

2
0
0
U

I
@

L
F

0
.4

U
I

@
H

F
0
.4

U
I

@
w

o
rs

t
ca

se

J
it

te
r

re
p

or
te

d
14
.7
p
s p

p
/

2.
4
p
s r

m
s

@
re

co
v
.

cl
k

15
.5
p
s p

p
/

2
.2
p
s r

m
s

@
re

co
v
.

cl
k

-7
9
d

B
c/

H
z

@
1
M

H
z

1
4
2
.2
p
s p

p
/

2
5.

9
4p
s r

m
s

@
re

co
v
.

cl
k

N
/
A

N
o
t

a
ff

ec
te

d
b
y

re
co

v
.

cl
k

ji
tt

er

N
ee

d
s

fr
eq

u
en

cy
tu

n
in

g
lo

op
Y

es
N

o
Y

es
Y

es
N

o
N

o

P
ow

er
sc

al
es

w
it

h
p

ac
ke

t
ra

te
N

o
N

o
N

o
N

o
N

o
Y

es

W
id

e
in

p
u

t
fr

eq
u

en
cy

to
le

ra
n

ce
N

o
N

o
N

o
N

o
Y

es
Y

es

74 The Event-Driven Bit-Serial Inter-Chip AER link

3. High-Q Bandpass Filter CDRs [102, 103]: the gated oscillator can be substituted
by a high quality factor bandpass filter that recovers the clock from the edges
detected in the data stream.

In both solutions (2-3), there is no phase tracking between the receiving and trans-
mitting clocks, requiring the use of low jitter circuits to generate both frequencies with
a very low offset between them. This phase shift also limits the maximum number of
consecutive ones or zeros which can be transmitted without any data edge. Moreover,
in (2) a replica of the VCO for the frequency tuning is needed. This results in high
sensitivity to process, temperature, voltage variations and mismatch. The edge pulse
generation and the gated-oscillator are also very demanding because they must be much
faster than the transmission frequency. In (3) a monolithic integration is not possible
due to limitations of CMOS technologies implementing high quality factor resonators.

Here we seek a low cost and simple solution for burst mode serial interfaces. The
solution should overcome the limitations mentioned for existing burst-mode CDR archi-
tectures without increasing the system complexity or power consumption. The design
goals for our target serial interface are:

• Low complexity. External components or huge on-chip devices such as induc-
tors are not desirable, as we want to integrate several of them per chip.

• Low latency. After a data pause, the link must recover the transmission clock
on-the-fly when a new event is received.

• Jitter robustness. The link will be part of noisy environments where a low jitter
clock and CDR implementations could be very demanding. If the solution is very
robust to timing variations caused by jitter, the clock generation complexity, the
CDR, and the system level design can be made more simple and with lower power
budget.

• Low power. Reducing the power consumption, specially in pauses, of the Se-
rializer/Deserializer circuits is essential to integrate many of them in the same
AER system.

• Arbitrarily long pauses capability. AER data rates can vary several orders
of magnitude. The link should be able to keep the system synchronized in all
cases, allowing arbitrarily long pauses in the data stream.

Table 4.1 compares the performance figures of several reported VLSI CDR circuits
which have low acquisition times, making them potential candidates for event-driven
AER systems. All of them are burst-mode CDRs, except the one with a broadband
PLL [96], that we have included for comparison. Usually PLL based CDRs are slow
and require long bit streams for locking. This particular design uses a broadband PLL
making it faster, although it still requires 100 bits of acquisition time. The fastest ones
present one bit equivalent delay of acquisition time, which means the first bit might
be lost. On the contrary, the architecture presented in this Chapter does not loose the
first bit, thus presenting an effective acquisition time of 0 bits.

Transmission data rate is expressed in absolute values as well as normalized to the
process cut-off frequency1 ft, for comparison. Similarly, circuit area is also given in

1None of the references in Table 4.1 gives the ft of the technology used. This number has been
estimated from other similar technologies.

4.2 Overview of clock-data-recovery (CDR) schemes 75

absolute number and relative to λ (half of minimum feature size). Acquisition times
and CID (consecutive identical digits) are expressed in equivalent bit times. As can be
seen, for none of the reported circuits power scales down with data packet rate, and
all of them have strong jitter requirements.

As we will see later in experimental results, the proposed Serializer/Deserializer pair
consumes about 73mW at 10Meps, which would scale down to 0.73mW at an average
event rate of 100keps. Consequently, for a large scale scalable neuromorphic system
with 120 × 4 Ser/Des pairs, power consumption would be about 350mW @ 100keps
average link rate. However, for any of the solutions in Table 4.1, power consumption
of just 120× 4 CDRs would range from 2.4W to 261W.

The jitter performance of the compared CDR implementations is shown in Table
4.1. The jitter analysis has been divided in two parts. The first one (Jitter Tolerance) is
related to the CDR immunity against the data pattern jitter. The second part (Jitter
reported) is related to the recovered clock jitter obtained for a safe data recovery.
Our solution is immune to the recovered clock jitter because the clock is generated
through edges present in the Manchester-encoded bit stream. Hence, data will be
always sampled at proper instants. The CDR design allows for a 0.4UI in terms of
input clock tolerance. Only oversampling CDRs present larger input clock immunity
at the cost of having a lot of low-jitter sampling phases for the high speed data.

Other researchers have reported serial LVDS links developed specially for AER
systems, but using either commercial Serializer/Deserializer circuits or FPGA built-
in ones. Table 4.2 compares some of them against the VLSI Ser/Des pair reported
in this Chapter. Serial bit rate ranges from 0.7 to 3.125 Gbps, with event sizes of
16, 24, or 32 bits. Table 4.2 also includes the “latency overhead” from the input of
the Serializer until the output of the Deserializer, expressed in serial bit speed. Note
that the total latency includes two components. The “data latency” to transmit the
events bits serially at the available bit rate, plus the extra “overhead latency” (which
includes, for example, error correction codes, framing and de-framing, physical circuits
delay, etc.).

In general, commercial chips and FPGA built-in Ser/Des pairs add important over-
heads, resulting in significant extra latencies. Also, all of them require continuous un-
interrupted serial transmission. This means they cannot be turned off and on quickly.
Only one of them [83] allows for flow control, although it is implemented through an ex-
tra LVDS return path. All of them use embedded clock, except one [46] which requires
an additional LVDS link for transmitting the clock (which is shared by 16 LVDS data
links). This allows for burst mode operation and DDR (double data rate) achieving
1Gbps bit rate with a 500MHz clock. They also report an AER link between Virtex5
FPGAs using Rocket I/O, which is similar to the one by Berge [105] in Table 4.2.

In summary, none of the reported LVDS links (either VLSI or non-VLSI) fulfills all
of the requirements we need for a multi-chip AER system with large number of chips.
In the rest of this Chapter we describe a VLSI Ser/Des pair which does satisfy the
requirements we seek.

76 The Event-Driven Bit-Serial Inter-Chip AER link

Table 4.2: Serial Non-VLSI AER Realizations
Indiveri et al.
[83]

Miró et al.
[104]

Hartmann
et al. [46]

Berge et al.
[105]

Present
Work [99]

Chips TI TLK3101 MAX9205/6
Spartan3

Virtex5
LX110T

Rocket I/O
Virtex2 Pro

VLSI 350nm
CMOS

Bit Rate
(Gbps)

3.125 0.792 1 2.5 0.67

Event Size
(bits)

32 10 24 16 32

Event Rate
(Meps)

78 66 31.25 41.66 15

Encoding 8B/10B none 9 bit CRC 8B/10B Manchester

Latency
overhead
(bits)

113 (w/o FC)
398 (with FC)

106 N/A 304 8

Flow Con-
trol

Through extra
LVDS return
path

No No No Yes

Burst-Mode No No Yes No Yes

Extra clock
path

No No Yes No No

4.3 High Speed Serial AER link

Fig. 4.1 shows the block diagram of the proposed serial AER sender and receiver. Par-
allel 32 bit input events AERin are managed by the “Parallel to Serial AER Sender”
system. This circuit receives the input request reqIN , generates the signals to latch
the event data, and begins the serialization process. When the event data is captured,
an acknowledge signal ackIN is sent back to the parallel AER sender. AER infor-
mation is coded with the transmission clock using Manchester encoding [106]. This
introduces extra edges at middle bit times. Manchester encoding reduces bit rate to
half compared to non-return to zero encoding. However, it allows for very low cost,
low power, jitter tolerant, and efficient CDR, thus being very suitable for asynchronous
AER transmissions. For the “Physical Driver” and the “Physical Receiver” pads in
Fig. 4.1 we use conventional LVDS [107] designs available for our technology [108].
This signal format reduces the power consumption and filters the common mode noise
coupled into the channel [109]. The standard specifies a 1.2V common mode level and
350mV of differential amplitude for the LVDS signals [107–109].

The “Serial to Parallel AER Receiver” system in Fig. 4.1 manages the serial stream
of Manchester encoded data and converts it into the parallel output AERout with its
corresponding handshaking signals reqOUT and ackOUT . Together with the serial
transmission, a pair of request reqSER and acknowledge ackSER signals are used
for flow control purposes. When a new event is ready to be transmitted serially, a
request pulse reqSER is sent to the receiver. If it is not busy processing a past event,

4.4 Transmitter design 77

Ser
Manchester

Encoder

Clock

Gen

reqIN

ackIN

AERin

32

Physical

LVDS

Driver

Physical

LVDS

Receiver

reqOUT

ackOUT

S
E

R
IA

L

CAPTURE

Parallel to Serial AER sender Serial to parallel AER receiver

reqSER

ackSER

Input AER

handshake

Serial-TX

handshake

STORE/SHIFT

mSERIAL2

CDR DLL

Des

AERout

32

clk

rclk

Serial-RX

handshake

rs

Vp

m
S

E
R

IA
L

1

Figure 4.1: Serial AER interface system level design.

it accepts the event by activating ackSER. In case of not being able to receive a new
event, the acknowledge activation is delayed and transmission is temporarily stopped.
Signal reqSER is also used by the receiver to initialize all the blocks for receiving a
new serial event.

The transmission clock is recovered by a CDR block designed to extract it from the
Manchester encoded data. This circuit is in charge of generating a half data rate clock,
which is used to decode the serial stream. For proper clock extraction in a Manchester
encoding scheme, the receiver tunes a delay [106]. This parameter is very sensitive to
temperature, supply voltage and process variations. For this reason, a DLL analyzes
the extracted clock generating an analog voltage which controls tunable delay elements.
At steady state, this loop keeps the receiver synchronized with the transmission clock.

4.4 Transmitter design

4.4.1 Serializer

Parallel data are latched and serialized by the reconfigurable capture/store/shift regis-
ter shown in Fig. 4.2. When a new parallel input event is received, data are latched in
this register through the Capture path, by setting signal CAPTURE high. After this,
the serialization is activated during 34 clock cycles using a high speed clock (Clock-
Gen). Two preamble bits are added for alignment purposes, letting 32 bits for the
AER address. In a shift register based solution, the maximum speed of operation is
given by the delay of the critical path. In this case, this path corresponds to the delay
of a flip-flop, plus the shift register branch propagation time, plus the set-up time of

78 The Event-Driven Bit-Serial Inter-Chip AER link

preamble

34 cells Capture + Shift Register

AERin32

CAPTURE

clk

SERIAL

D Q

Q

Qn-1

Qn

clk

CAPTURE

Storage path

Capture path

Shift path

STORE/SHIFT

data

STORE/SHIFT

(a)

(b)

Figure 4.2: ‘Ser’ block. (a) Reconfigurable capture/store/shift register used to store and
serialize parallel input data. (b) Details of one bit cell. If CAPTURE is high, incoming paral-
lel data bits are latched through the Capture path. If CAPTURE is low, either data is stored
for STORE/SHIFT high through the Storage path, or data is shifted for STORE/SHIFT
low through the Shift path.

the next flip-flop. Therefore, this solution requires 34 high speed flip-flops, but it can
work at higher frequencies than multiplexer based solutions. It also has a fixed delay
per bit when increasing the number of bits.

Fig. 4.3(a) shows the details of the ‘Input AER handshake’ block. It uses a very
simple Finite State Machine (genQ FSM), whose functional description is shown in
Fig. 4.3(b). The FSM starts in the “IDLE” state, where output signal CAPTURE is
low. When reqIN becomes active (low), the FSM switches to state “genQ”, where
CAPTURE is set high. One clock cycle afterwards, the FSM switches to state
“WAIT”, setting CAPTURE back low and waiting for the request to be deactivated.
This way, an input request (reqIN) activates signal CAPTURE during one clock cycle.

Fig. 4.5 shows the details of the ‘SerialTX handshake’ block, which handles the
serial handshaking as well as the store/shift operation of the parallel input event data.
The serialization process begins with the CAPTURE pulse generated by the FSM. C-
element C0 sends a reqSER pulse to the receiver indicating that there is a new event
to be transmitted. This signal is kept at low level until the acknowledge ackSER
coming from the receiver is received. At the same time, two cascaded C-elements C1

and C2 are used to generate an asynchronous signal a1, which is activated when the
CAPTURE pulse is detected and the receiver chip has activated ackSer, indicating
that the event can be transmitted. Signal a1 is synchronized with the transmission
clock using a flip-flop for the STORE/SHIFT signal generation. This signal is low

4.4 Transmitter design 79

genQ FSM

clk

reqIN
IDLE

genQ

WAIT

reqIN=1

reqIN=0

reqIN=1 ACTIVATE

CAPTURE

C3

ackIN

STORE/SHIFT

(a) (b)

CAPTURE

reqIN=0

Figure 4.3: (a) Details of ‘Input AER handshake’ block, and (b) functional description
of the genQ FSM.

Weak inverter

Latch

Y

A

B

Y

0 0 0

0 1 Yn-1

1 0

1 1 1

(b)

Yn-1

AB

(a)

Figure 4.4: C-element description. (a) Example implementation using latch based on
weak inverter. (b) Truth table, where Yn−1 denotes “no change” condition.

during the serialization process. C-element C3 (in Fig. 4.3(a)) is used to handshake
the communication with the transmitting parallel block.

C-elements (or Muller C-gates) [110] are commonly used in asynchronous logic
circuits. Their output switches to ‘1’ or ‘0’ only when all inputs have switched to ‘1’
or ‘0’, respectively. Fig. 4.4(a) shows a possible circuit implementation of a 2-input
C-element, and Fig. 4.4(b) its truth table description.

The 33-bit auxiliary shift register in Fig. 4.5 is used to calculate the STORE/SHIFT
signal duration at low level. This register shifts a zero from the register input to the
last position. Signal endSER is at high level while the register is shifting. After 33
clock cycles, the zero reaches the output and the serialization process is finished, setting
endSer high. This implementation was preferred over a counter-based option (where
the output signal is generated using the counter values) because the counter limits the
serialization speed as the number of bits increases. In a shift register, there is no speed
per bit penalty when increasing the number of bits and the number of bits per event is
not limited by the physical implementation. Note that shift registers in Fig. 4.2 and

80 The Event-Driven Bit-Serial Inter-Chip AER link

Auxiliary 33 cells Register

C2 D Q

Q

ackSER

CAPTURE

endSer

reqSER

C1

C0

clk

clk

STORE/SHIFT

a1

Figure 4.5: Details of block ‘SerialTX handshake’

Fig. 4.5 can be made of programmable length, so that the user could freely configure
the number of bits per event. However, in the presented prototype both registers are
of fixed length of 34 and 33 bits, respectively.

4.4.2 High Speed Manchester Encoder

Fig. 4.6 presents the circuit which encodes the serializer output stream into a Manch-
ester format. As the link operates at very high speed, an asynchronous solution is
desirable in order to avoid the double rate clock generation. Such an implementation
implies an XOR operation between the serial data flow and the transmission clock.
A high speed implementation of this combinational circuit requires a careful delay
compensation.

Two flip-flops are used to synchronize data SERIAL and signal STORE/SHIFT .
This latter one is used to frame the AER event in the output bursts, because it is active
during all the serialization process. A replica of the flip-flop direct path is included to
compensate the delay between the output and the clock. A dummy XOR gate is used
to equalize the delay between the SERIAL and the STORE/SHIFT paths. Finally,
a NAND gate stops the encoding when the transmitter is not enabled.

4.5 Receiver design

The deserializing scheme is shown in Fig. 4.7, where two shift registers are used:
one triggered by the recovered clock rclk rising edges and the other by the falling
edges. This way, a half rate clock can be used to decode the input data, reducing
power consumption and system complexity. The incoming bits mSERIAL2 are shifted

4.5 Receiver design 81

Delay line

clk

D Q

Q

clk

D Q

Q

pr

rs

gnd

gnd

vdd

gnd

vdd

S
E

R
IA

L

mSerial1

Combinational

Manchester encoder

reset

reset

Sync flip-flops

FF1

FF2

S
T

O
R

E
/S

H
IF

T

Figure 4.6: Implementation of the high speed Manchester encoder.

through the whole register until the two header bits reach a NAND gate. Then, signal
reqOUT goes low, starting a new handshaking cycle at the parallel AER output port.
This signal is also used to latch the data in a capture register, waiting for this port
to read the data. When ackOUT is received, the registers are reset to zero and the
parallel output request reqOUT is deactivated. During this process, the receiver does
not send any ackSER pulse to the transmitter, suspending any new data transmission
which could overwrite the current event.

4.5.1 Clock Extraction circuit

Manchester data include additional edges which are used by the receiver to extract the
synchronization information. The CDR must generate a recovered clock through these
extra edges, ignoring bit data dependent edges. The circuit in Fig. 4.8 is able to extract
this information and to generate a half rate clock for data recovery [106]. The circuit
consists of a Double Edge Triggered Flip-Flop (DETFF) configured as a frequency
divider. The DETFF’s clock input is directly connected to the serial input signal
mSERIAL2 provided by the “Physical LVDS Receiver” (see Fig. 4.1). As information
edges of the Manchester signal mSERIAL2 want to be filtered, a five inverter delay
line is included between the DETFF input and output.

The delay value is critical for the CDR proper operation. Controlling the delay of
an inverter in a CMOS technology is difficult due to process, temperature and supply
voltage variations. For this reason, these delay elements have analog control voltages
which tune their delay value. This delay can be controlled by adjusting the gate
voltages of a CMOS switch at the inverter input. This implementation allows a very
wide tuning range so that the CDR can extract the transmission clock in a large range

82 The Event-Driven Bit-Serial Inter-Chip AER link

mSERIAL2

D Q

D Q

D Q

D Q

D Q

D Q

reqOUT

rs rs rs

rsrsrs
Rising edge triggered flip-flops

Falling edge triggered flip-flops
CDR

rclk

(a)

(b)

DLL

Vp Des

reqSER

rs
Global reset

reqSER

ackOUT

ackSER
reqOUT

ackOUT

reqSER

Figure 4.7: (a) Details of deserialization block ‘Des’ in Fig. 4.1. (b) Details of block
‘Serial-RX handshake’ in Fig. 4.1.

of frequencies.

If this delay is greater than Tb/2 and lower than Tb (Tb is the bit time), data bit
dependent edges will be filtered and the DETFF will not switch at them. However, if
the delay is not properly tuned, the DETFF would switch at any mSERIAL2 edge.
Fig. 4.9 shows the CDR circuit chronogram for two different conditions of the analog
control voltage. In Fig. 4.9 (a) all delays are properly tuned and the CDR is extracting
the recovered clock properly. In case (b) there is no lock in the delay tuned loop and
extra edges of Manchester code are causing recovered clock triggering. If there are no
incoming serial data, there are no clock edges, saving dynamic power during pauses.
The value given for the jitter tolerance 0.4UI in Table 4.1 allows the input clock to
change its frequency in the CDR locking range during each bit. If the frequency changes
slowly, the DLL will track it in the loop and larger frequency changes can de adapted.
This is because the Manchester code provides extra data edges for phase comparison
at every bit time. Therefore, 0.4UI is a very pesimistic estimation for the tolerated
input data jitter.

A DETFF [111]-[112] clocked by the data stream generates the recovered clock
edges. Hence, there will be a clock edge after a data edge if delays are properly tuned.
As recovered clock edges are generated directly through data edges, the receiver is very
robust against jitter. Even when the transmitter has a very poor jitter performance,
that will not impact on the bit error rate because of this feature. That opens the door
for very low cost clock generation solutions which do not require very power hungry
clock generation circuits.

4.5 Receiver design 83

mSERIAL2

D
Q

Q

Delay Delay Delay DelayDelay

DETFF
rclk

Vp

Out

In

Vp

Vn

Vp

Vn

Inverter amplifier

Delay Element

Figure 4.8: Details of block ‘CDR’ in Fig. 4.1 and Fig. 4.7.

mSerial2

Loop

Delay

DETFF

output

DETFF

input

1 1 0 1

(a)

Loop

Delay

1 1 0 1

(b)

Figure 4.9: CDR circuit chronogram in which (a) delays are properly tuned or (b) are
out of lock

The clock is recovered thanks to a DETFF which operates at very high speeds. The
circuit in Fig. 4.10 is a high speed implementation of a DETFF used in the burst-mode
CDR. The flip-flop is composed by two latches, corresponding to the parallel branches
in Fig. 4.10. Each path is high and low level sensitive, respectively. The output is
combined in a shared node. Both branches have a reset signal that puts the flip-flops
in a known state before starting the deserialization.

4.5.2 Delay tuning circuit

Fig. 4.11 shows the DLL circuit used to tune the delay in the CDR. This circuit
compares the recovered clock signal rclk with a one clock cycle delayed version, in-
dependently of the clock frequency, as long as it is within the delay elements tuning
range. This delayed version is generated by 16 cascaded delay elements, identical to the
five used in the CDR. A Phase and Frequency Detector (PFD) compares the extracted

84 The Event-Driven Bit-Serial Inter-Chip AER link

Q

clk

clk

clkn

clkn

clk

clkn

clk

clkn

clkn

clk

reset

reset
clk

clkn

D

Figure 4.10: Double edge triggered flip flop for clock extraction.

PFD

UP

DOWN CP
Vp

Delayed

rclk
rclk

reset

Vp

Vn

reqSER

Mem
enADC

Figure 4.11: Details of the DLL (Delay Locked Loop) block in Fig. 4.1 and Fig. 4.7.

clock and the delayed clock phases and generates two correction signals for a Charge
Pump (CP). Signals UP and DOWN make the analog control voltage Vp evolve to
correct the phase lag between the delayed and recovered clocks. The link can tune the
CDR for any frequency which belongs to the delay element tuning range.

Fig. 4.12 shows the schematics of the PFD which compares the phase of the re-
covered and delayed clocks. Flip-flops FF1 and FF2 are used to detect the phase lag
between both signals by triggering their outputs with every new edge. Rising edges
cause that DOWN and UP signals get activated and the combinational logic resets
the flip-flops when both are at high level. The duration difference between both signals
codes the existing phase shift. While the counter is counting, output signal enADC is
low. After counting 16 clock cycles enADC is set high, activating the memorization
circuit (‘Mem’ in Fig. 4.11) for control voltage Vp. When a new event is received
(reqSER goes low) the counter starts counting again, enADC goes low again, the
memorization circuit is deactivated, and the charge pump controls again voltage Vp.

If the DLL compares a 360o delayed signal with the reference clock, there is an
initial clock edge that should not be compared. For this reason, the counter shown in
Fig. 4.12 resets the PFD until the first recovered clock is produced. Then, the PFD

4.5 Receiver design 85

rclk

reset

D
Q

Q

reset

D
Q

Q

Delayed

rclk

DOWN

UP

FF1

FF2

counter

reset

reqSER

enADC

resetPFD

Figure 4.12: Details of the Phase and frequency detector (PFD) circuit used in Fig. 4.11.

is enabled to compare the phase for a number of cycles given by the number of bits
used to implement the counter. In this design, a 4-bit counter was chosen and 8 phase
comparisons are performed for every AER event.

Fig. 4.13 shows the schematics of the charge pump which pulls up and down the
analog control voltage Vp, depending on the information provided by the PFD. The
CP integrates a bias current Ib on the on-chip capacitor CCP (of value 1.5pF) during
a time slot given by the difference in the duration of UP and DOWN pulses. A
current steering topology was chosen [113] to reduce spurious current injected in the
output capacitor when switches controlled by DOWN and UPnot are turned on and
off. These currents can cause a phase offset in the DLL loop which can lead to a
significant error in the delay tuning precision. This is particularly important in high
speed charge pumps, where very low phase shifts want to be tracked.

Bias current IB is always flowing through current sources MBP and MBN , keeping
these transistors saturated. This reduces the current peaks generated when current
is switched from one branch to another. Capacitors were included at the current
sources output nodes to help these bias currents keep their terminal voltages constant.
An analog buffer was included to clamp both CP branches and maintain the same
conditions in the two current paths. This way, both current paths are completely
symmetric and current peaks are reduced to a minimum. The matching between NMOS
and PMOS currents can also cause phase offset in the DLL loop. In this design, the
current sources transistor lengths were carefully designed to achieve a good trade-off
between speed and matching.

86 The Event-Driven Bit-Serial Inter-Chip AER link

IB

UPnot UP

DOWN DOWNnot

reset CCP

MBP

MBN

Vp

Figure 4.13: High speed charge pump design.

4.5.3 Control voltage memorization circuit

Arbitrarily long event pauses can make the CP capacitor CCP discharge through leak-
age currents in the switches and elements connected to it. A memorization circuit
is required to retain this voltage during event pauses. A digital storage element is
mandatory in order to guarantee an arbitrarily long memorization time. The synchro-
nization is controlled by analog voltage Vp which must be properly interfaced for digital
conversion and storage using adequate precision.

The circuit in Fig. 4.15 is used to store the delay tuning voltage Vp. Intensive sim-
ulations showed that a 5 bit ADC (Analog to Digital Converter) architecture provides
enough precision to keep the link synchronized between consecutive events. This can
be understood with the help of Fig. 4.14, which shows the corner simulated delay in
pico seconds of one “Delay Element” (see Fig. 4.8) as function of control voltage Vp.
The tuning loop has to adjust the delay to 1/8 of bit time Tb [106] (i.e. 250ps for
500Mbps). The maximum Vp range is [0V, 2.7V]. Quantizing to 4-bit results in half an
LSB of 84.4mV , or 42.2mV for 5-bit, resulting in phase errors of 55ps and 20ps, re-
spectively, for the worst case scenario, e.g. around the 250ps delay. On the other hand,
the CDR delay has to satisfy [106] 5Tdelay > Tb/2 and 5Tdelay < Tb. Consequently, for
the nominal case Tb = 2ns this is 200ps < Tdelay < 400ps. In the ideal situation the
loop would lock to Tdelay = Tb/8 = 250ps, so that a quantization error of up to 50ps
could ideally be tolerated (i.e. 5 bits). Nonetheless, we performed extensive corner
and mismatch simulations of the complete circuit including all circuit non-idealities to
make sure no extra bit was necessary to guarantee safer margins.

A flash architecture is used because of its simplicity and an asynchronous design is
implemented to reduce its inherently high power consumption. The “Bank of 31 com-
parators” is used to determine the resistor ladder level Vrj that better approximates the
analog control voltage Vp. The “Asynchronous Digital Controller” takes this decision
and controls the “Bank of switches”, connecting the chosen level with the output node.
The “Asynchronous Digital Controller” is composed of 31 “selection elements” which

4.5 Receiver design 87

Figure 4.14: Corner simulations of CDR ‘Delay-Element’ delay as function of control
voltage Vp.

generate the enable signals selj for the “Bank of switches”. They perform a logical
operation between the outputs of consecutive comparators to find out the DAC output
which makes a comparator to switch from a positive to a negative comparison. Each
comparator provides an additional output signal “validj” to notify that the comparison
has settled. The operation of the asynchronous controller is enabled through signals
“validj” of the comparators.

Fig. 4.16 shows the schematics of the comparator used in the ADC [114]. It was
designed as a two stage comparator with a pre-amplifier, represented by a PMOS
differential pair and a latch built with a two inverter loop, which stores the comparison
result. Signal COMP is used to reset the circuit before any comparison, pre-charging
all the comparator nodes to known initial values. Moreover, the bias current is switched
off to save power when no comparison is being carried out. When the comparison
process finishes, an XOR gate sets signal “validj” high to notify the digital controller
that the comparison value is ready to be read.

One of the main drawbacks of flash ADC architectures is their high power con-
sumption, since all comparators operate in parallel when the device is converting. In
our asynchronous implementation, the output bits are calculated sequentially and the
comparators are switched off and on at every stage. Fig. 4.17 shows the tree-like con-
nectivity of the comparators to implement this asynchronous conversion process. The
tree has log2(n + 1) levels, where n = 31 is the number of comparators. In our case
there are 5 levels. Depending on the result at one level and the corresponding “validj”

88 The Event-Driven Bit-Serial Inter-Chip AER link

CP

UP

DOWN

Resistive

ladder

Bank of 31

comparators

validj

Bank of 31 switches

vref

nj,pj

enADC

Asynchronous

Digital

Controller

selj

Vp

validj

validj validj

selj

31 selection

elements

Vrj
j = {1, … 31}

Mem

pj

nj+1

Analog

buffer

CCP

Figure 4.15: Analog control voltage digital storage system.

signals, only one comparator is activated at each level. Although this is a slow process,
the conversion rate is not a major concern in this application because the CP voltage
variation in pauses is caused by leakage currents with a time constant in the order of
milliseconds. Hence, besides the asynchronous implementation, currents of 10µA are
used to bias the comparators in order to further reduce the power consumption.

4.6 Experimental results

A proof of concept test prototype using the presented serial AER link has been imple-
mented in a 0.35µm CMOS technology. Nominal data rate was chosen to be 500 Mbps
using Manchester encoding and supply voltage was 3.3V. The transmitter requires an
area of 350x375µm2 and the receiver occupies 900x380µm2, not including LVDS pads.
Fig. 4.18 shows a micro photograph of the fabricated chip, highlighting the main com-
ponents. The test channel used in the experiments consists of a pair of PCB traces
forming a 100Ω differential micro strip line of 3cm length. The clock was generated
through a simple VCO based on a ring oscillator that can be externally tuned by an
analog voltage. No PLL or DLL based solution to generate a jitter clean master clock
reference was integrated. This is the worst situation [115] for clock jitter performance.
However, it is useful for showing the circuit robustness to high jitter and demonstrate
that a very simple clock solution is enough for this architecture.

Fig. 4.19 shows the test set-up. Two 16-bit USB-AER boards [89] receive events
from a PC connected to them through USB ports. These events are sent through a
parallel connector to the test board using the AER protocol. Each USB-AER board
provides a 16-bit AER bus, but a 32-bit version is needed for the serial transmitter. For
this reason, streams coming from two different boards must be synchronized to form
up a 32-bit AER bus. A CPLD implements a C-element for req1 and req2 to generate

4.6 Experimental results 89

pjnj

Vrj
Vp

vbiasp

COMPj

validj validj

validj

pj

nj

+ -
COMPj

COMPj COMPj

Figure 4.16: Circuit schematics of comparator for asynchronous flash architecture.

reqIN . This way, both 16-bit parallel input streams are merged into a single 32-bit one
which is serially transmitted. At the receiver side, the output flow must be split into
two AER streams, each of which can be captured by a single 16-bit parallel USB-AER
board. The CPLD performs this task in the same way than in the transmitter side,
managing ack1 and ack2. Each output USB-AER board is able to transmit captured
events to the PC through its USB connection.

Fig. 4.20 shows the measured AER protocol signals (a) at the transmitter parallel
input, (b) at the serial inter-chip link, and (c) at the receiver parallel output, as well as
the serial data stream. The CPLD generates reqIN when a new 32-bit event is ready
to be transmitted. When this event data is latched by the receiver, ackIN is activated
during all the serial transmission process. The delay between the reqIN and ackIN
activations in Fig. 4.20(a) is 10ns for a 550MHz transmission clock. The ackIN pulse
duration is 62ns, corresponding to 34 clock cycles. The transmitter cannot send a new
event until this acknowledge signal is deactivated.

The transmitter uses the serial AER signals to perform a flow control mechanism.
The receiver can send a new event if the transmitter activates ackSER after reqSER.
The delay between the request reqSER activation and the acknowledge ackSER acti-
vation is 2ns. In this case, the protocol is completely asynchronous and only depends
on the logic and pads delays. Handshaking is also implemented at the receiver output.
This way, the serial AER transceiver can communicate with any parallel AER chip
without any protocol conversion. The 21ns delay between reqOUT and ackOUT is
due to the USB-AER boards.

Fig. 4.21 shows the high-speed serial AER signal measured at the receiver input.
This figure illustrates the asynchronous event driven nature of the AER data sent
through the link. Transmission frequency in this case is 500Mbps and event rate is
4.8Meps. Maximum event rate through the interface is limited by the transmission

90 The Event-Driven Bit-Serial Inter-Chip AER link

enADC

Vp

Vr16

valid16

p16

Vp

Vr24

p16

n16

p24

n24

Vp

Vp

Vp

Vp

p24

n24

n16

p8

n8

Vr8

Vr28

Vr20

Vr12

Vr4

p8

n8

Vp

valid24

valid8

COMP8

COMP24

COMP16

COMP28

COMP20

COMP12

COMP4

Figure 4.17: Asynchronous low power flash architecture in “Bank of 31 Comparators” in
Fig. 4.15

Figure 4.18: Micro photograph of fabricated test prototype

4.6 Experimental results 91

USB-AER

board

16 bits

AER

bus

CPLD

Serial

TX

reqIN

req1

req2

ack1

ack2

ackOUT

Serial

RX
ackIN

reqOUT

USB-AER

board

16 bits

AER

bus

USB-AER

board

16 bits

AER

bus
USB-AER

board

16 bits

AER

bus

reqSer

ackSer

CPLD

Figure 4.19: Test set-up to generate a 32 bit AER pattern.

Figure 4.20: AER protocol management at (a) reqIN (dotted line) and ackIN (continu-
ous line) signals (b) reqSER (dotted line) and ackSER (continuous line) signals (c) reqOUT
(dotted line) and ackOUT (continuous line) signals (d) differential mode of the LVDS signal.
Time scale is µs.

92 The Event-Driven Bit-Serial Inter-Chip AER link

Figure 4.21: Measured LVDS signals at receiver input.

frequency and delays associated with the AER protocol signals. To measure this link
event rate, reqOUT and ackOUT were shorted. Maximum event rate for the nominal
500Mbps bit rate was measured to be 12.5Meps, corresponding to an input-to-output
request latency of 80ns. If a 670MHz transmission frequency is set, a 15Meps and
66ns latency can be achieved.

Fig. 4.22 shows the eye diagram measured for a 500Mbps bit rate using an Agilent
DSO81304B Infinium 12 GHz bandwidth oscilloscope. A 40ps of rms jitter was mea-
sured and event error rate (EER) resulted to be below 3.3 × 10−10 (3.1 × 109 events
where analyzed without any error found). This demonstrates the robustness of the
approach, capable of keeping very low EER without very stringent jitter requirements.

Fig. 4.23 shows the control voltage Vp evolution when the link is powered-up the
first times. Voltage Vp is available to be measured through an on-chip buffer to not
affect the CP integration capacitor. After reset, the control voltage is set to ground
by a switch and evolves to its steady state value when events are received. The analog
control voltage convergence process lasts 6µs and requires 6 events in this particular
case. In general, this delay depends on the input event rate, the input patterns, and
the bias settings. When the DLL stabilizes at the steady state, this control voltage
remains constant. The ADC block keeps it memorized, tolerating arbitrarily long event
pauses. This was measured in the laboratory by stopping the interface and measuring
the control voltage with an oscilloscope. It was noticed that it does not change during
hours of pause.

The link can tune the delays to receive serial streams with a wide range of trans-
mitting frequencies. Maximum frequency is limited by parasitic effects, not only by
the delays tuning range. As the oscillator frequency can be programmed by controlling
a test board potentiometer, the transmission data rate was swept in the range of 175

4.6 Experimental results 93

Figure 4.22: Measured eye diagram at receiver input.

to 670 Mbps, in which the link operates correctly.

Transmitter and receiver power consumption depends on event rate. Fig. 4.24 shows
the current consumption of the serializer and the deserializer for different event rates.
As can be seen, for high event rates, current consumption grows proportionally to data
event rate. For lower event rates, current consumption stabilizes to constant values
of 3.1mA and 2.0mA, respectively. Besides the Serializer and Deserializer circuits,
other components consume a constant event-rate independent current. For example,
the LVDS physical transmitter pad pair (driver) consumes 8.2mA, while the LVDS
physical receiver pad pair consumes between 8.4mA (for low event rate) and 9.8mA
(for high event rate). The VCO used for the clock generator consumes 12.55mA.

In this first proof-of-concept test prototype we were mainly concerned with a scheme
for quickly turning on and off the Ser/Des pair. However, for a practical realization
to be used in a large scale scalable neural system, all power hungry components need
to be turned off and on quickly as well. For example, standby power consumption of
the Serializer can be drastically reduced by simply adding a clock-gating mechanism
during pauses. Fig. 4.24 shows the simulated power consumption of an improved
Serializer with this simple addition. The fabricated Deserializer also has an important
stand-by power consumption because of the following three components: (a) the small
“inverter amplifier” in Fig. 4.8 which requires a high current to be fast, (b) the “analog
buffer” in Fig. 4.15 to buffer voltage Vp and isolate it from switching noise coming
from the comparators, and (c) the Charge Pump. Cases (b) and (c) are corrected
easily by switching between ON and OFF bias currents. For case (a) the inverter
current cannot be switched because voltage Vn needs to be kept stable during pauses.

94 The Event-Driven Bit-Serial Inter-Chip AER link

Figure 4.23: Delay control voltage Vp convergence at power-up.

Figure 4.24: Serializer and Deserializer current consumption as a function of event rate.

4.7 Conclusion 95

However, this circuit can be resized for lower power while satisfying speed requirements.
By introducing these modifications, we re-simulated the Deserializer and obtained the
current consumption shown in Fig. 4.24, which shows a remaining stand-by current
consumption of 150µA.

Also, the flash ADC is an over engineered solution (although it simplified the overall
design), resulting in an excessive area consumption (see Fig. 4.18). In a final imple-
mentation, since the ADC does not require high speed and it only has one comparator
ON at a time, the flash ADC would be substituted by a successive approximation
version with just one comparator.

4.7 Conclusion

Along this Chapter, a SerDes circuit specially designed for asynchronous and event-
driven AER systems has been described. The design does not require to keep the
link active during absence of user data. The receiver includes a means for memorizing
the tuned state during data pauses. This way, when a new event is transmitted,
the communication is reestablished without information lost. As a result, the power
consumption of the SerDes circuit is proportional to data event rate. The proof of
concept test prototype has been fabricated in 0.35µm CMOS technology and is capable
of achieving a maximum event transmission rate of 15Meps with 32-bit events. The
system is jitter tolerant and does not require a very low jitter clock. The proposed
architecture uses simple components which do not require critical matching, jitter, nor
supply voltages.

As it was sketched in the previous Section, the SerDes circuit allows further im-
provements in terms of power and area efficiency. However, the main limiting factor
is the conventional LVDS driver/receiver circuitry used for the high speed differential
signal transmission. The static current consumption of these circuits is around 17mA
(driver+receiver) each one and they remain active in pauses. The event driven SerDes
power consumption reduction vanishes when it is combined with such as circuits. For
this reason, the next Chapter will be focused on developing power consumption re-
duction design techniques for current mode LVDS circuits exploiting the sparse nature
of AER data. This feature must be introduced in the link without introducing extra
latency in the event transmission or limiting the maximum event rate.

96 The Event-Driven Bit-Serial Inter-Chip AER link

5
Current Mode Switchable I/O Circuitry for

Low Power Serial Transmission of AER
Streams

5.1 Introduction

The event-driven SerDes architecture proposed in Chapter 4 overcomes the power limi-
tations of conventional high speed serial links approaches for sparse events transmission.
Clock is embedded in the data flow but the CDR circuit does not need any comma
transmission when there are no user data. Synchronization information is digitally
stored at the receiver side and updated with every new event. Communication can
be restarted immediately, avoiding the need for long preambles or loss of information.
Only one driver/receiver pair is needed to implement the communication. A pair of
digital request/acknowledge signals are sent along with the high speed AER data for
flow control purposes, using a 4-phase handshaking protocol.

The asynchronous SerDes power consumption scales down with event rate, as it can
be verified in the experimental results shown in Chapter 4. This is not the case with
the high speed LVDS (Low Voltage Differential Signalling) [109] driver/receiver pair
[108] used in this primary implementation. These circuits have a large static power
consumption which remains even if there are no data being transmitted. As serial lines
must operate at any known logic value during pauses, a mA range current flows through
the termination resistor. Several authors have addressed the problem of reducing the
LVDS driver power consumption [116]-[117]. The techniques proposed range from low
voltage implementations of current mode drivers which reduce the number of stacked
elements [116], to low input capacitance driver realizations to save power in the pre-
driver stage [118] or even voltage mode circuits in BiCMOS [117]-[119] or CMOS [120]

97

98
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

technologies. However, all these solutions are focused on dynamic power reduction and
still suffer from high static power dissipation.

Introducing techniques to reduce the static power consumption in pauses is essen-
tial to increase the serial AER link power efficiency. Quickly turning off the LVDS
driver/receiver bias currents which are responsible for static power consumption seems
to be the easiest way to achieve this purpose. This way, the driver/receiver pair will be
switched OFF in the presence of pauses and turned back ON quickly when new events
are ready to be transmitted. A fast start-up link is mandatory because recovery time
directly impacts overall link latency and reduces the maximum achievable throughput.
A reasonable limit for the additional latency introduced by the switching mechanisms
described in this Chapter is set to 1 bit time. This way, the power saving mechanisms
would not trade-off with the maximum link throughput.

A regular push/pull current mode LVDS driver circuit and a conventional receiver
have been used to implement the design techniques needed to quickly switch off the high
speed serial circuitry. In this Chapter, the current mode approach has been adopted
rather than the voltage mode approach because it provides robust impedance match-
ing and higher immunity to power supply noise. Voltage mode circuits can achieve
similar (or even higher) precision in impedance matching, but to do so they need extra
calibration circuitry. These extra circuits contribute to increasing the driver power con-
sumption and introduce an area penalty. In principle, therefore, current mode drivers
ensure a better signal integrity and higher data rates for an identical channel than
their voltage mode counterparts. On the other hand, CML (Current Mode Logic) [121]
or LVPECL (Low-Voltage Positive Emitter-Coupled Logic) [122] drivers are simpler
to design as they do not require common-mode adjustment circuitry. However, when
turning them OFF and back ON quickly, it is necessary to keep their common mode
for fast recovery, thus making the design more complex. As the technique proposed is
based on efficiently switching large current sources ON/OFF, the solution presented in
this Chapter for the push/pull LVDS driver can be directly extended to other current
mode standards.

This Chapter discusses the circuit level implementation of a switchable current
mode link suitable to efficiently transmit AER information. First of all, advantages
of switchable high speed serial links when transmitting asynchronous data will be
presented, as well as the required modifications in the AER protocol to handle the
link switching mechanism. After these system level design considerations, the design
techniques employed to efficiently switch on/off the driver and receiver circuits will be
described. Extensive experimental results of a 0.35µm CMOS prototype of the current
mode circuitry integrated with the event-driven SerDes are presented to demonstrate
the effectiveness of the approach.

5.2 Switchable high speed serial links

Fig. 5.1 shows the desired waveforms for the supply current and differential mode volt-
age of switchable high speed serial links. Instantaneous current consumption switches
from a high current in the order of mA when circuits are transmitting data to a low

5.2 Switchable high speed serial links 99

(a)

(b)

Ion

Ioff

Tev Tpause

T

Tov,i Tov,o34Tbit

Tbit

Figure 5.1: (a) Desired waveform of the supply current drawn by the switchable driver
or receiver when an 1/T event rate is being transmitted. (b) Differential mode voltage of the
serial data for this current consumption pattern.

current in the order of hundreds of µA in pauses. Transitions between both states
must be very sharp to keep a high throughput and low latency in the link. Let Tev
be the time required by the SerDes scheme to transmit a single event and Tp the time
that the link remains idle between two consecutive transmissions. The mean current
consumption for an event flow with an average 1/T event rate is

Īswitched = ION
Tev

Tev + Tp
+ IOFF

Tp
Tev + Tp

(5.1)

A conventional current mode driver is not switched OFF when a pause is detected.
This leads to a constant current consumption independent of the event rate and given
by Īconv = ION . Let us define a figure of merit for the power saving effect of the
switchable link as

α =
Īswitched
Īconv

=
IOFF
ION

+
Tev
T

(
1− IOFF

ION

)
(5.2)

where T = Tev+Tp is the time difference between two consecutive events (min (T) = Tev
for Tp = 0). Case α = 1 corresponds to a conventional current mode link without cur-
rent switching. The lower the value for α, the higher the power saving effect achieved.
The ratio between the ON/OFF currents depends on the driver/receiver circuit imple-
mentation. The second term of eq. (5.2) introduces the dependence of α with event

100
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Event rate (Event/s)

α

I
on

/I
off

 = 1

I
on

/I
off

 = 0.5

I
on

/I
off

 = 0.1

I
on

/I
off

 = 0.01

I
on

/I
off

 = 0.01

Figure 5.2: Figure of merit α vs event rate parametrized by the on/off current ratio.

rate. Fig. 5.2 shows a family of curves that plot α versus event rate for different
ON/OFF current ratios. For very low event rates, α saturates to its minimum value,
determined by the relation between ON and OFF currents. For medium and high data
rates, the figure of merit decreases linearly with data rate. The IOFF/ION ratio is the
basic design variable for optimizing serial link energy efficiency.

5.3 AER protocol modification

ON/OFF switchable LVDS driver and receiver pad pairs need to handle extra signals
to control the ON/OFF switching. In particular, the sender takes the decision to
turn OFF the driver when there is no data to transmit. When a pause occurs, the
differential output lines are made to evolve to the same common-mode voltage, as
there is no current flowing through the termination resistor. In principle, we could
take advantage of the serial handshaking signals to tell the driver and receiver pads
whether a bit-serial events is being transmitted or not. However, the handshaking
signals used in circuits presented in Chapter 4, only indicate the start of the bit-serial
transmission and not its duration. A modification to the traditional AER protocol is
therefore required to provide the timing information to detect pauses, switch OFF bias
currents, force a constant output value, and freeze the deserializer.

Fig. 5.3 illustrates the changes introduced in the SerDes scheme to handle the
switching mechanism. The solution proposed in Chapter 4 is presented in Fig. 5.3(a) for
comparison purposes. All blocks in black do not need any modification and they work
the same way it was described in Chapter 4. Only the physical LVDS driver/receiver
pair is changed and the block “ackSergen” is added to manage the serial handshaking
signals generation. These modifications are highlighted with red color in Fig. 5.3(b).

5.3 AER protocol modification 101

Ser
Manchester

Encoder

Clock

Gen

reqIN

ackIN

AERin

32

Physical

LVDS

Driver

Physical

LVDS

Receiver

reqOUT

ackOUT

S
E

R
IA

L

CAPTURE

Parallel to Serial AER sender Serial to parallel AER receiver

reqSER

ackSER

Input AER

handshake

Serial-TX

handshake

STORE/SHIFT

mSERIAL2

CDR DLL

Des

AERout

32

clk

rclk

Serial-RX

handshake

rs

Vp

m
S

E
R

IA
L

1

Ser
Manchester

Encoder

Clock

Gen

reqIN

ackIN

AERin

32

Physical

LVDS

Driver

Physical

LVDS

Receiver

reqOUT

ackOUT

S
E

R
IA

L

CAPTURE

reqSER

ackSER

Input AER

handshake

Serial-TX

handshake

STORE/SHIFT

mSERIAL2

CDR DLL

Des

AERout

32

clk

rclk

rs

Vp

m
S

E
R

IA
L

1

(a)

(b)

a
c
k
S

E
R

tx

ackSer

gen

ackSERold

Serial-RX

handshake

Figure 5.3: Block Diagram of the bit serial AER LVDS link (a) already reported im-
plementation [123] (b) modification to handle the ON/OFF switching mechanism. Changes
from one implementation to another are highlighted.

Fig. 5.4(a) presents the AER protocol waveforms for the burst mode SerDes im-
plementation of Chapter 4. In this case, the transmitter sets a low level in reqSER
when new data is ready to transmit. If the receiver is ready to handle a new event,
it returns the acknowledge ackSER, enabling the transmission. Then reqSER returns
to a high level, the transmitter considers that handshaking transaction completed and
the receiver sets ackSER to high level while the bit-serial data transmission continues
until it finishes.

The protocol modification proposed is shown in Fig. 5.4(b). Keeping ackSER
at low level until bit-serial data transmission has finished provides a proper timing
reference for the driver/receiver to switch ON/OFF. This way, the driver and receiver
get activated when reqSER and ackSER have a falling edge, respectively, and are
disabled when a rising edge occurs at ackSER. The deserializer generates a pulse in
reqOUT when the event has been completely decoded and deserialized. Signal ackSER

102
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

reqSER

ackSER

Serial

Data

Start of data

transmission

Link

activation

End of data

transmission

(a) (b)

Figure 5.4: (a) AER protocol used in Chapter 4 (b) Modification for the switchable
version.

is deactivated afterwards to switch OFF the link until the arrival of the next event.

Fig. 5.3(b) shows the modifications introduced to handle the AER protocol modifi-
cation. Signal ackSER is generated by the new block ackSergen, which receives signal
reqSER and the original acknowledge generated by the Serial-RX handshake block ack-
SERold when the receiver can accept a new event. A falling edge at reqSER activates
the transmitter and the serial outputs evolve to a known logic value (zero in this case).
After a propagation delay, the request signal reqSER arrives at the receiver side, which
is also turned ON if it has resources to receive new data. One constraint is that the
high speed bit-serial signals must be stable at their zero value when the receiver is
activated. The propagation delay of the reqSER path must therefore be longer than
that of the high speed serial path. Signals reqSER and ackSER must be propagated
along two standard digital pads (one in the transmitter chip and the other in the re-
ceiver chip). If the driver is designed to recover from pauses with sub-bit delays, the
communication can be established without asynchronous hazards.

The receiver generates ackSER using the simple circuit shown in Fig. 5.5. The
deserializer generates a pulse in ackSERold when it detects that reqSER is at low level
and a new event can be processed. This pulse generates a reset for the falling edge
triggered flip-flop shown in Fig. 5.5, causing the activation of ackSER. This signal is
sent back to the transmitter and stays activated until a falling edge at reqOUT occurs.
At this point, the flip-flop is triggered and captures its input, which is tied to the
voltage supply. This makes ackSER return to high level and the link is turned OFF,
waiting for the next event.

5.4 Driver circuit 103

D Q

reqOUT

ackSER

ackSERold reqSER

ackSERold

ackSER

reqOUT

Figure 5.5: Circuit that generates ackSER active throughout the event transmission at
the receiver side, labeled “ackSergen” in Fig. 5.3(b).

5.4 Driver circuit

A typical push pull current mode transmitter acts as a current source with switched
polarity [108]. Output current flows through the load resistance, establishing the cor-
rect differential output voltage swing. MOS switches are used to change the output
current polarity depending on the transmitted logic level. Output common mode is
controlled by a feedback loop which senses it, compares it to a reference and acts over
the current sources. The high precision voltage reference is generated by a bandgap
circuit.

The main power consumption contribution in a current mode driver comes from
current sources. If a 350mV differential amplitude is desired and the load resistor is
typically 50Ω (two parallel 100Ω resistors located in the driver and receiver), current
sources of 7mA are needed. These current sources can be switched OFF during pauses
to save power. However, two design considerations must be taken into account to
achieve real burst mode operation:

• When the driver is switched OFF, output common mode must be retained until
the next transmission. If common-mode information is lost, it will take a longer
time to recover.

• The ON/OFF switching mechanism must be fast enough not to slow down the
event transmission rate. That is why very fast, low noise switchable current
sources are required to implement an efficient switchable link.

Fig. 5.6 shows the schematic of the proposed switchable current mode driver. Driver
input signals are the single ended bit-serial stream dataSer and the serial AER protocol
signals reqSER and ackSER. The “ON/OFF Controller” generates the differential ver-
sion of dataSer, labeled INVOA and INVOB, for the NMOS switches. It also generates
and drives the enable signal enTX which is active during event transmission to switch
ON the driver. This signal is the result of a NAND operation between reqSER and
ackSER. When the driver is enabled, bias voltages PBIAS and NBIAS are driven by
the CMFB (Common Mode Feedback) circuit. In this configuration, the driver works
in the same way as the classic non-switchable one [108] and output common mode is
controlled by the CMFB circuit. When the driver is disabled, voltages PBIAS and

104
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

Pull up/

down

circuit

Pull up/

down

circuit

CMFB

enTX

enTX

ON/OFF

Controller

INVOA

INVOB

reqSER

ackSER

dataSer

INVOA

INVOA INVOB

INVOB

Rs Rs

RL

Ip

In

 enTX

enTX

VREF

VREF

enTX

PBIAS

NBIAS

CMID

enTX

Drift

corrector

REFRESH

VREF

CMID

PBIAS1

NBIAS1

Mp

MN

B1

SW

Figure 5.6: Proposed switchable current mode driver.

NBIAS are pulled up or down switching OFF the current sources.
Resistors Rs = RL/2 ≈ 50Ω are used to terminate the transmission line impedance.

A double termination scheme with resistors at both transmitter and receiver sides is
used to improve impedance matching and reduce reflections which may deteriorate
signal integrity. The output common voltage is sensed by splitting the resistor 2Rs

into two elements. When the driver is active, block CMFB closes the loop and sets the
bandgap voltage VREF as output common mode. During pauses, a voltage buffer B1
directly forces VREF, but not through the feedback loop. As output currents are very
low during pauses, the buffer response time can be designed in the order of ms. Hence,
the buffer can be designed to have a very low static power consumption. The CMFB
circuit is always driven by a constant voltage at its input. Information contained in
PBIAS and NBIAS about the output common mode and the differential amplitude
is therefore maintained during pauses and immediately restored in the transmission
mode.

Fig. 5.7 shows the “ON/OFF Controller” schematics. This block generates the
enTX signal (Fig. 5.7(a)) when reqSER or ackSER are active at low level indicating
that a serial handshaking is being carried out. An intermediate level of logic disables
the switching operation when configuration signal SW is taking place. Moreover, the
“ON/OFF Controller” also adapts the rail-to-rail input signal to a differential format
compensating the lag between INVOA and INVOB with a dummy transmission gate,
as shown in Fig. 5.7(b). Tapered buffers B2 and B3 make it possible to maintain
a low input parasitic capacitance while providing enough driving capability to handle

5.4 Driver circuit 105

ackSER

REFRESH

reqSER

SW

SW

SW

enTX

enTX

INVOA

INVOB

dataSer

(a)

(b)

B2

B3

Figure 5.7: “ON/OFF Controller” schematics for (a) driver activation signal generation
and (b) input rail-to-rail serial stream handling.

the LVDS output switches.

Fig. 5.8(a) shows the schematics of the CMFB circuit used in this design. The
input differential pair compares a filtered version of the sensed common mode voltage
CMID against reference VREF. Current imbalance generated by the comparator is
mirrored to the driver current sources In and Ip with a gain K=100. If the feedback
loop is stable, the steady state will converge to a common mode equal to reference
VREF. The gain K is chosen high to keep the CMFB static current consumption much
lower than in the high speed path. Passive components Rc = 1.5KΩ and Cc = 9.6pF
introduce a low frequency compensation pole that ensures common mode control loop
stability. To achieve a differential amplitude at the driver load of Vod, the CMFB circuit
bias current must be

Ibias =
2Vod
KRL

(5.3)

The passive pull up/down circuits used in the design and their basic operation are
shown in Fig. 5.8(b) [116]. The dashed line component Cp represents the parasitic ca-
pacitor associated with the PMOS and NMOS transistor gate nodes. Design capacitors
Cpp are used to pull the gate voltage of the transistors up/down, drastically reducing
the transition times. When the driver is turned ON, gate voltages are imposed by
the CMFB circuit (VON voltages). When a pause starts, signals enTX and enTXnot
switch and there is charge redistribution between the parasitic capacitor Cp and the
design capacitor Cpp. This causes a change in the gate voltage that can be computed

106
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

CMID

 Ibias

VREF

vbias

NBIAS1

PBIAS1

Rc

Cc

(a) (b)

enTX

enTX

PMOS version

NMOS version

VON

VOFF

PBIAS

enTX

VON

VOFF

enTX

Cp

Cp

Cpp

Cpp

Mn

Mp

NBIAS

NBIAS

PBIAS

Figure 5.8: (a) CMFB circuit of Fig. 5.6 (b) Passive pull up/down circuits in Fig. 5.6

using the charge conservation equations before and after the switching

Q (tbefore) = (Cp + Cpp)VON (5.4)

Q (tafter) = CpVOFF + Cpp (VOFF − VDD) (5.5)

By applying the charge conservation principle (Q (tbefore) = Q (tafter)) the voltage
step is

|∆V | = |VON − VOFF | =
Cpp

Cp + Cpp
VDD (5.6)

Voltage step |∆V | can be adjusted through Cpp to control the OFF currents IOFF
at Mn and Mp preferably in the sub-threshold region to reduce static power. These
OFF currents are added to the bias currents of auxiliary blocks Iaux as static power
consumption during pauses, but the power efficiency is not compromised if these OFF
currents are one order of magnitude below Iaux. However, if the voltage step between
ON and OFF situations is reduced, the ON/OFF turning mechanism is faster and does
not suffer from current peaking. The trade-off between the turning ON speed (Trec)
and idle current consumption (IOFF) is shown in Fig. 5.9, versus Cpp for different
technology corners, obtained through simulation . We chose a 1.3pF for the PMOS
current source because no significant variation in IOFF can be observed for larger Cpp,
but speed is degraded as Cpp increases. The design capacitor for the NMOS counterpart,
determined following the same design procedure, is 0.5pF.

5.5 Receiver circuit 107

0.5 1 1.5
10

-2

10
-1

10
0

10
1

10
2

10
3

C
pp

 (pF)

I O
F

F
 (

µ
 A

)

Typical corner

Fast corner

Slow corner

0.5 1 1.5 2

200

400

600

C
pp

 (pF)

T
re

c
 (

p
s
)

Typical corner

Fast corner

Slow corner

Figure 5.9: Trade-off between switching time after pauses and current consumption when
the driver is turned OFF in the PMOS current source. Cpp is the design variable in both
cases. Typical, fast and slow corners are represented.

During pauses, gate voltages NBIAS and PBIAS in Fig. 5.6 and Fig. 5.8(b) are left
floating and suffer drift through leakage currents. This can make the OFF currents at
MN and MP becoming excessively large, increasing static power and making it difficult
for buffer B1 to keep the common mode voltage VREF at CMID (because of mismatch
between OFF currents at MN and MP). To avoid such situations the “Drift Corrector”
block (see Fig. 5.6) detailed in Fig. 5.10 is added. It is a window comparator composed
of two asymmetric comparators and an XNOR gate.

The circuit generates an activation pulse blue at signal REFRESH (see Fig. 5.6)
whenever the output common mode leaves the comparator window ∆Vcomp. This pulse
will cause another one in the enTX signal to activate the driver. The pull up/down
circuit will refresh the gate voltages at MN and MP driving them to their OFF currents.
The driver will remain activated until the output common mode enters the comparison
window.

5.5 Receiver circuit

The conventional LVDS receiver [108] uses a current to voltage conversion with a
termination resistor. This voltage is processed by a continuous time preamplifier and a
rail to rail comparator to provide a proper output for the deserializer circuit, as shown
in Fig. 5.11. The last stage is usually a hysteresis comparator to avoid output glitches
due to input noise. The implemented hysteresis comparator, shown in Fig. 5.11(c),

108
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

REFRESH

Vo

Vi

Vo

Vi

Asymmetric

current mirror

CMID

VREF

Vo

Vi

ΔVcomp

Figure 5.10: “Drift Corrector” circuit in Fig. 5.6 that detects drifts in the output common
mode during pauses.

uses a positive feedback loop to achieve enough gain and speed to convert the low
amplitude signal into a rail-to-rail signal. Hysteresis range can be controlled by the
aspect ratios of the PMOS transistors as:

∆Vhys =
2 (
√
α− 1)√

1 + α

√
2Ib

µnCox (W/L)IN
(5.7)

where α = (W/L)5/(W/L)3. A ∆Vhys = 130mV was chosen in this design.
However, the input common-mode range of this hysteresis comparator is limited,

to keep the differential pair and feedback loop transistors in saturation. A preamplifier
can be added at the comparator input to increase the common-mode range and relax
its specifications, as shown in Fig. 5.11(a). Fig. 5.11(b) shows the preamplifier circuit.
Its folded-cascode configuration enables a large gain-bandwidth product independent of
the input common mode. The PMOS input differential pair output is set to a low DC
voltage via the folded cascode structure to increase the input common mode range.
Moreover, the internal node of the cascode configuration provides a low impedance
output node which pushes the internal pole to high frequencies. The output stage load
resistors determine the gain, output common-mode and bandwidth of the pre-amplifier,

Vout,CM = VDD −R
(
Ib2 −

Ib1
2

)
(5.8)

Gain = −gm,INR (5.9)

The use of a wide input common mode range preamplifier allows lower aspect
ratio devices for the comparator input stage and preamplifier load capacitance can be
minimized. This reduces the resistors’ impact on the frequency response, pushing the

5.6 Experimental results 109

(a)

(b)

OUT

LVDS

input

R R

 Ib1

vb1

vb2

Min
vinposvinneg

Ib2

 Ib2

v
o
u
tn

eg

v
o
u
tp

o
s

ackSER

vb

ackSER

ackSER

vbcomp

voutposvoutneg
Min

 Ib

ackSER

OUT

(c)

M5M3 M3

vinneg

vinpos voutpos

voutneg

Figure 5.11: (a) Receiver architecture (b) Preamplifier (c) Hysteresis comparator

output pole to higher frequencies. For this design, with Ib1 = 2.2mA and Ib2 = 2mA,
a 1.2 KΩ resistor was chosen.

The receiver power consumption is mainly due to the bias currents of cascaded
blocks in Fig. 5.11(a). These two circuits are not needed during the pauses if the
comparator output is forced to have a constant value (zero in this design). Bias currents
can therefore be disabled during pauses. A low level in the ackSER signal switches the
receiver ON. The switches encircled with dashed lines in Fig. 5.11 are used to turn
OFF the bias currents during pauses. These switches have been designed to enable very
fast transitions of relatively high bias currents while maintaining a low ON resistance.
A large current passes through these switches during regular operation and the voltage
drop can affect the tail current source saturation.

5.6 Experimental results

A proof of concept prototype of the switchable serial AER link has been fabricated
in 3.3V 0.35µm CMOS. All the components described in this Chapter were integrated
as custom-made pads with ESD protections, ground and supply voltage decoupling
capacitors and the analog circuit biasing resources. The current mode driver pad
needs a 370x395µm2 area, while the receiver pad area is 270x340µm2. Fig. 5.12
shows a microphotograph of the test chip where the main parts have been highlighted.

110
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

Driver Rec

Bandgap

VCO

Ser Des

Figure 5.12: Microphotograph of fabricated test prototype.

The bandgap circuit is used to generate a stable, PVT independent common mode
voltage and bias currents. A stand-alone VCO (Voltage Controlled Oscillator) is used to
generate the master transmission frequency in a programmable way. The test channel
used in the experiments comprised a pair of PCB traces forming a 100Ω differential
microstrip line of 5cm length. The test set-up used in the experiments is identical to
that of the event-driven SerDes described in Chapter 4 and it is repeated here in Fig.
5.13(a) for convenience. A photograph of this set-up is shown in Fig. 5.13(b).

Fig. 5.14 presents the measured AER handshake protocol signals at (a) the trans-
mitter parallel input (reqIN, ackIN), (b) the serial interface (reqSER, ackSER) and (c)
the receiver parallel output (reqOUT, ackOUT). When a new 32-bit event is ready to
be transmitted, the CPLD receives the request signals from the USB-AER boards and
activates reqIN. This action indicates to the serial AER transmitter that it must latch
the event and respond with an acknowledge ackIN to the USB-AER sender boards.
The delay between reqIN and ackIN is 15ns for a 500MHz transmission master clock.
The ackIN remains active during 68ns, corresponding to the 34 clock cycles required for
the serialization process [123]. While the channel is busy with an event, the transmitter
stops the sender side by keeping ackIN at low level.

Serial AER signals reqSER and ackSER are used to provide the timing information
to switch the high speed serial driver and receiver ON and OFF. Before starting with a
new event serial transmission, reqSER is activated and the receiver acknowledges with
ackSER if it can handle a new event. The delay in the serial handshaking protocol

5.6 Experimental results 111

TX RX

Serial AER link test
board

USB-AER sender1

USB-AER sender2 USB-AER receiver2

USB-AER receiver1

USB-AER

board

16 bits

AER

bus

CPLD

Serial

TX

reqIN

req1

req2

ack1

ack2

ackOUT

Serial

RX
ackIN

reqOUT

USB-AER

board

16 bits

AER

bus

USB-AER

board

16 bits

AER

bus
USB-AER

board

16 bits

AER

bus

reqSer

ackSer

CPLD

(a)

(b)

Figure 5.13: Test set-up to generate a 32 bit AER pattern.

is 6.6ns. The main difference between this implementation and the one described in
Chapter 4 is the duration of the ackSER activation. In this switchable implementation,
ackSER is kept active until the whole event bit data have been transmitted: 82ns for
the 500Mbps bit rate. When the event is properly recovered from the input serial
stream, the output AER interface communicates it to the receiving USB-AER boards.
The 24ns delay between signals reqOUT and ackOUT is due to the USB-AER board
logic and the extra latency introduced by the CPLD operation.

Fig. 5.15 shows the measured differential mode of the serial signal at the receiver
input. An Agilent DSO81304B Infinium oscilloscope with 5GHz bandwidth probes was
used for this measurement. The bit rate was set to 500Mbps and the event rate was
configured to be 4.7Mevent/s. The ON and OFF switching times are 1ns (less than
the bit time). Compared to the duration of the whole event transmission, these times
are negligible and do not compromise the serial link latency or maximum event rate.
The differential amplitude obtained is 350mV. Fig. 5.16 shows the eye diagram for the
Manchester encoded stream measured at the receiver input. A 43ps of rms jitter was
measured, very similar to the values measured in Chapter 4 where a non-switchable
driver [108] was used. This suggests that the introduction of the switching mechanism

112
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(a)

A
E

R
 i
n

 (
V

)

0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(b)

s
e

ri
a

l
A

E
R

 (
V

)

0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(c)

A
E

R
 o

u
t
(V

)

0.1 0.2 0.3 0.4 0.5 0.6
-0.5

0

0.5

(d)

L
V

D
S

 (
V

)

Figure 5.14: AER protocol management at (a) reqIN (dotted line) and ackIN (continu-
ous line) signals (b) reqSER (dotted line) and ackSER (continuous line) signals (c) reqOUT
(dotted line) and ackOUT (continuous line) signals (d) differential mode of the LVDS signal.
Time scale is µs

does not limit the jitter of the whole link.

The maximum event rate can be obtained by shorting the reqOUT and ackOUT sig-
nals and measuring the input to output request delay. For the 500MHz clock frequency,
the maximum achievable event rate is 11Mevent/s, corresponding to a 92ns latency.
The link operation tolerates a wide range of transmission frequencies, continuously
tunable using the on-chip VCO. For the maximum frequency operation, corresponding
to a 710MHz master clock, a 66ns input to output request latency was measured. This
leads to a maximum event rate of 15Mevent/s. This is also the maximum event rate we
reported previously [123] using the non-switchable driver [108]. Consequently, using
the presented switchable driver/receiver pair does not introduce any delay penalty, but
does introduce important rate-dependent power savings.

Fig. 5.17 shows how the power consumption of the switchable link scales down with
event rate. The high speed circuitry can be programmed to switch the bias currents
or not, thus allowing a fair comparison between both situations. If the switching
mechanism is deactivated, a roughly constant driver current consumption of 7.5mA
is obtained for all the event rates. In the receiver side, current consumption ranges

5.6 Experimental results 113

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.4

-0.2

0

0.2

0.4

0.6
V

o
lt
a

g
e

(V
)

Time (µs)

0 20 40 60 80 100 120 140 160 180 200

-0.4

-0.2

0

0.2

0.4

0.6

V
o

lt
a

g
e

(V
)

Time(ns)

Figure 5.15: Measured high speed serial signal at the receiver input for the current-mode
driver with two different horizontal time scales.

Figure 5.16: Eye diagram for the current-mode driver at receiver input.

114
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

10
2

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12

Event rate (event/s)

C
u

rr
e

n
t
c
o

n
s
u

m
p

ti
o

n
 (

m
A

)

Switched driver

Switched receiver

Regular driver

Regular Receiver

Figure 5.17: Current-mode switchable driver and receiver current consumption versus
event rate.

from 9.6 to 8.4mA for the maximum and minimum event rate situations, respectively.
When the switching mechanism is activated, the maximum receiver and driver power
consumptions are almost the same because the circuits stay turned ON for most of
the time. However, current consumption decreases with event rate. The driver and
receiver current consumption curves saturate at 270µA and 570µA, respectively. These
values correspond to the quiescent current consumption of the I/O circuitry when the
link is switched OFF. The receiver idle current is high due to the non-optimum biasing
circuits for the preamplifier and hysteresis comparator. However, this current can be
dramatically reduced if an optimized low power biasing circuit is used for the receiver.

Testing the circuit that detects drifts in the output common mode during pauses can
be cumbersome if we let the leakage currents charge/discharge the driver internal nodes.
This approach will require several hours of observation and a sophisticated test set up.
To speed up the common mode drift effect, we introduced extra spurious currents in
the differential output lines using the set up shown in Fig. 5.18(a). The oscilloscope
differential probe introduces a common mode resistor between the differential lines and
ground which draws a current proportional to the output common mode. This current
is larger than the common mode retain buffer bias. In this scenario, buffer B1 (see Fig.
5.6) fails at controlling the common mode and the resulting dynamics can be observed
in Fig. 5.18(b) by the action of the drift correction circuit of Fig. 5.10. When the
common mode correction circuit detects the drift from the nominal value, it fires a
refresh pulse and the driver is activated. As the CMFB circuit keeps the information
about the steady state of the control loop, the output common mode is immediately
recovered. When the driver is turned OFF again, the common mode drifts again. This
effect allows us to test the common mode refresh circuit without waiting hours for

5.7 Conclusion 115

Table 5.1: Performance comparison with other LVDS drivers
[117] [116] [108] [118] [120] [119] This work

Technology 0.35µm 0.35µm 0.35µm 0.18µm 0.18µm SiGe 0.35µm

SiGe CMOS CMOS CMOS CMOS BiCMOS CMOS

BiCMOS

ft (GHz) 50 15 15 120 120 100 15

Supply Voltage(V) 1.7-3.5 1.8 1.8 3.3 1.9 1.8 0.5 2.5 3.3

Diff Amp (mV) 265-300 340 340 412 200-430 450 250 400 350

Bit Rate (Gbps) 1-2 1.4 1.2 1.2 2.5 3.5 3 10 1.42

Bit Rate / ft 0.02-0.04 0.09 0.08 0.08 0.02 0.03 0.025 0.025 0.095

Area (mm2) 0.068 0.11 0.14 0.2 0.07 0.04 0.02 N/A 0.15

Area (Mλ2) 2.22 3.59 4.57 2.61 2.47 3.58 3.10 N/A 3.10

Īmax (mA) 6-7 12.8 7.1 13 2.5-4.8 7.6 2.5 6.25 7.5

Īmin (mA) 6-7 12.8 7.1 13 2.5-4.8 7.6 2.5 6.25 0.27

current source gate voltage charging/discharging due to leakage currents. As can be
seen the comparator window (see Fig. 5.10) has a value of ∆Vcomp = 0.290V and the
comparator response time is 153ns.

Table I shows a comparison with state of the art LVDS drivers. This implementation
is comparable in terms of data rate, layout area and differential mode amplitude with
similar works, but it is the only one which scales power consumption with event rate.
Īmax corresponds to the current consumption when the link is continuously transmitting
data and Īmin is for the minimum activity situation. The maximum physical bit rate
(for T = Tev) for this work is 1.42Gbps, which corresponds to twice the transmitted
data bit rate of 0.71Gbps because of the Manchester encoding used in the SerDes
circuits.1

5.7 Conclusion

In this Chapter, we have described the design of a current mode switchable driver and
receiver circuit pair intended to be used in high speed serial AER links. In this imple-
mentation, turning on/off the I/O circuits during pauses allows power consumption to
be scaled with the transmitted event rate. A proof of concept prototype was fabricated
in standard 0.35µm CMOS along with SerDes circuits discussed previously in Chapter
4. The driver realization achieves a factor of 30 in terms of current consumption saving
compared with non-switchable solutions. The receiver current saving factor is 17, but
this can be improved by reducing the static power consumption associated with the bi-
asing circuits. Due to the high speed mechanisms applied to switch the driver/receiver
current sources, the link is able to settle within its nominal values in 1ns. This way,
the power saving is achieved without trading off against the link maximum event rate.

1References [108], [116], [118] and [120] in Table I do not disclose the ft of the technology used.
This number has been estimated from other similar technologies.

116
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

The static power consumption reduction is clear from the experimental results pro-
vided in this Chapter. The question from this point on is: can the power consumption
in the transmission mode be further reduced to increase the link energy efficiency? The
next Chapter addresses this problem by proposing a voltage mode approach for the
I/O circuits. Due to their impedance termination scheme, voltage mode circuits enable
a potential reduction in terms of power consumption compared to the current mode
circuitry. The power saving effect in the transmission mode and switching mechanisms
to disable the static current consumption in pauses could be combined to obtain a more
power efficient implementation.

5.7 Conclusion 117

Driver

100Ω

100Ω

Receiver

Rdiff

Rcm

RcmOscilloscope

probe model

Rdiff >> 50Ω

Rcm ~ 25KΩ

(a)

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

Time(µs)

D
if
f
m

o
d

e
 (

V
)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

Time(µs)

C
o

m
m

o
n

 m
o

d
e

 (
V

)

∆ V
comp

 = 290mV

T
comp

(b)

Figure 5.18: (a) Load model for the oscilloscope differential probe (b) Output common
mode and differential mode waveforms when the driver is loaded with probe.

118
Current Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

6
Voltage Mode Switchable I/O Circuitry for

Low Power Serial Transmission of AER
Streams

6.1 Introduction

As it was shown in the previous Chapter, switching off the high speed circuitry during
pauses is an efficient power saving technique for asynchronous AER serial links. A
current mode implementation of the switchable link was discussed with a push/pull
driver example. Although the current mode approach is the preferred by the industry,
there are other techniques than, in certain environments and transmission channels,
can be more power efficient. Voltage mode implementations, where there are no large
current sources which must be switched on/off with sharp rising and falling edges, are
a very suitable option to further improve the energy efficiency of the serial AER link.

A voltage mode implementation of the circuitry presented in Chapter 5 will be
the matter of the subsequent sections. First of all, advantages and disadvantages of a
voltage mode realization compared to a current mode realization will be discussed. In
this first Section, the range of applications for each solution in the framework of large
scale spiking neural networks will be analyzed. The next Section will be devoted to
the link design techniques developed to obtain the desired behavior, focusing on the
impedance matching and the power management. Experimental results of a 0.35µm
CMOS prototype of the voltage mode circuitry integrated with the event-driven SerDes
described in Chapter 4 are also provided to validate the proposed approach.

119

120
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

I

2R
R R

I=
Vdiff

R

2R

I=
Vdiff

2R

R

R

Vs

Vs

(b)

RT

(a)

RT

Vdiff

Vdiff

0

01

1
1

1

0

0

Figure 6.1: Comparison between current-mode (a) and voltage-mode (b) termination
schemes. Vdiff is the differential output amplitude and I is the bias current needed to achieve
this amplitude.

6.2 Voltage Mode versus current mode drivers

In current mode LVDS drivers a large constant stabilized current of several mA is fed to
the differential transmission line termination resistor [108, 116]. Switches are included
to change the polarity of the termination resistor (see Fig. 6.1(a)) to transmit a ‘0’ or
‘1’, but the source current is always constant. Switching OFF this huge current during
inter-event pauses and back ON quickly is not trivial, because achieving nano second
delays together with stabilized behaviour requires special driver sophistication. On the
other hand, voltage mode drivers switch a constant voltage through the differential
transmission line termination resistor. For this, the driver uses power transistors that
operate as switches (see Fig. 6.1(b)). The current path can therefore easily be shorted
and driver static power consumption could be minimized by simply turning OFF these
power switches. Besides the ease of ON/OFF switching, Fig. 6.1 shows how the
termination scheme used in voltage mode drivers requires two times less current flowing
through the driver for a desired differential output amplitude Vdiff . On the other hand,
lower supply voltages can be used for voltage mode drivers due to their low common
mode and low swing requirements. However, voltage mode drivers do require a pre-
driver circuit to properly drive the power switches, and real power consumption is also
influenced by pre-driver power.

In current-mode approaches, using AC coupling and a matched channel, it is pos-
sible to transmit data over several meters of cable length. On the other hand, voltage-
mode drivers are intended to be used in short-haul interconnect while dissipating lower
power [124]. Current-mode drivers are also more robust against supply noise and
ground bounce due to the use of matched current sources to generate the output cur-
rent. In voltage-mode implementations, the noise coupled into supply voltage or ground
directly impacts on the output because there is a direct connection between those nodes.

While impedance matching is easy in current-mode drivers, it is an important issue
in voltage mode circuits. In these solutions, the switch resistance is used to match the

6.3 Driver circuit 121

channel characteristic impedance. As this parameter is severely affected by temperature
and process variations, some kind of calibration is required to keep reflections and
differential output amplitude within the target values. Some published solutions use
an additional control loop to tune the driver characteristic [124]-[125]. However, the
extra loop requires significant static power. Other methods digitally tune the output
differential amplitude [120], allowing the information to be stored in digital registers,
and thus reducing static power consumption.

In this Chapter we decided to develop a voltage mode solution due to the poten-
tial reduction in dynamic power consumption and the simple implementation of the
ON/OFF switching circuitry. Moreover, the inter-chip communication links are short
in the system level design presented in Chapter 3 for a network on board solution,
and this questions the possible advantage of a current mode link in terms of speed
and signal integrity. However, impedance matching and driver and pre-driver supply
voltage generation must be carefully designed to exploit the theoretical advantages of
the voltage mode implementation.

6.3 Driver circuit

Fig. 6.2 shows a top level description of the proposed switchable voltage mode driver.
Signals INPOS and INNEG are provided by the serializer circuit and contain the event
information that must be transmitted. These rail to rail digital signals are processed
by a two stage pre-driver designed to drive the high capacitive load at the driver
input, while presenting a low input capacitance. This block also performs the task
of switching OFF the transmitter operation when there is no data to be transmitted.
Signal en enables the pre-driver operation when reqSER or ackSER signals are at low
level, indicating an event transmission.

The matching of the transmission line impedance at the transmitter side is essential
to ensure good signal integrity. In voltage mode implementations, the output differen-
tial voltage is created by switching a constant voltage across the termination resistor.
In this design, the switching transistors are also used to match the line impedance.
After analyzing the circuit in Fig. 6.1-(b), it can be stated that the impedance match-
ing condition is achieved when the serial resistance of the switches used to create the
output swing is equal to the receiver termination resistor. If this condition is satisfied,
the differential amplitude is Vs/2, where Vs is the driver supply voltage. A dedicated
calibration circuit to compensate the process variations is included to tune the driver
termination impedance by measuring the output differential amplitude. Vs is generated
by an internally compensated regulator which sets a constant value for this voltage and
allows a very sharp switching of the supply current without compromising the regulated
voltage transient response.

Fig. 6.3 shows the schematics of a low swing voltage mode pre-driver/driver using
only NMOS transistors M1-M4 for line termination purposes. The desired differential
output amplitude Vdiff is generated at RT by setting Vs = 2Vdiff . RT in Fig. 6.3 ac-
counts for the off-chip resistive components (transmission line and receiver impedance

122
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

Driver

Vs Wcal

Pre-

Driver

INPOS

INNEG

en

Calibration

circuit

16

reset

Regulator

vdd3v3

2

2

OUTp

OUTn

reqSERackSER

Vref

Figure 6.2: Top level description of proposed switchable voltage mode driver.

termination). The two R resistors in Fig. 6.1-(b) account for the on-chip termination
resistance provided by transistors Mi. Impedance matching is digitally controlled by
adjusting the width of M3-M4, using unitary transistors of (4.5/0.35) µm activated by
(4.5/0.35) µm switches. Upper termination transistors M1-M2 are fixed-width transis-
tors with (80/0.35) µm aspect ratio. This asymmetric control makes the calibration
loop simple, but the output common mode is not tuned. This implementation uses a 16
bit thermometric control for the impedance. Post-layout Montecarlo simulations with
mismatch and process variations show that this number of bits is sufficient to limit
the output differential amplitude error to within 7% of 3-σ error. The same analysis
revealed 3-σ error of 25% from the nominal value of 600mV for the output common
mode.

A tri-state pre-driver is used to switch OFF the driver during pauses. During
regular operation, pre-driver inverters are not at high impedance and driver transistor
gates are forced to proper values. During pauses, these inverters are tri-stated, with
M3-M4 open and M1-M2 closed. In this situation, no static current flows through the
termination resistor as the output terminals are both tied to Vs. Hence, the overall
driver consumption is reduced to the pA range, corresponding to auxiliary digital circuit
leakage currents.

Fig. 6.4 shows a system level description of the calibration circuit used to achieve
impedance matching. A comparator senses the output differential mode and compares
it to an internal reference. The presence of RT is required during calibration to take
into account all the resistive components in the signal path that contribute to the final
differential amplitude. A digital controller analyzes this information to act on a shift
register which stores the impedance control thermometric code. This code activates
a number of fingers in the digitally programmable transistors to control the output
differential amplitude. The calibration algorithm starts by setting the calibration word

6.4 Power management for switching drivers 123

Vs

RT

Vdd Vdd

VddVdd

INPOS

INNEG INPOS

INNEG

enn

en

en

enn

enn

enen

enn
en

enn

enn

en

Wcal 16

Digitally

controlled

transistors

OUTnOUTp

M1 M2

M3 M4

Pre-driver

Vdd Vdd

Figure 6.3: Proposed Voltage-Mode driver and Pre-Driver circuits.

to the minimum switch resistance situation (all the fingers disabled). At every calibra-
tion step, the differential amplitude is compared with the reference and the calibration
word shifted if the amplitude is lower than the target. The process stops when the
programmed differential amplitude is detected to be higher than the target and this is
considered as the optimum calibration word.

Fig. 6.5 shows the schematics of the proposed differential mode comparator. Two
source degenerated differential pairs are used to compare differential amplitudes which
may be in the order of 500mV. Amplitudes in this range need to be processed by a
highly linear differential pair to generate currents proportional to the target differential
amplitude without saturation. The currents generated by the input stage are combined
through current mirrors in order to produce an output current proportional to the
difference between a reference differential amplitude and the programmed amplitude.
A resistor divider is used to generate precise internal references. All static power
consumption is eliminated when the driver is not being calibrated using an enable
switch.

6.4 Power management for switching drivers

The driver requires the output current to switch from the mA range during regular
transmission to the nA range during pauses. Furthermore, instantaneous current pulses
supplied by Vs must be very sharp for a high speed switching operation. Typical voltage
regulators using a low frequency dominant pole for loop stability are not able to react

124
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

en

Shift

Register

Driver

out

Vs

Digital

Controller

Wcal

sample

Diff Mode

comparator

COMP

Vs

Calibration circuit

Driver under

calibration

reset

Vp

Vn

Figure 6.4: Calibration circuit system level description.

at the speed demanded by the required instantaneous output current. A large external
capacitor is used to compensate the loop and provide the needed charge packets during
transients. Even if the load is not demanding current, the regulator power transistor
can draw several mA due to the loop dynamics.

Internally compensated regulators do not employ this large output capacitor. The
dominant pole is located in an internal node and the relatively small output capacitor
cannot be efficiently used to provide instantaneous output current pulses. These kinds
of regulators require internal transient response compensation in order to achieve sim-
ilar specifications as externally compensated regulators. However, they allow the pass
transistor current to change at the same speed as the output current. Fig. 6.6(a) shows
the regulator schematics used in this work to generate the driver voltage supply Vs.

Several design techniques have been used to combine internal compensation with
good transient response. Stability is achieved using a two stage amplifier with a Miller
compensation capacitor Cc. This capacitor splits the dominant amplifier internal pole
and the output pole, improving the system phase margin. The pass element is built
with a source follower because no low drop-out is required as Vs < 1V is well below
Vdd = 3.3V . If output voltage increases, NMOS overdrive is reduced and output current
is lowered. Otherwise, the loop acts in the opposite way, increasing the output current.
Using an NMOS transistor as pass element helps stability because Vs is a low impedance
node and the output pole is pushed to high frequencies.

A fast feedback path between the output node and the pass transistor gate is
implemented to reinforce the transient compensation and improve the regulator slew
rate. The compensation circuit is based on differentiating the output voltage Vs and
generating a current that is injected or subtracted from the pass transistor gate node
Vgate. If a positive voltage variation at Vs is detected, then the current drawn by the

6.5 Receiver circuit 125

vbias

vcasc

en

VpVn

Vlow Vhigh

OUT

Vs

en

R1

R2

R3

Vlow

Vhigh

Figure 6.5: Differential mode comparator circuit.

pass transistor is excessive for the current load conditions and its gate voltage must be
decreased by subtracting current from Vgate; that current is instantaneously provided
by the N-type transistor of the fast feedback path. A negative slope in Vs means
that the load is demanding current that the regulator cannot provide. Thus, the fast
feedback path injects current in Vgate to increase the pass transistor driving capabilities
and improve the response time to the change in the load conditions.

This extra loop may impact stability by pushing the output pole to lower frequen-
cies, degrading the phase margin. The transient compensation has therefore been
carefully designed, since there is a trade-off between stability and transient response to
variations in the load conditions. Montecarlo simulations with process and mismatch
variations for the worst case scenario for stability (no load) reveal a 62o mean phase
margin with 1.2o of 1-σ variation, demonstrating the robustness of the employed design
procedure.

6.5 Receiver circuit

The common mode generated by the calibration circuit is not well controlled as only one
branch is implemented as a digitally controllable transistor. Moreover, the reference
voltage Vs is around 1V, leading to a low output common mode for a 3.3V voltage
supply. The receiver front-end must therefore be implemented with PMOS transistors
and input common mode range must be optimized. This must be combined with
techniques for quickly turning the bias currents ON/OFF.

The receiver circuit is shown in Fig. 6.7. It uses the same two-stage architecture
than the receiver proposed for the current mode solution described in Chapter 5. The
pre-amplifier has been optimized for processing a very low common mode. DC voltages
at the PMOS differential pair output are set low enough to enlarge input common mode
range. This allows to amplify the low common mode signal generated by the transmitter

126
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

Vs

Vref

vbias

Vs

Vgate

V
g

a
te

Co

Cc

Cd

R

R

IbFF

(a) (b)

Fast feedback

path

IbFF

Cd

Figure 6.6: (a) Regulator circuit with internal compensation and NMOS pass transistor
(b) Fast feedback path used for transient response compensation.

and adapting the common mode to the next stage. A rail-to-rail version of the serial
signal is obtained using a continuous time comparator, whose design constraints are
alleviated due to the first amplification and adaptation stage.

Receiver power consumption is mainly due to preamplifier and comparator bias
currents. However, these two circuits are not needed during pauses if the comparator
output is forced to have a constant value (zero in this design). Their bias currents
can therefore be disabled during pauses. Signal ackSER is used to switch the receiver
ON/OFF, as it has been done in the current mode version. The switches marked with
dashed lines in Fig. 6.7 are used to turn OFF the bias currents in the OFF state.

6.6 Experimental results

A test prototype for the switchable I/O circuits was fabricated in 3.3V 0.35µm CMOS.
All the components described in this Chapter were integrated as custom-made pads
with ESD protections, along with ground and supply voltage decoupling capacitors and
a circuit providing the analog biases. The voltage mode driver needed a 530x490µm2

area, while the receiver took 270x341µm2. Fig. 6.8 shows a microphotograph of
the fabricated chip, the main parts of which have been highlighted. The serial AER
Manchester-encoding SerDes circuit [123] handles the parallel AER flow and creates
the proper signals for the driver/receiver pair. The transmission channel consists of
a pair of PCB traces forming a 100Ω differential microstrip line 5cm long. The test
set-up is exactly the same used for the current mode prototypes as both chips were
designed to be assembled in the same PCB.

Fig. 6.9 shows how the AER protocol signals flow through the voltage mode serial
link for a 500Mbps bit rate. The delay between reqIN and ackIN at the input par-
allel AER interface is 15ns and the serialization process duration is 68ns. The serial

6.6 Experimental results 127

(a)

(b)

OUT
LVDS

input

R R

 Ib1

vb1

vb2

Min
vinposvinneg

Ib2 Ib2

v
o
u
tn

eg

v
o
u
tp

o
s

ackSER

vb

ackSER

ackSER

vbcomp

voutposvoutneg
Min

 Ib

ackSER

OUT

(c)

Figure 6.7: (a) Receiver architecture (b) Preamplifier (c) Continuous time comparator.

Driver Rec

VCO
Ser Des

Figure 6.8: Microphotograph of the test chip.

128
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(a)

A
E

R
 i
n

 (
V

)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(b)

s
e

ri
a

l
A

E
R

 (
V

)

0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

(c)

A
E

R
 o

u
t
(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.5

0

0.5

(d)

L
V

D
S

 (
V

)

Figure 6.9: AER protocol management at (a) reqIN (dotted line) and ackIN (continu-
ous line) signals (b) reqSER (dotted line) and ackSER (continuous line) signals (c) reqOUT
(dotted line) and ackOUT (continuous line) signals (d) differential mode of the LVDS signal.
Time scale is µs

handshaking protocol introduces a delay of 4.6ns between the reqSER and ackSER and
the acknowledge stays activated for 81ns. The output handshaking protocol with the
USB-AER test boards introduces a delay of 23ns. For a 500Mbps bit rate, an input
to output request latency of 89ns is measured, leading to a maximum event rate of
11.2Mevent/s.

Fig. 6.10 shows the differential mode of the high speed bit stream at the receiver
input. Waveforms were acquired with the Agilent DSO81304B Infinium oscilloscope
with 5GHz bandwidth probes. The bit rate is set to 500Mbps and a 5Mevent/s 32 bit
event rate stream is generated with the USB-AER boards. The differential amplitude
measured after calibration is 520mV, which represents a 4% error with respect to the
target amplitude of 500mV (Vs = 1V). Switching ON time is 1.5ns, while the switching
OFF time is 7ns. The latter was made longer to minimize the voltage drop observed in
the regulator when the output current is switched from maximum to minimum values.
Fig. 6.11 shows the eye diagram measured at the receiver input. A 40ps of rms jitter
was obtained for this implementation, very similar to the value reported previously
[123] with the conventional non-switchable LVDS driver [108].

6.6 Experimental results 129

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.5

0

0.5

V
o

lt
a

g
e

(V
)

Time (µs)

0 20 40 60 80 100 120 140 160

-0.5

0

0.5

V
o

lt
a

g
e

(V
)

Time(ns)

Figure 6.10: Measured high speed serial signal at receiver input for the voltage mode
driver.

Figure 6.11: Eye diagram for the voltage mode driver at receiver input.

130
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

10
2

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6

7

8

9

10

Event rate (event/s)

C
u

rr
e

n
t
c
o

n
s
u

m
p

ti
o

n
 (

m
A

)

Switched driver

Switched receiver

Regular driver

Regular Receiver

Figure 6.12: Voltage-mode switchable driver and receiver current consumption versus
event rate.

Transmission frequency was varied by tuning the on-chip high frequency VCO (Volt-
age Controlled Oscillator) to achieve the maximum event rate. In this case, the link
worked correctly at a maximum bit rate of 638Mbps, with an input to output request
latency of 73ns. This reveals that the maximum achievable event rate combining the
burst mode SerDes architecture proposed previously [123] with the switchable I/O
circuitry presented in this Chapter is 13.7Mevent/s.

Fig. 6.12 shows the current consumption dependence with the event rate for the case
Vs = 1V . Current consumption scales down with the event rate, reaching a minimum
of 343µA for the driver and 62.5µA for the receiver when the link operates below
10Kevent/s. The test chip has a control bit which disables the switching mechanism
resulting in a conventional voltage mode link. If the circuits are configured to not switch
OFF during pauses, current consumption for the minimum event rate is 5.5mA and
7.1mA for the driver and receiver, respectively. In the maximum event rate situation,
driver and receiver stay turned ON most of the time and current consumption is the
same for the switching and non-switching implementations. This maximum current
consumption is 7.7mA for the driver and 8.2mA for the receiver.

The lower current consumption is due to the regulator quiescent current. Decreas-
ing this current leads to a larger gap in the pass transistor gate voltage for ON and
OFF situations. This trades off with the regulator transient response because compen-
sation circuits have to be faster in charging/discharging the pass transistor gate node.
However, this problem can be alleviated in more advanced technologies which enable
a faster regulator step response without compromising stability.

Differential amplitude is controllable through an off-chip analog bias voltage. Power

6.6 Experimental results 131

10
2

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

6

7

8

Event rate (event/s)

C
u
rr

e
n
t

c
o
n
s
u
m

p
ti
o
n
 (

m
A

)

Switched driver V
s
=1V

Regular driver V
s
=1V

Switched driver V
s
=0.8V

Regular driver V
s
=0.8V

Switched driver V
s
=0.6V

Regular driver V
s
=0.6V

Switched driver V
s
=0.4V

Regular driver V
s
=0.4V

Figure 6.13: Voltage-mode switchable driver and receiver current consumption versus
event rate for different Vs voltages.

consumption while transmitting events is proportional to the differential amplitude de-
fined by Vs. The amplitude control calibration loop selects the optimum calibration
word to achieve the required driver switches resistance and have a Vs/2 amplitude. Fig.
6.13 shows how the selected differential amplitude affects driver current consumption.
Current consumption for higher event rates can be reduced by setting a lower ampli-
tude, but it remains roughly constant for very low event rates. In this situation, current
consumption is not given by the current delivered to the load, but by the regulator
quiescent current.

Table 6.1 compares between voltage mode implementations of high speed drivers
reported in literature. Two figures of merit are provided in an attempt to perform
a fair design-based comparison. The first is FoM1 = (Vdd/Pmax) × VAMP , which is
proportional to the differential voltage amplitude on the transmission line over total
driver current consumption. The second multiplies the first by factor BR/ft (BR =
bit rate) to include the speed. The higher each figure of merit is, the more efficient one
can consider the design. This work is the only solution that scales down link power
consumption with event rate. The driver design is comparable to other state of the art
solutions in terms of area, supply voltage and differential amplitude. Bit rate and area
data have been normalized by the corresponding technology transition frequency4 ft

1w/o internal regulator and single ended output
2w/o internal regulator
3power consumption of one whole TX chip
4References in Table 6.1 do not provide their technology ft, but this number has been estimated

from other similar technologies.

132
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

Table 6.1: Performance comparison with other voltage mode drivers
[124] [125]1 [120]2 [126]3 [127]3 This work

Technology 90 nm 0.18 µm 0.18µm 65 nm 90 nm 0.35 µm

ft(GHz) 180 120 120 250 180 15

Power 1 1.8 1.8 1 (pre-driver) 1.2 3.3

Supply (V) 1.5 (driver)

Vamp: Diff Amp(mV) 150 125 450 88 500 600 200-500

BR: Bit Rate(Gbps) 6.25 3.6 3.5 3 8.5 8 1.28

Bit Rate / ft 0.035 0.03 0.029 0.025 0.034 0.044 0.085

Area (mm2) 0.15 0.198 0.044 0.024 0.065 0.138 0.26

Area/λ2 74 24 5 3 61 68 8.5

P̄max (mW) 2.26 7.86 22.1 9.0 96 101 15.8-25.4

P̄min (mW) 2.26 7.86 22.1 9.0 96 101 1

Impedance Pre-Driver Pre-Driver Number Source Pass Number

Matching Supply Supply of series Transistor of

Voltage Voltage fingers termination fingers

FoM1=VddVamp/Pmax 66.4 28.6 36.7 57.6 6.5 7.13 42-65

FoM2=FoM1×BR/ft 2.32 0.86 1.06 1.44 0.22 0.31 3.57-5.52

and λ to allow a fair comparison among designs. The physical bit rate for this work
is 1.28Gbps which corresponds to twice the Manchester encoded transmitted data bit
rate of 0.64Gbps.

6.7 Conclusion

In this Chapter, we have described the design and test of a voltage mode high speed
I/O interface optimized for transmitting burst mode data flows. The proposed circuits
exploit the asynchronous nature of AER traffic to disable the static driver and receiver
currents in pauses, as it was done with the current mode implementation described
in Chapter 5. However, the voltage mode technique imposes new design constraints
which have been addressed throughout this Chapter. Besides the design of an efficient
switching mechanism to turn off the high speed circuitry, design techniques regarding
the impedance matching mechanism, the power management of the high speed driver
and the low common mode of the received signal have been discussed. Experimental
results are provided for a 3.3V 0.35µm CMOS prototype which achieves a current con-
sumption reduction factor between the maximum and minimum event rate situations
of 22 for the driver and 130 for the receiver at 500Mbps.

This Chapter finishes the description of event-driven communication circuits for a
power efficient and high performance VLSI implementation of AER chips. Our ultimate
research goal is to integrate hundreds of AER units in a PCB to carry out sophisticated
spike-driven vision processing tasks. However, there are many open research issues
which must be addressed before designing a fully integrated solution for the network
units.

An optimized hardware platform for prototyping more advanced designs would be

6.7 Conclusion 133

desirable to explore the challenges arisen from an AER multi-chip assemble. A ded-
icated board with AER friendly connectivity resources will allow the neuromorphic
engineers to test large scale systems reducing the engineering time. This board should
include high speed serial links resources for board to board connectivity and conven-
tional parallel AER connectors to interface with the existing AER chips. A versatile
configuration infrastructure is also mandatory because AER modules use to have a
high degree of programmability. Based on these ideas, the next Chapter will describe
the design of a general purpose AER prototyping board intended to be used in large
scale AER-based neural systems.

134
Voltage Mode Switchable I/O Circuitry for Low Power Serial

Transmission of AER Streams

7
Future Outlook: The Node Board

7.1 Introduction

Chapters 4, 5 and 6 describe how to implement the communication layer between neigh-
bor chips in a Network on Board system where hundred of AER modules operate to
implement a user-defined spiking neural network architecture. However, the definition
of spike-based systems is still an open issue which is currently under research, specially
in the area of ConvNets [128, 129]. For example, for this kind of neural networks there
is still much work to do on the implementation of new features in the convolution
modules, improving their resolution, the NoC integration of many convolution units or
the development of spike-based training algorithms. Although VLSI solutions offer the
best performance in terms of power consumption, processing latency and integration
density, an FPGA-based environment allows the designer to define the architecture
of every network node which can implement custom-designed event processing units.
Moreover, it is a flexible platform to test several routing schemes and network com-
munication layers for different applications and choose the most suitable one for large
scale event-driven neural networks.

Due to these considerations, having a hardware level programmable solution for
prototyping real AER-based networks before going to the VLSI solution is very conve-
nient. The infrastructure should be fully programmable at all levels. The lower level of
programmability refers to the definition of every network block functionality. Once the
hardware architecture is defined, there must be the possibility of changing the compu-
tation parameters on the fly. At the same time, the system also has to interact with the
existing neuromorphic hardware which uses generic AER parallel ports. This way, the
AER network could map mixed mode systems where, for example, convolution units
could operate together with other pieces of neuromorphic hardware.

This Chapter describes the design of a custom board which fulfills the requirements

135

136 Future Outlook: The Node Board

described before. The Node Board (NB) uses a XC6SLX150T Spartan-6 Xilinx FPGA
as a core element to implement the communication infrastructure described in Chapter
3 and to interface with other AER chips through parallel ports. A high end FPGA
is required to provide enough slice and memory resources to implement the network
computation intelligence and high speed serial channels to support the inter-board
communication interface. The FPGA-based full-duplex high speed serial link described
in Chapter 3 is intended to communicate nodes with each other. The board has also
been designed to be assembled with neighbor boards in a scalable and expandable way
using the ideas presented in Chapter 3.

7.2 Board architecture

Fig. 7.1 shows a block diagram of the NB where the main parts have been highlighted.
A XC6SLX150T Spartan-6 Xilinx FPGA is the core element which provides the logic,
memory and connectivity resources required to implement the network units. Two
parallel AER connectors can link the FPGA device with AER modules. Extra pins in
the conventional 40-IDC (Insulated Displacement Connector) AER connector not used
for the event handshaking can implement a configuration interface with the event-based
processing chip. The inter-board communication interface is implemented using the
FPGA Rocket I/O GTP transceivers through east, west, south and north full-duplex
links. SATA connectors host the communication interfaces as they offer a low cost
and high bandwidth solution. A pin header connector provides a low speed interface
between boards to implement a daisy chain configuration network, which distributes
the configuration information throughout the NB array and runs in parallel with the
event-based network.

Besides the connectivity resources, the NB has internal blocks which are necessary
for a proper operation of the FPGA features. High-efficiency switching power sup-
plies are used to bias the FPGA core and I/O interfaces by generating 1.2V, 2.5V and
3.3V from a master voltage of 5V. Linear regulators are used to provide clean sup-
ply voltages to the GTP transceiver circuitry, the reference clock generator and the
configuration memories. A differential 100/125MHz low jitter clock generator feeds
the reference clock to the GTP transceivers and a low cost 100MHz single-ended clock
provides an alternative clock for user-defined applications. Two platform FLASH mem-
ories, XCF08PFSG48C and XCF32PFSG48C, have been included to store the FPGA
programming file in a non-volatile way.

7.2.1 Parallel connectors

The NB has four parallel connectors where two AER ports and two configuration
interfaces can be connected. An SMD (Surface Mount Device) male 40 pins IDC
connector is used for the AER connectivity. The connector has dedicated ground
contacts and 5V and 3.3V regulated DC voltages which can be supply voltages for

7.2 Board architecture 137

XC6SLX150T

Spartan-6

ID
C

-4
0
 c

o
n
n

10-pin

header

10-pin

header

SATA

north

SATA

west

ID
C

-4
0
 c

o
n
n

SATA

east

SATA

south
Platform

FLASH

Clocking

resources

JTAG

Power supply generation

1.2V 2.5V 3.3V

Figure 7.1: Block diagram of the node board.

Table 7.1: AER connectors pin-out
Name IDC-40 pin IN OUT Name IDC-40 pin IN OUT

GND 40 – – 5V 39 – –

3.3V 38 – – AER27 37 Y22 AA1

AER26 36 V21 Y1 AER25 35 W22 W1

AER24 34 U22 V2 AER23 33 V22 V1

AER22 32 T22 U1 AER21 31 T21 T2

GND 30 – – ACK 29 Y21 U3

AER20 28 P21 T1 AER19 27 R22 R1

GND 26 – – AER18 25 P22 P2

GND 24 – – AER17 23 N22 P1

GND 22 – – REQ 21 N20 N3

AER16 20 M22 N1 GND 19 – –

AER15 18 L22 M1 AER14 17 M21 M2

AER13 16 K21 L1 AER12 15 K22 K1

AER11 14 H22 K2 AER10 13 J22 J1

AER9 12 G22 H1 AER8 11 H21 H2

AER7 10 F21 G1 AER6 9 F22 F1

AER5 8 D22 F2 AER4 7 E22 E1

AER3 6 C22 D1 AER2 5 D21 D2

AER1 4 B21 C1 AER0 3 B22 B1

GND 2 – – 3.3V 1 – –

138 Future Outlook: The Node Board

Table 7.2: Configuration connectors pin-out
Name Pin Header1 FPGA Name Pin Header2 FPGA

GND 1 – GND 1 –

3.3V 2 – 3.3V 2 –

GPO 0 3 R19 GPO 0 3 G16

GPO 1 4 R20 GPO 1 4 F17

GPO 2 5 T19 GPO 2 5 D18

GPO 3 6 T20 GPO 3 6 C19

GPO 4 7 U19 GPO 4 7 C18

GPO 5 8 U20 GPO 5 8 B20

GPO 6 9 V19 GPO 6 9 B18

GPO 7 10 W20 GPO 7 10 A18

the AER chip connected on top of the NB. The rest of the pins are routed to general
purpose FPGA pads to be used as user-defined signals. Besides the AER addresses
information, the connector can also transfer configuration parameters to the hosted
AER chip. Table 7.1 shows the pin-out and FPGA connectivity for the IN and OUT
AER connectors.

Apart from the two IDC-40 pins connectors, there are other two 10 pin headers.
These connectors can propagate configuration information between NBs through an SPI
or JTAG chain, depending on the configuration set-up. These two pin headers have
ground and 3.3V supply voltage connections and all pins are connected to general-
purpose FPGA pads. Table 7.2 shows the connections between the FPGA and pin
headers.

7.2.2 High speed serial transmission

The NB has connection resources to implement four bidirectional high speed serial AER
links to transfer events between adjacent neighbors. The physical layer is provided by
the Xilinx Rocket I/O technology. Fig. 7.2 shows the block diagram of a Spartan-
6 GTP tile which includes two full-duplex high speed serial channels and a shared
PLL block to generate a master frequency for transmitters and receivers. Each tile
is composed by two GTP transmitter/receiver pairs which can be programmed to
implement any standard (PCIe, SATA, XAUI,. . .) or user-defined protocol. The built-
in dedicated hardware includes some useful blocks which are going to be exploited in
the design:

• 8b/10b encoders/decoders: this block automatically encodes the user data
flow into a DC-free code which is suitable to be transmitted through an AC-
coupled channel. Thus, the number of transmitted ones and zeros are kept the
same by adding an extra overhead of 2 bits every 8 bits of data.

• Transmitter emphasis/Receiver equalization: both mechanisms are pro-
grammable and allow the user to compensate channel losses and dispersion. The
differential amplitude is also configured by the user, providing a versatile physical
layer which can adapt to a great variety of channels.

7.2 Board architecture 139

TX-PMA TX-PCS

GTP TX

GTP0

RX-PMA RX-PCS

GTP RX

TXP0
TXN0

MGTTXP0
MGTTXN0

RXP0
RXN0

MGTRXP0
MGTRXN0

PMA

PLLs

PLL lock

detection

reset

control

Power

control

clocking

DRP

Shared Resources

TX-PMA TX-PCS

GTP TX

GTP1

RX-PMA RX-PCS

GTP RX

TXP1

TXN1
MGTTXP1
MGTTXN1

RXP1
RXN1

MGTRXP1
MGTRXN1

AVTTRX
ATTTX

MGTRXP0
MGTRXN0

AVCC
AVCCPLL0

MGTRXP0
MGTRXN0

AVCCPLL1
MGTRXP0

Package pins

CLKIN

GTP0 user

interface for

data and

configuration

GTP1 user

interface for

data and

configuration

Figure 7.2: Spartan 6 FPGA GTP tile configuration including two full-duplex high speed
serial links and the shared clocking resources.

• Comma detection and alignment: transmitter sends data packets grouped
in 8, 10, 16, 20, 32 or 40 bits, depending on the encoding scheme and the word
length selected by the user. At start-up, the receiver has to detect special packets
with a dedicated alignment word to guess where the data flow starts and properly
deserializer data. The user only has to make sure that the alignment character
is sent when the link is powered up.

• Clock correction: transmitter and receiver have buffers and FIFOs to compen-
sate clock disparities between their internal clock domains. These differences are
even higher between different boards. For this reason, a clock correction block is
implemented in a receiver elastic buffer to compensate these disparities. Clock
correction actively prevents the receiver elastic buffer from getting too full or too
empty by deleting or replicating special idle characters in the data stream.

Fig. 7.3 shows a schematic diagram of the Rocket I/O auxiliary components in-
cluded in the NB. The master clock for the serialization and clock recovery are gener-
ated by a low jitter PLL which is shared between two transceivers. An external LVDS
low jitter reference clock is multiplied by a user-programmable integer number to get
the desired data rate. This reference clock can be internally propagated to several tiles
through a low jitter clock propagation network. We have used this feature to include
a single reference clock on the board for the two tiles needed. Jitter performance of

140 Future Outlook: The Node Board

FPGA

GTP tiles

pin-out

SATA

north

MGTTXP0

MGTTXN0

MGTTXP1

MGTTXN1

MGTTXP2

MGTTXN2

MGTTXP3

MGTTXN3

MGTRXP0

MGTRXN0

MGTRXP1

MGTRXN1

MGTRXP2

MGTRXN2

MGTRXP3

MGTRXN3

SATA

south

SATA

west

SATA

west

MGTREFCLKp

MGTREFCLKn

EG-2121CA

LHPA

REFCLKp

REFCLKn

LM-1117-

2.5

GND

OE

VDD

5V

2
.5

V
_
M

G
T

Low jitter reference clock resources

T
IL

E
0
_
M

G
T

A
V

C
C

T
IL

E
0
_
M

G
T

A
V

C
C

P
L

L
0

T
IL

E
0
_
M

G
T

A
V

C
C

P
L

L
1

M
G

T
A

V
T

T
R

C
A

L

T
IL

E
0
_
M

G
T

A
V

T
T

T
X

T
IL

E
0
_
M

G
T

A
V

T
T

R
X

T
IL

E
1
_
M

G
T

A
V

C
C

T
IL

E
1
_
M

G
T

A
V

C
C

P
L

L
0

T
IL

E
1
_
M

G
T

A
V

C
C

P
L

L
1

T
IL

E
1
_
M

G
T

A
V

T
T

T
X

T
IL

E
1
_
M

G
T

A
V

T
T

R
X

Rcal

Decoupling capacitors

array

MGT decoupling capacitors network

Precision

resistor for

impedance

matching

TPS74401

5V

1.2V @ 3A

FB

OUT

IN

BIAS

EN

SS

2R

R

1µF

1µF

1µF0.1µF

10µF
100pF

MGT supply

voltage

generation

Figure 7.3: Board design to host the Rocket I/O transceivers.

the reference clock directly impacts on the high speed signal quality generated by the
transceiver. Hence, a crystal-based solution, like the EG-2121CA LHPA part, has been
selected for this design to achieve an appropriate jitter performance. Moreover, a clean
supply voltage is also important to achieve a low noise clock generation. An LM-1117
linear regulator provides a 2.5V supply voltage with a proper noise rejection to bias
the clock generator.

Termination impedance is also a major issue to ensure a good signal integrity. As all
termination resistors are integrated in the FPGA and the receiver has to adapt itself to
different characteristic impedance transmission lines, the termination resistor value is
configurable through an external precision resistor, as it is shown in Fig. 7.3. All tiles
within the same bank share the same configuration word. The calibration procedure
is performed once during the FPGA configuration, not affecting the link operation nor
the power consumption afterwards.

The Rocket I/O circuitry in the Spartan-6 FPGA requires a single analog power
supply at a nominal voltage level of 1.2V. Noise on the GTP analog power supply can
cause degradation in the performance of the GTP transceiver. The most likely form of
degradation is an increase in jitter at the output of the GTP transmitter and reduced
jitter tolerance in the receiver. Typical noise sources are the own regulator intrinsic

7.2 Board architecture 141

noise, coupling with other circuits or the power distribution network. All these sources
must be taken into account and minimized for a proper design.

In our GTP sub-block design shown in Fig. 7.3, a dedicated TI TPS74401 linear
regulator provides the GTP supply voltage. The regulator is placed as close as possible
to the FPGA to reduce the coupling between the GTP supply voltage plane and the
other elements. This also reduces the resistance and inductance of the supply voltage
path, minimizing the noise caused by the load dynamics. A linear regulator is chosen
over a switching one to minimize the supply voltage noise and reducing the power
supply generation area in the PCB. This is done at the cost of increasing the overall
power consumption due to the lower efficiency of linear regulators over their switching
counterparts. Decoupling capacitors are also placed close to the GTPs supply voltage
pins. Xilinx recommendations have been followed in order to provide a proper noise
filtering at high frequencies combining 0.22µF and 4.7µF capacitors.

An AC-coupling termination scheme has been adopted for the reference clock and all
receiver inputs, as can be seen in Fig. 7.3. In this technique, DC blocking capacitors are
placed in series with both signals of the differential pair, in addition to the standard
resistive load termination. Using AC-coupling, transmitter and receiver ends have
decoupled common modes. This feature guards against differences in ground potential
between different PCBs which can affect the link operation. As a large number of
boards want to be assembled, this coupling technique is mandatory to keep a low error
rate in the communication. The only drawback is that AC-coupling needs DC-balanced
data and a 8b/10b encoding technique is necessary.

Routing high speed signals from the FPGA ball-grid to SATA connectors needs
controlled impedance transmission lines to achieve good signal integrity. Fig. 7.4
shows the 10 layer stack-up used for the NB, highlighting the stripline structure which
implements the high speed signal transmission lines. Two ground planes isolate the
high speed differential signals layer from the rest, reducing the impact of interferences
in the transmission and providing electromagnetic fields shielding. As it is illustrated
in Fig. 7.4, differential coupled lines with W=2mm and s=0.12mm have been designed
to have 100Ω of differential characteristic impedance. Lines width and separation have
been obtained using the technology parameters of dielectric and metal layers provided
by the PCB vendor and these approximate equations:

Zo = 60√
εr
ln
(

1.9(h+t)
0.8W+t

)
Zdiff = 2Zo

[
1− 0.347e−2.9 s

h

] (7.1)

7.2.3 Configuration resources

An FPGA device offers the flexibility needed for the current application because the
user can implement dedicated event-based processors or communications/configuration
gateways with AER-based VLSI chips inside the network nodes. Two FLASH mem-
ories, XCF08PFSG48C and XCF32PFSG48C, are included as a non-volatile storage
platform for the user designs. A JTAG chain connects the host PC running Xilinx

142 Future Outlook: The Node Board

TOP

0.26mm

prepeg

GND

Stripline

GND

Signals1

GND

Supply1

Supply2

GND

BOTTOM

core

prepeg

core

prepeg

core

prepeg

core

prepeg

0.36mm

35µm

s

W

ht

Stripline transmission line structure

GND

Signals1

Supply1

Supply2

Ground planes

Internal routing layer

Layer for supply

voltage planes

TOP,

BOTTOM
Top and bottom

signal routing layer

Figure 7.4: Layer stack-up for the node board.

JTAG

conn

4K7 4K7

TDI

TDO

TCK

4K7

TMS

TMS TCK

XCF32PFSG48C

FLASH1

FLASH_D<0:7>

TDI TDO TMS TCK

XCF08PFSG48C

FLASH2

FLASH_D<0:7>

TDI TDO TMS TCK

Virtex6 FPGA

TDI TDO

BUSY

CE
CEO

CF

OE/RST
BUSY

CE
CEO

CF

OE/RST

4K7

P
R

O
G

R
A

M
_
B

_
2

S
U

S
P

E
N

D

D
O

N
E

_
2

4K7

2.5V2.5V

2.5V 2.5V 2.5V

FLASH_D<0:7>
C

C
L

K

D
O

U
T

_
B

U
S

Y

IN
IT

_
B

2.5V

1.8V

2.5V

1.8V

LM-1117-

1.8

5V

10µF

1.8V

Figure 7.5: Platform Flash memories and JTAG configuration chain connection.

iMPACT software, the memories and the FPGA itself for configuration purposes.

Fig. 7.5 shows the JTAG chain connection diagram. The FPGA can read its config-
uration information from the on-board platform Xilinx FLASH memories or receiving
configuration data from a host PC through the JTAG interface by bypassing the mem-
ories. In this last option, memories do not take part in the configuration process and
everything is handled by the PC. This is very useful in debugging modes where the
user wants to change the FPGA configuration to correct errors. If the configuration
file is stable after the debugging process, it is interesting to store it on-board. In this
situation, the FPGA is configured in a master mode to read the programming file from
the platform FLASH. A low complexity LM1117-1.8V linear regulator generates a 1.8V
supply voltage that the FLASH memories need to operate.

In this last situation, the configuration is controlled by the FPGA which generates a
master clock, called CCLK in Fig.7.5. The process starts when, after power-up, FLASH

7.2 Board architecture 143

memories send a reset to the FPGA through the FPGA PROG pin. From this point
on, FLASH1 delivers an 8-bit configuration word every CCLK clock cycle. The FPGA
reads this information until the FLASH memory internal counter saturates. While
FLASH1 is enabled, signal CEO makes FLASH2 outputs stay in a high impedance
state. This signal toggles when the FLASH1 internal counter saturates and FLASH1
gets disabled. At the same time, FLASH2 is enabled and configures the FPGA. When
the FPGA detects the end of a configuration process, signal FPGA DONE is activated
and memories are disabled. Any error occurred during configuration is indicated by
XFLASH INIT# and the process is aborted by reseting the platform FLASH memories.

7.2.4 Power supply design

In previous Sections, the power supply design for the GTP transceivers and their
clocking resources were described. Due to the low noise requirements, linear regulators
have been chosen sacrificing power efficiency. However, the digital core does not have
these stringent constraints on noise and a switching regulator can be afforded for the
Spartan-6 core and I/O banks supply voltages. Unlike the linear regulator, the switch-
ing regulator does not depend on the voltage drop between the regulator input and
output voltages to provide regulation. Therefore, the switching regulator can supply
large amounts of current to the load while maintaining high power efficiency. It is not
uncommon for a switching regulator to maintain efficiencies of 95% or greater.

The disadvantages of the switching regulator are complexity of the circuit and noise
generated by the regulator switching function. Switching regulator circuits are usually
more complex than linear regulator circuits. This shortcoming in switching regulators
has been addressed by several switching regulator component vendors. Normally, a
switching power supply regulation circuit requires a switching transistor element, an
inductor, and a capacitor. Depending on the necessary efficiency and load requirements,
a switching regulator circuit might require off-chip switching transistors and inductors.
Besides the component count, these switching regulators require very careful place-
ment and routing on the printed circuit board to be effective. Texas Instruments (TI)
offers very compact modules which include the switching regulator IC and the discrete
components required to obtain efficiencies up to 95% and 6A output currents.

Fig. 7.6 shows a block diagram for the power supply generation used in the NB.
Three switching regulators (pth05050wad and pth04000wah TI modules) are used to
generate 1.2V for the FPGA core voltage supply and 2.5V-3.3V for the general purpose
I/O banks. All blocks take the global 5V input DC voltage and generate an output
which is controllable through a 0.05W 1% precision resistor connected between Vo,adjust
and GND pins. The voltage provided by the switching regulator is filtered using two
large capacitors and a ferrite bead. This ferrite introduces a resistive component in
the filter and limits the filter quality factor at high frequencies improving the regulator
transient response.

The switching regulators have an Auto-Track function to power up the whole system
in sequence. Auto-Track works by forcing the module output voltage to follow a voltage
presented at the Track control pin on a volt-by-volt basis. When the output voltage

144 Future Outlook: The Node Board

Vo_adjust

17K4

GND

Vout

10µF 100µF

4.7µH

Vin

Track
PS_track

5V 1.2V

pth05050wad

Vo_adjust

475

GND

Vout

10µF 47µF

4.7µH

Vin

Track
PS_track

5V 3.3V

pth04000wah

100µF

100µF

Vo_adjust

2K32

GND

Vout

10µF 47µF

4.7µH

Vin

Track
PS_track

5V 3.3V

pth04000wah
100µF

VDDRST

GND

5V

5V

1M

PS_track

TPS3828

FERRITE

Figure 7.6: Block diagram for the Spartan-6 supply voltage generation.

reaches its target value, the process is disabled and the regulator keeps this state
independently of the voltage applied at pin Track. The process is governed by a shared
signal PS track generated by a supervisor circuit TPS3828. This circuit monitors
the master 5V supply voltage and ties PS track to ground while this voltage has not
reached a 1.1V internal reference. When the threshold is reached, a pulse in PS track
triggers the system power up process after an internal fixed delay of 200ms. This way,
all supply voltages are enabled at the same time.

7.3 Experimental results

This Section presents some preliminary test results for a prototype board to check
the Rocket I/O high speed serial link operation and the event transmission integrity.
The test consists of generating a Rocket I/O wrapper for the FPGA high speed serial
link to combine it with AER to serial protocol converters presented in Chapter 3-Fig.
3.13. This is the same experiment set to characterize the full-duplex Rocket-I/O-Based
Parallel-Serial AER Interface in Chapter 3. We tested the link at two different bit rates,
1Gbps and 2.5Gbps, to observe differences in the performance which can be useful for
future users of this board.

Fig. 7.7 illustrates the link latency measurement for both data rates. A very low
event rate is programmed in the event generator which feeds the high speed serial
interface. This way, we can determine the channel latency by measuring the delay
of request signals at the transmitter input and receiver output. The 1Gbps interface
presents 337ns of input to output latency, while the 2.5Gbps link reduces it down to
209ns. These latencies are obtained configuring 16 bits of word length in the serial/-
parallel interface. If we measure the input handshaking cycle duration, instead the
input to output request delay, the maximum event rate can be determined. It resulted

7.3 Experimental results 145

to be 17Mevent/s for the 1Gbps link and 42Mevent/s for the 2.5Gbps interface.

In order to test the flow control mechanism, we forced an overflow situation in the
link by setting different transmitting and receiving rates at the test circuitry. The
acknowledge generation at the receiver side is slowed down and the transmitter is con-
figured to send events at a high event rate. The receiver needs to stop the transmitter
side when it detects that its buffer is saturating and the procedure must ensure the
event flow integrity. This expected behavior can be confirmed by measuring the trans-
mitter input and the receiver output request signals. Fig. 7.8 shows these waveforms
for the 2.5Gbps interface. The error rate is monitored by on-FPGA test circuits to

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-2

-1

0

1

2

3

4

5

R
e
q

u
e
s
t

(V
)

Time (µs)

reqIN

reqOUT

337ns

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-2

-1

0

1

2

3

4

5

R
e
q

u
e
s
t(

V
)

Time (µs)

reqIN

reqOUT

209ns

(b)

Figure 7.7: Input to output request latency induced by the serial signal propagation for
(a) 1Gbps and (b) 2.5Gbps.

146 Future Outlook: The Node Board

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

re
q
IN

(V
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

Time (µs)

re
q
O

U
T

(V
)

Figure 7.8: Flow control mechanism verification in the Node Board high speed serial
links.

confirm the event stream integrity in this overflow situation.

The eye diagram is the basic signal integrity measurement to ensure a low error
rate event transmission. Fig. 7.9 shows the eye diagram for both tested bit rates. The
eye is open in both situations, demonstrating that the physical design allows to achieve
reasonable event rates with very low error rates. However, the eye for the 2.5Gbps bit
rate is not as widely open as in the 1Gbps situation. For this experiment, the pre-
emphasis and de-emphasis circuits were disabled and the differential amplitude was set
to a value of 100mV. Fig. 7.10 shows the eye diagram obtained for the same bit rate,
but the channel compensation circuits are enabled and the amplitude is increased. In
this case, we can observe how the eye is clearly open. This is an example of the high
degree of programmability offered by an FPGA solution and how it can be designed to
improve the system performance.

7.4 Multiple NB Assembly

At the time of this writing only one preliminary NB has been available for a short
time. The immediate future goal is to assemble 9 of them, as shown in Fig. 7.11. A
3 × 3 system can be easily assembled exploiting the board connectivity resources. A
NB preliminary prototype photo represents the network units in Fig. 7.11 and board
interconnection has been drawn over to give an idea of the system aspect. When enough
boards are available, the connections between blocks would be implemented through

7.4 Multiple NB Assembly 147

SATA cables.

As can be seen in Fig. 7.11, the system can be easily expanded by adding more NBs
in idle links which are not connected through SATA cables. User only would have to
re-configure the system to take into account these new blocks and run the experiments
again. Parallel connectors at every network node are available to inject traffic in the
network, collect output events or even establish internal test points to monitor the
system state.

(a)

(b)

Figure 7.9: Eye diagram measured at receiver coupling capacitors for (a) 1Gbps and (b)
2.5Gbps.

148 Future Outlook: The Node Board

Figure 7.10: Improved eye diagram for the 2.5Gbps link using channel compensation
circuits and transceiver programmability.

Figure 7.11: Photo montage of a 3× 3 NB system connected through SATA cables.

7.5 Conclusion 149

7.5 Conclusion

A FPGA-based prototyping board design has been described in this Chapter. This node
board can be assembled with its counterparts to form up large scale spike-based neural
networks which can be tested and configured on the fly by programmable hardware
resources. This platform has AER specialized connections ranging from classic parallel
AER connectors for existing neuromorphic chips to high speed serial links for board
to board connections. The user can plug his AER modules in a node board and build
a connection network in the dedicated FPGAs using the router modules described in
Chapter 3. Digital event processing blocks can be mapped into the FPGA along with
router circuits due to the high integration density of the Spartan 6 FPGA. Input/output
configuration ports can support low frequency configuration networks which can be
added in parallel with the event communication network. SPI or JTAG networks can
be designed using this configuration port and the reconfiguration capabilities of the
FPGA hardware.

The event transmission layer is implemented with the Rocket I/O transceivers in-
tegrated in the Spartan 6 FPGA and hosted by SATA connectors and cables. The
on-chip circuits provide channel coding, comma detection, pre/de-emphasis, channel
alignment,. . . to support the full duplex serial AER channel described in Chapter 3.
Clocking and power management resources have been included on-board to ensure a
good signal integrity in the board to board communication. Very preliminary experi-
mental results included in this Chapter demonstrates that the board is functional and
all the features work properly.

150 Future Outlook: The Node Board

8
Conclusions

Along this dissertation, properties of spike-driven processing have been exploited to
increase the computational capabilities of traditional computer vision systems. Millions
of neurons have to communicate in a network to perform sophisticated vision processing
tasks which can be useful in real world environments. We took Convolutional Neural
Networks as implementation example among other neural networks because of their
good scalability properties and potential efficient hardware implementation. Moreover,
spike-based convolution modules have been recently proposed [20–23] to overcome the
limitations of their frame-based counterparts. They efficiently perform convolutions in
real time operating over the input event stream and providing an output event flow.
Assembling these modules in large scale systems represents the first step for building
spike-based ConvNets.

A hardware infrastructure to implement event-driven large scale AER systems has
been discussed in this dissertation. Starting from a system level design of a hierarchical,
scalable and expandable AER network, we have proposed several basic building blocks
which are essential to achieve a large scale of integration and low power consumption.
Serializing the classic parallel AER link becomes a major issue to meet the scalability
and reliability specifications of such a large scale neural systems. Moreover, a com-
munication network layer for the system organization is mandatory to achieve large
connectivity densities with minimum hardware resources. The main contributions of
this work can be summarized as follows:

• A communication layer for scalable AER networks has been designed to assemble
convolution chips in large scale systems. The most suitable topologies, addressing
schemes and routing algorithms have been discussed in Chapter 3. Destination
and source driven router hardware architectures have been proposed to manage
the AER traffic in the network nodes. The pros and cons of every solution have
also been analyzed to clarify their field of application. The system level design
has been validated in an FPGA prototyping platform where large networks of

151

152 Conclusions

convolution modules have been mapped to perform some feature extraction and
very simple recognition tasks. Extensive experimental results are provided for a
NoC realization and a multi-board extension.

• This multi-board design is supported by a full-duplex AER high speed serial
link based on the Xilinx Rocket I/O technology. The serial link provides high
communication bandwidths to multiplex several parallel AER links over a single
differential pair. A flow control mechanism through the full-duplex link is also
embedded into the event data transmission to prevent a slow AER receiver to
get overflown by a fast transmitter. Up to 50Mevent/s rates have been obtained
for 32 bit events using this solution with 232ns input to output latencies.

• This FPGA-based serial link has important limitations when the architecture
wants to be mapped on a VLSI chip. Due to the asynchronous nature of AER
events, the link is idle most of the time but it keeps transmitting data for synchro-
nization purposes. A more power efficient solution has been designed by exploit-
ing the asynchronous nature of AER events with a burst-mode Serialization/De-
serialization VLSI circuit. Although there are burst-mode designs reported in
the literature, they are not optimized to transmit AER data because they suf-
fer from long latencies, high complexity, high power consumption or stringent
jitter budgets. In Chapter 4, we propose a novel instant-startup jitter-tolerant
Manchester-encoding Serializer/Deserializer scheme which overcomes the limita-
tions of conventional burst-mode serial links. A 0.35µm CMOS proof of concept
prototype has been fabricated and tested. The circuit achieves a maximum event
rate of 15Mevent/s with 66ns of input to output latency, while scaling the power
consumption with the event rate. This is a feature which is not found in other
burst mode Serializer/Deserializer circuits.

• One of the most important limitations in terms of energy efficiency of the proto-
type reported in Chapter 4 is that a conventional current mode LVDS driver and
receiver pair is used. These circuits consume a significant amount of static power
during pauses, even when there are no data being transmitted. Pauses have been
used to save power in these circuits by switching off this static power consump-
tion when it is not needed. However, the driver and receiver design has to be
modified in order to perform this task without trading off with the maximum
achievable throughput. Extremely fast switch on/off times are required to keep
the maximum event rate unaltered and scale down the power consumption with
event rate. Chapter 5 shows experimental results for a 0.35µm CMOS prototype
designed to accomplish the design goals. At a 500Mbps bit rate, the maximum
event rate achievable is 4.7Mevent/s for 32-bit events. In this situation, current
consumption is 7.5mA and 9.6mA for the driver and receiver, respectively. How-
ever, if event rate is lower than 20-30Kevent/s, current consumption has a floor of
270µA for the driver and 570µA for the receiver. The measured switching on/off
times are in the order of 1ns, while the whole event takes 82ns to be transmit-
ted. The serial link is operative up to a 710Mbps bit rate, which corresponds
to a maximum event rate of 15Mevent/s. The maximum measured event rate is
13.7Mevent/s which corresponds to a bit rate of 638Mbps and 73ns of input to
output latency.

153

• The work done for current mode drivers has been extended for voltage mode
circuits too. The voltage mode approach presents better power efficiency in
short-haul links where very high data rates are not required. In order to further
reduce the power consumption, we have investigated switching implementations
of voltage mode drivers suitable for AER links. Techniques for quickly switching
on/off the driver, achieving accurate impedance matching and managing the
driver bias currents are presented throughout Chapter 6. A 0.35µm CMOS
prototype with the voltage mode high speed serial I/O circuits has been designed
and tested. It can scale the current consumption from 7.7mA (driver) and 8.2mA
(receiver) at 10Mevent/s rate to 343µA (driver) and 62.5µA (receiver) for an
event rate below 10Kevent/s. These measurements correspond to a 500Mbps bit
rate and 32 bits events. In this case, the link worked properly at a maximum bit
rate of 638Mbps, with an input to output request latency of 73ns.

• A new FPGA-based board (Node Board) for large scale AER systems has been
designed as a prototyping tool to rapidly map software event-based ConvNets
into a hardware platform. The FPGA can host several digital event-based mod-
ules or it can communicate with analog/digital neuromorphic chips mounted on
extension boards. The NB has resources to implement four high speed full-duplex
serial channels to receive/transmit events from/to the board neighborhood and
to propagate configuration parameters along the network. The design guidelines
and board description are included in Chapter 7, along with some preliminary
experimental results.

This dissertation paves the way for the design of large scale spike-based ConvNets
hardware, but there is still a lot of work to do in this field. This work is going in
two different but convergent directions. On one side, there is a need for a strong
theoretical background about the design of event-driven sophisticated ConvNets in
terms of novel architectures and convolution modules system level design. On the
other side, further improvements are possible in the hardware units which will host the
convolution modules. The future work lines are listed below:

• There is still room for improvement in the Serialization/Deserialization scheme
proposed in Chapter 4. Simple design modifications to switch off some unneeded
circuitry can greatly reduce the idle power consumption. The serializer idle power
consumption is due to useless clock transitions which occur during pauses when
the circuit state does not change. Incorporating the clock gating technique to
the serializer design will push the low event rate current consumption in the
pA range. Finally, the ADC-DAC structure area occupation can be reduced
significantly by using an asynchronous converter scheme which can reduce the
comparator-count.

• A problem which has not been addressed yet is the clock generation for burst
mode serial links. As the Serializer/Deserializer architecture does not have strin-
gent jitter requirements, some novel low cost clocking strategies can be proposed
to achieve low power consumption and avoid the need of an external clock ref-
erence. That will reduce the hardware complexity of a multi-chip assembly on a
PCB. Moreover, the idea of switching off unused components during pauses to

154 Conclusions

save power is also suitable for the clocking circuit. However, this should be done
without affecting the throughput by using fast settling clocks.

• The current mode driver proposed in Chapter 5 can be improved in future im-
plementations. Reducing the static power consumption is the first goal in this
design. Improving the receiver bias circuits is the easiest way to do that, but
other low power common mode feedback loops for the driver can also be consid-
ered as an option. On the other hand, reducing the number of low-speed signals
used for the flow control and switching arbitration would be very interesting.
That will reduce the convolution modules pin-count and will improve the system
level integration. Some common mode signaling technique can be investigated
to indicate the receiver where to switch on and the flow control mechanism can
rely on the full-duplex link, like in the FPGA implementation.

• The voltage mode implementation calibration loop does not properly track the
temperature variations as calibration is only performed at power up and takes
hundred of µs. Proposing re-calibration procedures which track the differential
amplitude without affecting the driver throughput will be highly desirable to
improve the system reliability. Reducing the quiescent current of the regulator
which generates the driver supply voltage will improve the link energy efficiency
by lowering the idle static current consumption.

• However, the most interesting area of future work would be in exploiting the op-
portunities offered by the Node Board. Although the NB hardware architecture
has been preliminarily validated with experimental results in Chapter 7, fea-
tures included in this hardware architecture have not been sufficiently exploited.
The next step will be mapping large scale AER systems on this architecture
and explore possible problems or limitations which can arise in a hardware im-
plementation. That will give us an important insight of the working principles
of spike-based neural networks and all this experience can be applied to the fi-
nal VLSI implementation. All the information collected in this design step will
be very useful in subsequent VLSI implementations which can target practical
applications.

9
List of Publications

Journal papers:

• C. Zamarreño Ramos, T. Serrano Gotarredona and B. Linares Barranco. “Low
Power Switchable Voltage Mode High Speed Serial Link for Modular Scalable
AER Chip Grids”, IEEE Journal of Solid-State Circuits, submitted for publica-
tion.

• C. Zamarreño Ramos, T. Serrano Gotarredona and B. Linares Barranco. “A
0.35µm Sub-ns Wake-up Time ON-OFF Switchable LVDS Driver-Receiver Pair
for Rate-Dependent Power Saving in AER Bit-Serial Links”, IEEE Transactions
on Biomedical Circuits and Systems, submitted for publication.

• C. Zamarreño Ramos, A. Linares Barranco, T. Serrano Gotarredona and B.
Linares Barranco. “ ‘Pre-Structured Mesh AER’: A Multi-Casting Modular and
Scalable Assembly Approach for Reconfigurable Neuromorphic Pre-Structured
AER Systems”, IEEE Transactions on Biomedical Circuits and Systems, under
review.

• L. Camuñas Mesa, C. Zamarreño-Ramos, A. Linares-Barranco, A. Acosta-Jiménez,
T. Serrano-Gotarredona and B. Linares-Barranco. “An Event-Driven Multi-
Kernel Convolution Processor Module for Event-Driven Vision Sensors”, IEEE
Journal of Solid-State Circuits, in Press.

• C. Zamarreño Ramos, T. Serrano Gotarredona and B. Linares Barranco. “An
Instant-Startup Jitter-Tolerant Manchester-Encoding Serializer/Deserializer Scheme
for Event-Driven Bit-Serial LVDS Interchip AER Links”, IEEE Transactions on
Circuits and Systems I: Regular Papers, in Press.

• C. Zamarreño Ramos, L. A. Camuñas Mesa, Jose A. Pérez Carrasco, T. Masque-
lier, T. Serrano Gotarredona, and B. Linares Barranco, “On Spike Timing Depen-
dent Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex,”
Frontiers in Neuromorphic Engineering (inaugural issue), /Front. Neurosci./
*5:*26, 2011. doi: 10.3389/fnins.2011.00026, 17 March 2011.

155

156 List of Publications

• L. Camuñas Mesa, A. Acosta Jiménez, C. Zamarreño Ramos, T. Serrano Go-
tarredona and B. Linares Barranco. “A 32x32 Pixel Convolution Processor
Chip for Address Event Vision Sensors with 155ns Event Latency and 20Meps
Throughput”, IEEE Transactions on Circuits and Systems I: Regular Papers,
vol.58, no.4, pp.777-790, April 2011.

Conference proceedings

• C. Zamarreño Ramos, R. Kulkarni, T. Serrano Gotarredona, J. Silva Mart́ınez
and B. Linares Barranco. “Voltage mode driver for low power transmission of
high speed serial AER link”. IEEE International Symposium on Circuits and
Systems (ISCAS 2011), pp. 2433-2436, 15-18 May 2011.

• L. Camuñas Mesa, J.A. Pérez Carrasco, C. Zamarreño Ramos, T. Serrano Go-
tarredona and B. Linares Barranco. “On scalable spiking CovNet hardware for
cortex-like visual sensory processing systems”. IEEE International Symposium
on Circuits and Systems (ISCAS 2010), pp. 1659-1662, May 30 2010-June 2
2010.

• J.A. Pérez Carrasco, C. Zamarreño Ramos, T. Serrano Gotarredona and B.
Linares Barranco. “On neuromorphic spiking architectures for asynchronous
STDP memristive devices”. IEEE International Symposium on Circuits and
Systems (ISCAS 2010), pp. 1659-1662, May 30 2010-June 2 2010.

• L. Camuñas Mesa, J.A. Pérez Carrasco, C. Zamarreño Ramos, T. Serrano Go-
tarredona and B. Linares Barranco. “Neocortical frame-free vision system and
processing through scalable spiking CovNet Hardware”. The 2010 International
Joint Conference on Neural Networks (IJCNN), pp.1-8, 18-23 July 2010.

• C. Zamarreño Ramos, T. Serrano Gotarredona and B. Linares Barranco. “OTA-
C oscillator with low frequency variations for on-chip clock generation in serial
LVDS-AER links”. IEEE International Symposium on Circuits and Systems
(ISCAS 2009), pp. 2657-2660, 24-27 May 2009.

• C. Zamarreño-Ramos, T. Serrano-Gotarredona and B. Linares-Barranco. “Low
power LVDS transceiver for AER links with burst mode operation capability”.
Conference on Design of Circuits and Integrated Systems (DCIS 2009).

• C. Zamarreño Ramos, T. Serrano Gotarredona and B. Linares Barranco. “OTA-
C oscillator with low process and temperature variations for on-chip frequency
reference in serial LVDS-AER links”. Conference on Design of Circuits and
Integrated Systems (DCIS 2008).

• C. Zamarreño Ramos, R. Serrano Gotarredona, T. Serrano Gotarredona and B.
Linares Barranco. “LVDS interface for AER links with burst mode operation
capability”. IEEE International Symposium on Circuits and Systems (ISCAS
2008), pp. 644-647, 18-21 May 2008.

10
Appendix I: AER convolution modules in

FPGA

10.1 Introduction

This Appendix provides the VHDL description 1 of the FPGA-based convolution mod-
ule used in Chapter 3. This block has been synthesized along with the source and
destination driven routers to test the system level behavior of large scale AER based
convolution systems. This is a very lightweight implementation of a convolution pro-
cessor which follows a sequential approach to compute the operations associated with
every input event. When a new input event is received, the processor fetches data
from a neuron state RAM and a kernel weights RAM, depending on the input address.
When kernel and neuron status are ready, the integrate and fire operation is performed
for every neuron in the projection field (kernel range) of the input event address: the
weight is added to the previous neuron state and, if an upper or lower threshold is
reached, a signed output event is fired. The computation cycle is repeated neuron by
neuron for all neurons within the kernel projection field of the input event.

In previously reported VLSI implementations [20–23], the computation is performed
row by row and in a pipeline way. This reduces input event processing latency to a
few hundred of ns. In the present FPGA-based sequential implementation we suffer
from latencies in the order of 3µs. However, this particular sequential approach allows
a high scale of integration of convolution modules in the same FPGA optimizing the
hardware resources needed. As we wanted to test large scale systems implement on a
single FPGA or multiple FPGAs environment, we chose this sequential implementation
sacrificing processing speed. A more detailed description of the sequential convolver
features will be provided in this Appendix. Moreover, the VHDL code used for the

1This source code is available upon request to bernabe@imse-cnm.csic.es

157

158 Appendix I: AER convolution modules in FPGA

Convolution

Controller Kernel

RAM

AERin

reqIN

ackIN

Neuron

states

RAM

Configuration block

I&F arith unit

reset

caddress

kaddress

MOSI

SCLK

MISO

forget

kdataIN

ramout ramin kdataOUT NSS

fire

full
Output events FIFO

A
E

R
o

u
t

re
q

O
U

T

a
c
k
O

U
T

caddress

cx

thres

cy

forget_freq

NK

clk reset

rN wN

rK
wK

sgn

Figure 10.1: Block diagram for the sequential AER convolution block.

experiments discussed in Chapter 3 will be discussed.

10.2 Sequential convolution module

The sequential approach is based on an intensive use of the FPGA internal RAM mem-
ory. In VLSI convolution chips, a 2D array of silicon neurons implement the integrate
and fire operation with dedicated and independent hardware resources. Having such a
multiplicity of resources per neuron in an FPGA implementation is highly inefficient
in terms of slices occupation per convolution block. In the present VHDL description,
all neural states are stored in a “Neuron State RAM”, the kernel is stored in a “Kernel
RAM”, and all arithmetic operations are performed by one single “Integrate-and-fire
Arithmetic Unit”, which updates the desired neurons’ state sequentially. This results
in a slower convolution processor, but with a more efficient resource allocation within
an FPGA. For example, a convolution module composed by a 64x64 array of neurons,
a maximum kernel of 11x11 elements and a data codification of 8 bits needs up to
33Kbytes. The Virtex-6 FPGA used in the experiments described in Chapter 3 have
29952Kbytes, leading to a theoretical maximum number of convolution units of 907.
Hence, the most limiting factor is not the FPGA internal memory resources, but the
slices occupied by the logic.

Fig. 10.1 shows the hardware architecture of the sequential AER convolution block.
We can distinguish the next main building blocks in this diagram:

10.3 VHDL code for the convolution block 159

• Kernel and neuron states RAMs: they store the kernel weights and neurons’
state values for the whole convolution module. They are mapped into internal
FPGA RAM resources.

• Convolution controller: manages the input AER port and controls the sequen-
tial convolution operation through a synchronous FSM. It generates the kernel
and neuron state memory addresses to apply the stored kernel over the projec-
tive field given by the input spike address. Moreover, it manages the forgetting
effect through an internal counter which indicates when the neurons must leak.
It triggers a process where the whole neuron state memory is read and its content
is modified according to the chosen leak rate.

• I&F arithmetic unit: operates over the data provided by the kernel and neuron
state memory by adding/subtracting both data depending on the input event
sign. If the result of this arithmetic operation reaches the positive/negative
threshold (both are symmetric with respect to zero), an output event is fired
and the state of the neuron is set to zero. Otherwise, the result of the operation
is updated in the neuron state memory. This operation is performed for every
neuron within the projection field of the input event.

• Output events FIFO: when the I&F arithmetic block decides to send out an
event, this event address and sign is written on an output FIFO, to not slow
down the convolution computation with the output handshaking. This FIFO
block also manages the output AER protocol and generates a full signal for the
controller if the FIFO is reading an overflow condition. In this case, the controller
stops the computation until the FIFO is ready to store new events.

• Configuration block: configuration parameters are received through an SPI
interface and decoded by a configuration block. The first task of this block
consists of writing the kernel memory with the kernel weights. Apart from the
kernel, the convolution units receive the following parameters:

– thres : neurons firing threshold.
– cx,cy : offset which modifies to the input address. The kernel will be applied

over the address given by “input x-address” + “cx” and “input y-address”
+ “cy”, where cx -cy can be either positive or negative.

– forgetfreq: this value is compared with an internal counter to generate the
forgetting pulses with a desired frequency. This forgetting period is ex-
pressed in clock cycles.

– NK : number of kernel rows/columns. Kernels are always considered to be
squared.

10.3 VHDL code for the convolution block

The VHDL code for the convolution block described in Chapter 3 is listed below. Each
Subsection corresponds to different parts of the convolution block hierarchy. The in-
put event and forgetting effect management and the arithmetic units are described
in a top module, along with some configuration resources. The auxiliary blocks are

160 Appendix I: AER convolution modules in FPGA

described in separated files which implement generic RAMs, FIFOs and SPI decod-
ing blocks. The spike-based convolution module VHDL description is available upon
request (bernabe@imse-cnm.csic.es).

10.3.1 Entity declaration

The entity declaration shows the input/output signals of the top module. Signals
(aer in data, aer in req l, aer in ack l) and (aer out data, aer out req l, aer out ack l)
represent the input and output ports, respectively. Signals NSS, SCLK, MOSI, MISO
and PD correspond to the SPI interface which provides the configuration information.
Finally, the convolution unit provides a configuration interface with the event router
through signals xADD, yADD, RTdata, reqW, ackW and RTadd.

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity aer_conv_random is

Port (

clk : in std_logic;

rst : in std_logic;

led : out std_logic_vector(5 downto 0);

-- AER input

aer_in_data : in std_logic_vector(15 downto 0);

aer_in_req_l : in std_logic;

aer_in_ack_l : out std_logic;

-- AER output

aer_out_req_l : out std_logic;

aer_out_ack_l : in std_logic;

aer_out_data : out std_logic_vector(15 downto 0);

-- Micro interface

MICRORST: in std_logic;

STR : out STD_LOGIC;

NSS : in STD_LOGIC;

SCLK : in STD_LOGIC;

MOSI : in STD_LOGIC;

MISO : out STD_LOGIC;

PD: in std_logic;

test: out std_logic;

xADD : out std_logic_vector(3 downto 0);

yADD : out std_logic_vector(3 downto 0);

RTdata : out std_logic_vector(7 downto 0);

reqW : out std_logic;

ackW : in std_logic;

RTadd : out std_logic_vector(5 downto 0);

-- For testing purpose

Aux : out std_logic_vector (35 downto 0)

);

end aer_conv_random;

10.3.2 Blocks and signals declaration

The current convolution module uses RAM memories to store the kernel weights and
neurons’s state. Output events are written in a FIFO before sending them to other
modules using the AER protocol. The configuration parameters are fed into the con-
volution module through an SPI interface. All these tasks are performed by auxiliary

10.3 VHDL code for the convolution block 161

blocks, whose description will be provided in subsequent Subsections. Internal signals
definitions are also included below.

architecture Behavioral of aer_conv_random is

component SPI_SLAVE

Port (CLK : in STD_LOGIC;

RST : in STD_LOGIC;

STR : out STD_LOGIC;

NSS : in STD_LOGIC;

SCLK : in STD_LOGIC;

MOSI : in STD_LOGIC;

MISO : out STD_LOGIC;

WR: out STD_LOGIC;

ADDRESS: out STD_LOGIC_VECTOR(7 downto 0);

DATA_OUT: out STD_LOGIC_VECTOR(7 downto 0));

end component;

COMPONENT confROUTER

PORT(

clk : IN std_logic;

reset : IN std_logic;

SPIdata : IN std_logic_vector(7 downto 0);

SPIvalid : IN std_logic;

PD : IN std_logic;

xADD : OUT std_logic_vector(3 downto 0);

yADD : OUT std_logic_vector(3 downto 0);

RTdata : OUT std_logic_vector(7 downto 0);

RTadd : OUT std_logic_vector(5 downto 0);

reqW : OUT std_logic;

ackW : IN std_logic

);

END COMPONENT;

component conv_matrix

generic(RAM_Size: in integer;

RAM_Addr_Size: in integer;

RAM_Data_Size: in integer);

Port (address : in std_logic_vector(RAM_Addr_Size -1 downto 0);

data : in std_logic_vector(RAM_Data_Size-1 downto 0);

ramout: out std_logic_vector(RAM_Data_Size-1 downto 0);

wrram: in std_logic;

enable: in std_logic;

RST_N: in std_logic;

CLK: in std_logic

);

end component;

COMPONENT aer_out

PORT(

REQ_N : OUT std_logic;

ACK_N : IN std_logic;

Data_AER : OUT std_logic_vector(15 downto 0);

Data_Fifo : IN std_logic_vector(15 downto 0);

Enable_Fifo : IN std_logic;

RD_Fifo : OUT std_logic;

CLK : IN std_logic;

RST_N : IN std_logic

);

END COMPONENT;

COMPONENT ramfifo

generic (TAM: in integer; IL: in integer; WL: in integer);

PORT(

clk : IN std_logic;

wr : IN std_logic;

rd : IN std_logic;

162 Appendix I: AER convolution modules in FPGA

rst_n : IN std_logic;

empty : OUT std_logic;

full : OUT std_logic;

data_in : IN std_logic_vector(WL-1 downto 0);

data_out : OUT std_logic_vector(WL-1 downto 0);

mem_used: out std_logic_vector(IL-1 downto 0)

);

END COMPONENT;

component spblockram

generic (RAM_Size: in integer:= 128;

RAM_Addr_Size: in integer:=7;

RAM_Data_Size: in integer:=8);

port (clk : in std_logic;

we : in std_logic;

a : in std_logic_vector(RAM_Addr_Size-1 downto 0);

di : in std_logic_vector(RAM_Data_Size-1 downto 0);

do : out std_logic_vector(RAM_Data_Size-1 downto 0));

end component;

signal iaer_in_req_l, saer_in_req_l: std_logic;

signal iaer_out_ack_l, saer_out_ack_l: std_logic;

SIGNAL maddress : std_logic_vector(6 downto 0);

SIGNAL enable : std_logic;

SIGNAL emite, remite : std_logic;

SIGNAL evento : std_logic_vector(11 downto 0);

signal fifo_wr, fifo_rd, fifo_empty, fifo_full: std_logic;

signal fifo_data_in, fifo_data_out: std_logic_vector(15 downto 0);

signal not_fifo_empty: std_logic;

signal mem_used: std_logic_vector(3 downto 0); --

signal ramout: std_logic_vector (7 downto 0);

signal caddress: std_logic_vector (11 downto 0);

signal kaddress,keraddress: std_logic_vector (6 downto 0);

signal NK: integer range 0 to 11;

signal write_conv,ker_we: std_logic;

signal kerdata,kerdata_prev: std_logic_vector (7 downto 0);

signal ca2Aux : std_logic_vector(7 downto 0);

signal cdata: std_logic_vector (7 downto 0);

signal init_we: std_logic;

signal aerin_lfsr, aerin_we : std_logic;

signal forget,start_forget,end_forget,read_forget,write_forget: std_logic;

signal waitconv:std_logic;

signal init: std_logic;

signal wrram: std_logic;

signal kk: std_logic_vector (15 downto 0);

signal tparam: integer range 0 to 15;

signal ker_kk: std_logic_vector (7 downto 0);

signal tker_we: std_logic;

signal end_ker: std_logic;

signal toforget: std_logic_vector (32 downto 0);

signal am_forget: std_logic_vector(8 downto 0);

signal thresold: std_logic_vector (7 downto 0);

signal cnt_sm: integer range 0 to 31;

signal tled,nled: std_logic_vector (2 downto 0);

signal pre_spi_valid,spi_valid, latched_spd, spd, pd0: std_logic;

signal spi_address: std_logic_vector (7 downto 0);

signal pre_spi_data,spi_data,ker_data_in: std_logic_vector (7 downto 0);

signal rst_l,hardreset,softreset,init_soft: std_logic;

signal debug : std_logic_vector (11 downto 0);

signal n_ProgKernel,ProgKernel : std_logic;

signal countA,n_countA,countB,n_countB : std_logic_vector(3 downto 0);

signal fire_level : std_logic_vector(8 downto 0);

signal endINker : std_logic;

signal cx,cy : std_logic_vector(6 downto 0);

signal neuron : std_logic_vector(8 downto 0);

begin

Aux(15 downto 0) <= kerdata(7 downto 0) & keraddress(6 downto 0) & ker_we;

10.3 VHDL code for the convolution block 163

rst_l <= not rst and microrst; -- and softreset;

--led <= tled & nled;

--user configure the idle level in variable tresold, and fire level is

--internally calculated to obtain a double threshold for charging and

-- discharging process

fire_level(7 downto 1) <= thresold(6 downto 0);

fire_level(0) <= ’0’;

fire_level(8) <= ’0’;

10.3.3 Forgetting effect FSM and configuration parameter assig-
nation

The forgetting effect FSM (Finite State Machine) manages the forgetting frequency,
which is set by a configuration parameter. When a counter reaches a certain pro-
grammable threshold, a forgetting pulse is generated and other process is in charge of
updating the neuron state memory with a certain fixed leak. Moreover, the configura-
tion parameters are assigned with the information decoded by the SPI block.

B_SPI_Y_Forgeting: process (rst_l,clk)

-- This process is in charge of receiving parameters from the SPI interface.

-- SPI address are ignored and SPI data bytes are expected to be received

--in this order: first 4 bytes for the forgetting counter threshold, then

-- 1 byte for the amount to be forgotten, then 1 byte for the size of the

-- kernel, then 1 control byte that is able to reset the convolver, and

-- then one byte for setting the global threshold for all the IF neurons

-- in order to control the output AER traffic generation.

-- All these configuration parameters are received from the microcontroller

-- through the parameters of an ATC command, so PD=’0’.

--

-- This process is also in charge of managing the forgetting counter

-- and signaling.

variable cnt_forget: std_logic_vector (32 downto 0);

begin

if rst_l=’0’ then

softreset<=’1’; hardreset<=’1’; cnt_forget := (others=>’0’); start_forget <= ’0’;

cnt_sm <= 0; toforget <= "0" & x"0007A120"; am_forget <= "0" & x"00"; --255;

thresold <= "01111111"; nled(0) <= ’1’; nled(2) <= ’1’;

NK <= 11; cx <= (others => ’0’); cy <= (others => ’0’);

elsif clk’event and clk=’1’ then

if spd=’0’ and latched_spd=’1’ then

cnt_sm<=0;

elsif spd = ’0’ and spi_valid=’1’ and cnt_sm<16 then

cnt_sm <= cnt_sm +1 ;

case cnt_sm is

when 0 => toforget (7 downto 0) <= spi_data;

when 1 => toforget (15 downto 8) <= spi_data;

when 2 => toforget (23 downto 16) <= spi_data;

nled(0) <= not nled(0);

when 3 => toforget (31 downto 24) <= spi_data;

when 4 => am_forget <= "0" & spi_data;

when 5 => NK <= conv_integer(spi_data);

when 6 => if spi_data = x"AA" then softreset<=’0’;

end if;

when 7 => thresold <= spi_data;

when 8 => cx <= spi_data(6 downto 0);

when 9 => cy <= spi_data(6 downto 0);

when others=> cnt_forget:=(others=>’0’);

end case;

elsif spd=’1’ and cnt_forget>=toforget then

164 Appendix I: AER convolution modules in FPGA

start_forget <= ’1’; cnt_forget := (others=>’0’);

led(2) <= not nled(2); softreset<=’1’;

elsif spd=’1’ and cnt_forget < toforget and forget = ’0’ then

start_forget <= ’0’; cnt_forget := cnt_forget +1; softreset<=’1’;

else start_forget <= ’0’; softreset<=’1’; hardreset<=’1’;

end if;

end if;

end process;

10.3.4 Neuron State Update FSM

This FSM manages the neuron array updating when a new input event arrives or
there is a forgetting pulse. The neuron state and kernel RAM addresses are calculated
depending on the input event address or the last neuron affected by the forgetting
leakage. Moreover, the arithmetic operations for the Integrate&Fire neurons are also
implemented in this FSM. The RAM addresses management and the neuron’s state
updating are coordinated by a counter which coordinate all these operations to prop-
erly perform the convolution operation. When a forgetting pulse arrives, the FSM
goes around the neuron state RAM position by position subtracting a programmable
quantity to the stored neuron’s states.

B_conv: process (rst_l, clk)

--

-- This big process is responsible of the correct processing of the

-- 64x64 convolution result. Therefore, several operations are managed here:

-- When a forgetting operation is signaled, this process access all the

-- arrays elements and decrement the forgetting amount.

-- When a soft reset is received, this process initializes the

-- convolution matrix.

-- When a new AER input event is received, this process access both the

-- kernel matrix and the corresponding neighborhood of the convolution

-- matrix sequentially in order to add the kernel weights to the correct

-- convolution matrix elements. If the event is negative, CA2 version of

-- the kernel is added

-- When the addition operation is performed if the result is greater than

-- the global threshold, an output AER event is produced and sent to

-- the AER out fifo.

variable cnt: integer range 0 to 512;

variable pi,pj,ki,kj,ni,nj: integer range 0 to 15;

variable imi,imj: integer range 0 to 63;

variable cnt_init: integer range 0 to 8191;

variable suma: integer range -1024 to 1023;

variable tmp: std_logic_vector (7 downto 0);

variable forgetvalue, ramvalue: integer range 0 to 511;

variable caddressx,caddressy: integer range 0 to 63;

variable kaddressv: integer range 0 to 127;

function add_ker(n: in integer) return integer is

variable o: integer;

begin

case n is

when 5 => o := 55;

when 4 => o := 44;

when 3 => o := 33;

when 2 => o := 22;

when 1 => o := 11;

when others => o:= 0;

end case;

return o;

10.3 VHDL code for the convolution block 165

end function;

begin

if rst_l=’0’ then

cnt:=0; end_ker <= ’0’; init <= ’1’; cnt_init := 0;

init_we <= ’0’; aer_in_ack_l <= ’1’;

aerin_lfsr <= ’0’; aerin_we <= ’0’; end_forget <= ’1’;

read_forget <= ’0’; write_forget <= ’0’; waitconv<=’0’;

init_soft<=’0’; nled(1)<=’0’; forget <=’0’; test<=’0’;

tled<="000"; emite <= ’0’;

led <= (others => ’0’);

elsif clk’event and clk=’1’ then

emite <= ’0’;

if softreset=’0’ then -- Initialization by a software usb command

init_soft<=’1’; cnt_init:=0;

end if;

-- The forgetting timer reaches the forgetting state.

-- The whole RAM is processed.

if start_forget=’1’ then

cnt_init := 0; read_forget <= ’0’; write_forget <= ’0’;

end_forget <= ’0’; forget <= ’1’; test <= ’1’;

-- Forgetting ends when end_forget is set high

elsif end_forget =’1’ and forget=’1’ then

forget <= ’0’; test <=’0’;

end if;

-- Initialize the conv-RAM with the default threshold.

if (init=’1’ or init_soft=’1’) and ProgKernel = ’0’ then

aerin_lfsr<=’1’; aerin_we <= ’0’; write_conv <= ’0’;

cnt:=0; init_we <= ’1’;

caddress <= conv_std_logic_vector (cnt_init,12);

cdata <= thresold;

if cnt_init < 4095 then cnt_init := cnt_init+1;

else init<=’0’; init_soft<=’0’;

end if;

-- Forgetting has less priority than initialization.

elsif forget=’1’ and read_forget=’0’ and write_forget=’0’ then

-- Forgetting implies to access one by one all the address

-- of the conv-RAM. In this step the address is written on the

-- address bus.

caddress <= conv_std_logic_vector (cnt_init,12);

init_we<=’0’; read_forget <= ’1’; aerin_lfsr <= ’1’;

aerin_we <= ’0’; write_conv <= ’0’;

if (cnt_init=1) then nled(1) <= not nled(1);

end if;

elsif forget=’1’ and read_forget=’1’ and write_forget=’0’ then

-- In this step, a read operation is due in the conv-RAM and

-- a new value is calculated, by subtracting the am_forget.

-- Negative values are not allowed.

init_we<=’1’; write_forget<= ’1’; aerin_lfsr <= ’1’;

aerin_we <= ’0’; write_conv <= ’0’;

forgetvalue:=conv_integer(am_forget); ramvalue:= conv_integer(ramout);

suma:= ramvalue - forgetvalue;

--set idle value when negative threshold is overflown

if suma <= 0 then cdata <= thresold;

else cdata <= conv_std_logic_vector(suma,8);

end if;

elsif forget=’1’ and read_forget=’1’ and write_forget=’1’ then

-- In this step the counter for addressing the conv-RAM is

--- incremented by one. One cycle wait state is necessary

-- to conclude the write operation in the conv-RAM

init_we <= ’1’; read_forget <= ’0’; write_forget <= ’0’;

aerin_lfsr <= ’1’; aerin_we <= ’0’;

write_conv <= ’0’;

if cnt_init < 4095 then cnt_init := cnt_init+1;

else end_forget <= ’1’; cnt_init:=0;

end if;

end if;

-- If no initialization nor forgetting states, normal operation state.

if init=’0’ and forget=’0’ and init_soft=’0’ then

166 Appendix I: AER convolution modules in FPGA

if saer_in_req_l=’0’ and cnt<2 and end_ker=’0’ and spi_valid=’0’ then

--If a new AER_in arrives, kernel matrix should be added to conv-RAM

-- around the cell of the AER received. Several alternatives are possible

-- depending on the cell position in the conv-RAM due to border conditions.

tled<="111"; cnt:=cnt+1;

init_we <= ’0’; aerin_lfsr <= ’1’; aerin_we <= ’0’;

write_conv <= ’0’; waitconv<=’0’;

if(cy(6) = ’1’) then

imi:=conv_integer(aer_in_data(13 downto 8))+ conv_integer(cy(5 downto 0));

else

imi:=conv_integer(aer_in_data(13 downto 8))- conv_integer(cy(5 downto 0));

end if;

if(cx(6) = ’1’) then

imj:=conv_integer(aer_in_data(5 downto 0))+ conv_integer(cx(5 downto 0));

else

imj:=conv_integer(aer_in_data(5 downto 0))-conv_integer(cx(5 downto 0));

end if;

if (imi >= NK/2) and (imi < 64-NK/2) and (imj>=NK/2) and (imj<64-NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6) &

conv_std_logic_vector(imj-NK/2,6);

kaddress <= (others=>’0’);

pj:=0; pi:=0; kj:=0; ki:=0; nj:=NK-1; ni:=NK-1;

tled<="001";

elsif (imi < NK/2) and (imj>=NK/2) and (imj<64-NK/2) then

caddress <= "000000" & conv_std_logic_vector(imj-NK/2,6);

kaddress <= conv_std_logic_vector(add_ker(NK/2-imi),7);

pj:=0; pi:=NK/2-imi; kj:=0;

ki:=NK/2-imi; nj:=NK-1; ni:=NK-1;

tled<="010";

elsif (imi>=64-NK/2) and (imj>=NK/2) and (imj<64-NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6)

& conv_std_logic_vector(imj-NK/2,6);

kaddress <= (others=>’0’);

pj := 0; pi := 0; kj := 0; ki := 0;

nj := NK-1; ni := NK-1-(imi-(63-NK/2));

tled<="011";

elsif (imi >= NK/2) and (imi < 64-NK/2) and (imj<NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6) & "000000";

kaddress <= conv_std_logic_vector(NK/2-imj,7);

pj:=NK/2-imj; pi := 0; kj:=NK/2-imj; ki := 0;

nj := NK-1; ni := NK-1;

tled<="100";

elsif (imi >= NK/2) and (imi < 64-NK/2) and (imj>=64-NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6)

& conv_std_logic_vector(imj-NK/2,6);

kaddress <= (others=>’0’);

pj := 0; pi := 0; kj := 0; ki := 0;

nj := NK-1-(imj-(63-NK/2)); ni := NK-1;

tled<="101";

elsif (imi < NK/2) and (imj < NK/2) then

caddress <= (others=>’0’);

kaddress <= conv_std_logic_vector(add_ker(NK/2-imi)+(NK/2-imj),7);

pj:=NK/2-imj+1;pi:=NK/2-imi; kj:=NK/2-imj+1;ki:=NK/2-imi;

nj := NK-1; ni := NK-1;

tled<="110";

elsif (imi>=64-NK/2) and (imj>=64-NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6)

& conv_std_logic_vector(imj-NK/2,6);

kaddress <= (others=>’0’);

pj := 0; pi := 0; kj := 0; ki := 0;

nj := NK-1-(imj-(63-NK/2)); ni := NK-1-(imi-(63-NK/2));

tled<="000";

elsif (imj>=64-NK/2) and (imi<NK/2) then

caddress <= "000000" & conv_std_logic_vector(imj-NK/2,6);

kaddress <= conv_std_logic_vector(add_ker(NK/2-imi),7);

10.3 VHDL code for the convolution block 167

pj := 0; pi := NK/2-imi;kj := 0; ki := NK/2-imi;

nj := NK-1-(imj-(63-NK/2)); ni := NK-1;

tled<="000";

elsif (imi>=64-NK/2) and (imj<NK/2) then

caddress <= conv_std_logic_vector((imi-NK/2),6) & "000000";

kaddress <= conv_std_logic_vector(NK/2-imj,7);

pj:=NK/2-imj; pi := 0; kj := NK/2-imj; ki := 0;

nj := NK-1; ni := NK-1-(imi-(63-NK/2));

tled<="111";

end if;

elsif saer_in_req_l=’0’ and spi_valid=’0’

and cnt=2 and end_ker=’0’ then

init_we <= ’0’; write_conv <= ’1’; aerin_lfsr <= ’1’;

aerin_we <= ’0’; waitconv <= ’0’;

cnt:=cnt+2; led <= "000001";

if conv_integer(kerdata) < 128 then

if neuron>=fire_level then

evento <= caddress; emite <= ’1’; cdata <= thresold;

else cdata <= kerdata + ramout;

end if;

else

suma := 256 - conv_integer(kerdata);

if suma >= conv_integer(ramout) then cdata <= thresold;

else cdata <= conv_std_logic_vector(conv_integer(ramout) - suma, 8);

end if;

end if;

elsif saer_in_req_l=’0’ and spi_valid=’0’ and (cnt mod 2)=1

and end_ker=’0’ and waitconv=’0’ then

init_we <= ’0’; aerin_lfsr <= ’1’; aerin_we <= ’0’;

led <= "000010";

if conv_integer(kerdata) < 128 then

if neuron>=fire_level then

evento <= caddress; cdata <= thresold;

if(fifo_full = ’0’) then

emite <= ’1’; cnt:=cnt+1; write_conv <= ’1’;

else

write_conv <= ’0’;

end if;

else cdata <= kerdata + ramout; write_conv <= ’1’; cnt:=cnt+1;

end if;

else

cnt:=cnt+1; write_conv <= ’1’;

suma := 256 - conv_integer(kerdata);

if suma >= conv_integer(ramout) then cdata <= thresold;

else cdata <= conv_std_logic_vector(conv_integer(ramout)-suma,8);

end if;

end if;

elsif saer_in_req_l=’0’ and spi_valid=’0’ and (cnt mod 2)=0

and end_ker=’0’ and waitconv=’0’ then

init_we <= ’0’; aerin_lfsr <= ’1’; aerin_we <= ’0’;

write_conv <= ’0’; waitconv <= ’1’;

led <= "000011";

if kj<nj then

kj:=kj+1;

caddressx := conv_integer (caddress(5 downto 0));

caddress <= caddress(11 downto 6)

& conv_std_logic_vector(caddressx+1,6);

kaddressv := conv_integer(kaddress);

kaddress <= conv_std_logic_vector(kaddressv +1,7);

end_ker<=’0’;

if (kj-1=nj) and (ki=ni) then end_ker<=’1’;

end if;

elsif ki<ni then

kj:=pj; ki:=ki+1;

caddressx := conv_integer (caddress(5 downto 0));

caddressy := conv_integer (caddress(11 downto 6));

caddress <= conv_std_logic_vector(caddressy+1,6)

& conv_std_logic_vector(caddressx+pj-nj,6);

168 Appendix I: AER convolution modules in FPGA

kaddressv := conv_integer(kaddress);

kaddress <= conv_std_logic_vector(kaddressv+pj+NK-nj,7);

end_ker<=’0’;

else end_ker <= ’1’;

end if;

elsif saer_in_req_l=’0’ and spi_valid=’0’ and (cnt mod 2)=0

and end_ker=’0’ and waitconv=’1’ then

init_we <= ’0’; aerin_lfsr <= ’1’; aerin_we <= ’0’;

write_conv <= ’1’; waitconv <= ’0’;

cnt:=cnt+1; led <= "000100";

elsif saer_in_req_l=’0’ and end_ker=’1’ and spi_valid=’0’ then

-- The input AER is already processed and a ACK is sent back

init_we <= ’0’; aerin_lfsr <= ’0’; aerin_we <= ’0’;

write_conv <= ’0’; waitconv <= ’0’;

aer_in_ack_l <= ’0’; led <= "000101";

elsif saer_in_req_l=’1’ and end_ker=’1’ and spi_valid=’0’ then

-- If the input REQ is deasserted, the ACK is also deasserted

-- and a new input event can be processed

init_we <= ’0’; aerin_lfsr <= ’0’; aerin_we <= ’0’;

write_conv <= ’0’; waitconv <= ’0’;

aer_in_ack_l <= ’1’;end_ker<=’0’; cnt:=0;

else

init_we <= ’0’; aerin_lfsr <= ’0’; aerin_we <= ’0’;

write_conv <= ’0’; waitconv <=’0’;

aer_in_ack_l <= ’1’;

end if;

end if;

end if;

end process;

process(kerdata,ramout)

variable ad: integer range 0 to 511;

begin

ad := conv_integer(kerdata)+conv_integer(ramout);

neuron <= conv_std_logic_vector(ad,9);

end process;

10.3.5 Auxiliary blocks connection

We consider auxiliary blocks the kernel and neuron state RAMs, the output event FIFO
and the configuration blocks. SPI SLAVE receives the input SPI signals, decode them
and present the information in a parallel way to be stores in the configuration registers.
B ram kernel and B ram ConvMat are the convolution RAMs and B fifo out is the
output FIFO. Process B sync synchronizes the asynchronous input AER signals with
the convolution module local clocks and B ifz cfg conv ram initializes the auxiliary
memory after reset. Crouter generates the configuration signals for an event router
which can be connected to the convolution module.

debug <= "0000" & cdata;

SPI_SLAVE : SPI_SLAVE port map

(CLK => clk,

RST => rst,

STR => STR,

NSS => NSS,

SCLK => SCLK,

MOSI => MOSI,

MISO => MISO,

WR => pre_spi_valid,

ADDRESS => spi_address,

DATA_OUT => pre_spi_data);

10.3 VHDL code for the convolution block 169

B_ram_kernel: spblockram generic map (128,7,8)

PORT MAP(

clk => clk,

we => ker_we,

a => keraddress,

di => ker_data_in,

do => kerdata_prev);

ca2Aux <= "00000001";

--choose CA2 or not depending of input event sign

process(aer_in_data(7),kerdata_prev,ca2Aux)

begin

if(aer_in_data(7) = ’1’) then

kerdata <= kerdata_prev;

else

kerdata <= not(kerdata_prev) + ca2Aux;

end if;

end process;

B_ram_ConvMat: conv_matrix

GENERIC MAP(4096,12,8)

PORT MAP(

address => caddress,

data => cdata,

ramout => ramout,

wrram => wrram,

enable => enable,

rst_n => rst_l,

CLK => CLK

);

B_sm_out: aer_out PORT MAP(

REQ_N => aer_out_req_l,

ACK_N => aer_out_ack_l,

Data_AER => kk,

Data_Fifo => fifo_data_out,

Enable_Fifo => not_fifo_empty,

RD_Fifo => Fifo_rd,

CLK => CLK,

RST_N => RST_L

);

aer_out_data <= kk;

B_fifo_out: ramfifo

GENERIC MAP(16,4,16)

PORT MAP(

clk => clk,

wr => fifo_wr,

rd => Fifo_rd,

rst_n => RST_L,

empty => Fifo_empty,

full => Fifo_full,

data_in => fifo_Data_In,

data_out => fifo_Data_Out,

mem_used => mem_used

);

B_sync: process(RST_L, CLK)

-- Synchronization process. All control input signals must be synchronized

-- respect to our internal clock

-- using a double flip-flop process.

begin

if (RST_L = ’0’) then

iaer_in_req_l <= ’0’; saer_in_req_l <= ’0’;

iaer_out_ack_l <= ’0’; saer_out_ack_l <= ’0’;

spd <= ’1’; pd0<=’1’;

latched_spd <= ’0’; spi_valid <= ’0’;

170 Appendix I: AER convolution modules in FPGA

spi_data <= (others =>’0’);

elsif(CLK’event and CLK = ’1’) then

iaer_in_req_l <= aer_in_req_l; saer_in_req_l <= iaer_in_req_l;

iaer_out_ack_l <= aer_out_ack_l; saer_out_ack_l <= iaer_out_ack_l;

pd0 <= PD; spd <= pd0;

latched_spd <= spd; spi_valid <= pre_spi_valid;

spi_data <= pre_spi_data;

end if;

end process;

B_ifz_cfg_conv_ram: process(RST_L, CLK)

-- This process manages the initialization of the kernel memory during

-- any initialization command, due to an initial reset, a soft reset

-- or a hard reset.

variable first,one: boolean;

begin

if (RST_L = ’0’) then

maddress <= (others => ’0’); tparam <= 0; tker_we <= ’0’;

first:=TRUE; one:=FALSE;

endINker <= ’0’;

elsif (CLK’event and CLK = ’1’) then

if (init=’1’ or init_soft=’1’) and endINker=’0’ then

if maddress <= "1111111" then tker_we <= not tker_we;

else tker_we <= ’0’;

end if;

if tker_we = ’1’ and maddress <= "1111111" then

maddress <= maddress +1;

if(maddress = "1111111") then

endINker <= ’1’;

end if;

end if;

elsif softreset=’0’ or hardreset=’0’ then maddress<=(others => ’0’);

elsif (spi_valid = ’1’ and spd = ’1’ and maddress<="1111111") then

maddress <= maddress + 1;

elsif spd=’0’ then tker_we<=’0’; maddress <= (others => ’0’);

else tker_we<= ’0’;

end if;

end if;

end process;

ker_data_in <= x"00" when (endINker=’0’) else

spi_data when (spi_valid=’1’ and endINker=’1’) else (others=>’0’);

fifo_wr <= (emite and write_conv) and not fifo_full;

ker_we <= ’1’

when (spd=’1’ and spi_valid = ’1’ and maddress <= "1111111"

and ProgKernel = ’1’)

else tker_we when (init=’1’ or init_soft=’1’) else ’0’;

keraddress <= maddress

when (spi_valid=’1’ or init=’1’ or init_soft=’1’)

else kaddress;

not_fifo_empty <= not fifo_empty;

fifo_data_in(5 downto 0) <= evento(5 downto 0);

fifo_data_in(7 downto 6) <= (others => ’0’);

fifo_data_in(13 downto 8) <= evento(11 downto 6);

fifo_data_in(15 downto 14) <= (others => ’0’);

enable <= ’0’ when (fifo_full=’1’ or saer_in_req_l=’0’ or forget=’1’)

else ’1’;

wrram <= init_we or write_conv;

--process to detect the end of the kernel programming;

process(ProgKernel,spd,spi_valid,maddress,NK,countA,countB)

10.3 VHDL code for the convolution block 171

begin

n_countA <= countA;

n_countB <= countB;

if(spd=’1’ and spi_valid = ’1’ and maddress <= "1111111") then

if(countA = conv_std_logic_vector(NK,4)) then

n_countB <= countB + 1;

n_countA <= "0001";

else

n_countA <= countA + 1;

end if;

end if;

if(countB = conv_std_logic_vector(NK,4)

and countA = conv_std_logic_vector(NK,4)) then

n_ProgKernel <= ’0’;

else

n_ProgKernel <= ProgKernel;

end if;

end process;

process(RST_L,CLK)

begin

if(RST_L = ’0’) then

ProgKernel <= ’1’;

countA <= "0000";

countB <= "0001";

elsif(CLK’event and CLK = ’1’) then

ProgKernel <= n_ProgKernel;

countA <= n_countA;

countB <= n_countB;

end if;

end process;

Crouter: confROUTER PORT MAP (

clk => CLK,

reset => RST_L,

SPIdata => spi_data,

SPIvalid => spi_valid,

PD => ProgKernel,

xADD => xADD,

yADD => yADD,

RTdata => RTdata,

RTadd => RTadd,

reqW => reqW,

ackW => ackW

);

end Behavioral;

10.3.6 Auxiliary blocks VHDL description

This Subsection lists the internal description of the auxiliary blocks needed for the
convolution. The way these blocks are connected in the convolution module top level
have been presented in the previous Subsection.

• SPI configuration block:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;

use UNISIM.VComponents.all;

172 Appendix I: AER convolution modules in FPGA

entity SPI_SLAVE is

Port (CLK : in STD_LOGIC;

RST : in STD_LOGIC;

STR : out STD_LOGIC;

NSS : in STD_LOGIC;

SCLK : in STD_LOGIC;

MOSI : in STD_LOGIC;

MISO : out STD_LOGIC;

WR: out STD_LOGIC;

ADDRESS: out STD_LOGIC_VECTOR(7 downto 0);

DATA_OUT: out STD_LOGIC_VECTOR(7 downto 0));

end SPI_SLAVE;

architecture Behavioral of SPI_SLAVE is

component latch3 is

Port (CLK : in STD_LOGIC;

RST : in STD_LOGIC;

DATA_IN : in STD_LOGIC_VECTOR (2 downto 0);

DATA_OUT : out STD_LOGIC_VECTOR (2 downto 0));

end component;

type STATE_TYPE is (IDLE,WAIT_FALL_EDGE,NEW_BIT,WAIT_NEW_BIT,NEW_RECIVED_WORD);

signal CS, NS: STATE_TYPE;

signal int_data: STD_LOGIC_VECTOR (2 downto 0);

signal RECIVED_DATA: STD_LOGIC_VECTOR (15 downto 0):=(others=>’0’);

signal SCLK_int,MOSI_int,NSS_int,MISO_int: STD_LOGIC:=’0’;

signal test_out:std_logic_vector(15 downto 0):=x"5AA5";

signal i: integer range 0 to 16;

signal twr: std_logic;

begin

DATA_OUT<=RECIVED_DATA(7 DOWNTO 0) when twr=’1’ else

(others=>’Z’);

ADDRESS<=RECIVED_DATA(15 DOWNTO 8);

STR<=’0’;

MISO<=MISO_int;

WR<=twr;

latch0: latch3

Port map(CLK =>clk,

RST =>rst,

DATA_IN(0)=>sclk,

DATA_IN(1)=>mosi,

DATA_IN(2)=>nss,

DATA_OUT =>int_data);

latch1: latch3

Port map(CLK =>clk,

RST =>rst,

DATA_IN=>int_data,

DATA_OUT(0)=>sclk_int,

DATA_OUT(1)=>mosi_int,

DATA_OUT(2)=>nss_int);

process(CS,NS,SCLK_INT,MOSI_INT,i,recived_data,test_out,MISO_int)

begin

case CS is

when IDLE=>

tWR<=’0’;

MISO_int<=’0’;

if(sclk_int=’0’) then

NS<=IDLE;

else

NS<=WAIT_FALL_EDGE;

end if;

when WAIT_FALL_EDGE=>

tWR<=’0’;

if(i<16) then

MISO_int<=test_out(15-i);

10.3 VHDL code for the convolution block 173

else

MISO_int<=’0’;

end if;

if(sclk_int=’1’) then

NS<=WAIT_FALL_EDGE;

else

NS<=NEW_BIT;

end if;

when NEW_BIT=>

tWR<=’0’;

NS<=WAIT_NEW_BIT;

if(i<16) then

MISO_int<=test_out(15-i);

else

MISO_int<=’0’;

end if;

when WAIT_NEW_BIT=>

tWR<=’0’;

NS<=WAIT_NEW_BIT;

if(sclk_int=’1’) then

if (i=16) then

NS<=NEW_RECIVED_WORD;

MISO_int<=’0’;

else

MISO_int<=test_out(15-i);

NS<=WAIT_FALL_EDGE;

end if;

end if;

when NEW_RECIVED_WORD=>

tWR<=’1’;

MISO_int<=MISO_int;

NS<=IDLE;

when others=>

tWR<=’0’;

MISO_int<=MISO_int;

NS<=IDLE;

end case;

end process;

process(CLK,RST,NSS_int,CS,NS)

begin

if(rst=’1’ OR (NSS_int=’1’ and NS/=NEW_RECIVED_WORD)) then

CS<=IDLE;

elsif(clk=’1’ and clk’event) then

CS<=NS;

if(CS=NEW_BIT) then

RECIVED_DATA<=RECIVED_DATA(14 downto 0) & MOSI_INT; --Leemos el dato.

i<=i+1;

elsif(CS=IDLE) then

i<=0;

end if;

end if;

end process;

end Behavioral;

• Kernel weights RAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity spblockram is

generic (RAM_Size: in integer:= 4096;

RAM_Addr_Size: in integer:=12;

174 Appendix I: AER convolution modules in FPGA

RAM_Data_Size: in integer:=8);

port (clk : in std_logic;

we : in std_logic;

a : in std_logic_vector(RAM_Addr_Size-1 downto 0);

di : in std_logic_vector(RAM_Data_Size-1 downto 0);

do : out std_logic_vector(RAM_Data_Size-1 downto 0));

end spblockram;

architecture syn of spblockram is

type ram_type is array(RAM_Size-1 downto 0) of std_logic_vector(RAM_Data_Size-1 downto 0);

signal RAM : ram_type;

signal read_a : std_logic_vector(RAM_Addr_Size-1 downto 0);

begin

process (clk)

begin

if (clk’event and clk = ’1’) then

if (we = ’1’) then

RAM(conv_integer(a)) <= di;

end if;

read_a <= a;

end if;

end process;

do <= RAM(conv_integer(read_a));

end syn;

• Kernel weights RAM:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED."+";

use IEEE.STD_LOGIC_UNSIGNED."-";

entity conv_matrix is

generic(RAM_Size: in integer := 4096;

RAM_Addr_Size: in integer := 12;

RAM_Data_Size: in integer := 8);

Port (address : in std_logic_vector(RAM_Addr_Size -1 downto 0);

data : in std_logic_vector(RAM_Data_Size-1 downto 0);

ramout: out std_logic_vector(RAM_Data_Size-1 downto 0);

wrram: in std_logic;

enable: in std_logic;

RST_N: in std_logic;

CLK: in std_logic

);

end conv_matrix;

architecture Behavioral of conv_matrix is

component spblockram

generic (RAM_Size: in integer:= RAM_Size;

RAM_Addr_Size: in integer:=RAM_Addr_Size;

RAM_Data_Size: in integer:=RAM_Data_Size);

port (clk : in std_logic;

we : in std_logic;

a : in std_logic_vector(RAM_Addr_Size-1 downto 0);

di : in std_logic_vector(RAM_Data_Size-1 downto 0);

do : out std_logic_vector(RAM_Data_Size-1 downto 0));

end component;

signal image_we: std_logic;

signal image_in: std_logic_vector(RAM_Data_Size-1 downto 0);

signal image_out, imout_l: std_logic_vector(RAM_Data_Size-1 downto 0);

signal gray_lfsr: std_logic_vector(RAM_Data_Size-1 downto 0);

10.3 VHDL code for the convolution block 175

signal maddress: std_logic_vector(RAM_Addr_Size-1 downto 0);

signal iaddress: std_logic_vector(RAM_Addr_Size-1 downto 0);

signal levento: std_logic_vector(RAM_Addr_Size-1 downto 0);

signal LFSR: std_logic_vector(RAM_Data_Size+RAM_Addr_Size -1 downto 0);

signal en_lfsr, temite: std_logic;

begin

imagen: spblockram PORT MAP(

clk => clk,

we => image_we,

a => maddress,

di => image_in,

do => image_out);

ramout <= image_out;

ram_access: process(rst_n, data, address, enable,wrram)

begin

if (rst_n = ’0’) then

image_in <= (others =>’0’);

image_we <= ’0’;

maddress <= (others =>’0’);

else

image_in <= data;

image_we <= wrram;

maddress <= address;

end if;

end process;

end Behavioral;

• Output event FIFO:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity aer_out is

Port (REQ_N : out std_logic;

ACK_N : in std_logic;

Data_AER : out std_logic_vector(15 downto 0);

Data_Fifo : in std_logic_vector(15 downto 0);

Enable_Fifo : in std_logic;

RD_Fifo: out std_logic;

CLK : in std_logic;

RST_N : in std_logic);

end aer_out;

architecture Behavioral of aer_out is

type STATE_TYPE is (IDLE, SendDATA);

signal CS, NS: STATE_TYPE;

signal cEvents,n_cEvents : std_logic_vector(10 downto 0);

attribute s: string;

attribute s of cEvents : signal is "yes";

begin

SYNC_PROC: process (CLK, RST_N)

begin

if (RST_N=’0’) then

CS <= IDLE;

cEvents <= (others => ’0’);

elsif (CLK’event and CLK = ’1’) then

CS <= NS;

cEvents <= n_cEvents;

end if;

176 Appendix I: AER convolution modules in FPGA

end process;

COMB_PROC: process (CS, Enable_Fifo, ack_n,cEvents)

begin

n_cEvents <= cEvents;

case CS is

when IDLE =>

REQ_N <= ’1’;

if (Enable_Fifo =’1’ and ACK_N=’1’) then

NS <= SendDATA;

n_cEvents <= cEvents + 1;

else

NS <= IDLE;

end if;

RD_Fifo <= ’0’;

when SendDATA =>

REQ_N <=’0’;

if (ACK_N=’0’) then

NS <= IDLE;

RD_Fifo <= ’1’;

else

NS <= SendDATA;

RD_Fifo <= ’0’;

end if;

end case;

end process;

Data_AER <= Data_Fifo;

end Behavioral;

• Router configuration block:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

USE IEEE.std_logic_arith.all;

USE IEEE.std_logic_unsigned.all;

entity confROUTER is

Port (clk : in STD_LOGIC;

reset : in STD_LOGIC;

SPIdata : in STD_LOGIC_VECTOR (7 downto 0);

SPIvalid : in STD_LOGIC;

PD : in STD_LOGIC;

xADD : out STD_LOGIC_VECTOR (3 downto 0);

yADD : out STD_LOGIC_VECTOR (3 downto 0);

regConf : out std_logic_vector(3 downto 0);

writeRAM : out STD_LOGIC;

ackWrite : in STD_LOGIC;

addWrite : out STD_LOGIC_VECTOR(7 downto 0);

dataWrite : out STD_LOGIC_VECTOR (5 downto 0));

end confROUTER;

architecture Behavioral of confROUTER is

signal ADD,nADD : std_logic_vector(7 downto 0);

signal count,n_count : std_logic_vector(2 downto 0);

signal Byte,nByte : std_logic_vector(15 downto 0);

signal enREAD : std_logic;

signal nRegRout,RegRout : std_logic_vector(3 downto 0);

signal latSPI,n_latSPI : std_logic_vector(7 downto 0);

TYPE estate is (IDLE,READ_DATA,HANDSHAKE1,HANDSHAKE2);

SIGNAL current_state,next_state: estate;

begin

xADD <= ADD(3 downto 0);

yADD <= ADD(7 downto 4);

10.3 VHDL code for the convolution block 177

regConf <= RegRout;

addWrite <= Byte(7 downto 0);

dataWrite <= Byte(13 downto 8);

process(count,ADD,SPIdata,Byte,enREAD,latSPI,RegRout)

begin

nADD <= ADD;

nByte <= Byte;

nRegRout <= RegRout;

if(enREAD = ’1’) then

case count is

when "001" =>

nADD <= latSPI;

when "010" =>

nRegRout <= latSPI(3 downto 0);

when "011" =>

nByte(7 downto 0) <= latSPI;

when others =>

nByte(15 downto 8) <= latSPI;

end case;

end if;

end process;

process(current_state,PD,SPIvalid,ackWrite,count,SPIdata,latSPI)

begin

writeRAM <= ’0’;

next_state <= current_state;

n_count <= count;

enREAD <= ’0’;

n_latSPI <= latSPI;

case current_state is

when IDLE =>

if(SPIvalid = ’1’ and PD= ’0’) then

next_state <= READ_DATA;

n_count <= count + 1;

n_latSPI <= SPIdata;

end if;

when READ_DATA =>

enREAD <= ’1’;

if(count = "100") then

next_state <= HANDSHAKE1;

else

next_state <= IDLE;

end if;

when HANDSHAKE1 =>

writeRAM <= ’1’;

if(ackWrite = ’1’) then

next_state <= HANDSHAKE2;

end if;

when HANDSHAKE2 =>

if(ackWrite = ’0’) then

next_state <= IDLE;

n_count <= "010";

end if;

when others =>

next_state <= IDLE;

end case;

end process;

process(clk,reset)

begin

if(reset = ’0’) then

current_state <= IDLE;

ADD <= (others => ’0’);

Byte <= (others => ’0’);

178 Appendix I: AER convolution modules in FPGA

count <= (others => ’0’);

latSPI <= (others => ’0’);

RegRout <= (others => ’0’);

elsif(clk = ’1’ and clk’event) then

current_state <= next_state;

ADD <= nADD;

Byte <= nByte;

count <= n_count;

latSPI <= n_latSPI;

RegRout <= nRegRout;

end if;

end process;

end Behavioral;

11
Appendix II: Matlab functions for NoC

VHDL generation

11.1 Introduction

This Appendix contains Matlab functions1 which write the VHDL code for a config-
urable NoC arranged in a 2D mesh. This code can be directly included in the FPGA
project to implement the network with the input splitter, configuration resources and
output channels multiplexing, as shown in Fig. 3.11 of Chapter 3. After executing the
main function, the user will obtain a top VHDL block which connects the processing
resources (convolution modules in our example) with the auxiliary blocks. Besides this
file, the program creates the VHDL description of the input splitter and the configu-
ration processor.

The user must provide the following input information:

• netlist : an AERST compatible netlist2 describing the network connectivity which
will be mapped into the VHDL description file.

• topVHDL: name of the VHDL top module which describes the NoC and auxiliary
blocks connectivity. Adding a “.vhd” extension is recommended to handle the
file with FPGA synthesis and implementation tools.

• sizex, sizey : number of rows and columns of the 2D mesh.
• mode: destination-driven and source-driven networks are built if this option is

set to “dest” or “sour”, respectively.
• multiplicity : the input splitter sends N output events for each input event. N is

the splitter multiplicity.

1This source code is available upon request to bernabe@imse-cnm.csic.es
2AERST(AER Simulation Tool) is an event-driven simulator for AER systems, in which each AER

module is user defined and behaviorally described [130]

179

180 Appendix II: Matlab functions for NoC VHDL generation

Once these files have been generated, they have to be grouped with the VHDL files
listed in the previous Appendix and the event-based routers to form the NoC system.

11.2 Matlab code

The user has to execute the main function with the parameters described previously
and will obtain the VHDL files in the Matlab working directory.

11.2.1 Main function

f unc t i on writeVHDL(n e t l i s t , topVHDL, s i z ex , s i z ey , m u l t i p l i c i t y , mode)
%% VHDL i n s t a n t a t i o n templates f o r input s p l i t t e r
nameSplit=’ S p l i t t e r : INPUTsplitter ’ ;
portmapSpl it =’Port Map(’ ;
c l kL ine =’ c l k => clkHS , ’ ;
r e s e t L i n e =’ r e s e t => r e s e t , ’ ;
inAERLine=’AERin => AERin , ’ ;
r eqInLine =’reqIN => reqIN , ’ ;
ackInLine =’ackIN => ackIN , ’ ;
AERoutLine=’AERocut ’ ;
Ass ignLine =’=> ’;
reqOUTLine=’reqOUT ’ ;
ackOUTLine=’ackOUT ’ ;
ADDline=’ADD’ ;

%%VHDL i n s t a n t a t i o n templates f o r convo lve r s
AERLine=’AER’ ;
reqLine =’req ’ ;
ackLine =’ack ’ ;

%%open n e t l i s t f i l e generated f o r the s imu la to r
f i d N e t l i s t=fopen (n e t l i s t , ’ r ’) ;
fidOUT=fopen (topVHDL, ’w ’) ;
i f (f i d N e t l i s t ˜= −1 && fidOUT ˜= −1)

f l a g 1 =1;
whi l e (f l a g 1 == 1)

N e t l i s t L i n e=f g e t s (f i d N e t l i s t) ;
%%look f o r the s p l i t t e r l i n e and e x t r a c t s channe l s connected to i t
i f (l ength (N e t l i s t L i n e) > 13)

i f (strcmp (N e t l i s t L i n e (1 : 1 3) , ’ s p l i t t e rRout e ’) == 1)
f l a g 1 =0;
count =0;
f l a g 2 =1;
k=14;
m=1;
whi l e (f l a g 2 == 1)

i f (strcmp (’{ ’ , N e t l i s t L i n e (k))==1)
count=count + 1 ;
i f (count == 3)

c h a n n e l s S p l i t (m)= s s c a n f (N e t l i s t L i n e ((k+1): end) , ’%d ’) ;
m=m+1;

end
e l s e i f (strcmp (’ , ’ , N e t l i s t L i n e (k))==1)

c h a n n e l s S p l i t (m)= s s c a n f (N e t l i s t L i n e ((k+1): end) , ’%d ’) ;
m=m+1;

e l s e i f (strcmp (’} ’ , N e t l i s t L i n e (k))==1)
count=count +1;
i f (count == 4)

f l a g 2 = 0 ;
end

end
k=k+1;

11.2 Matlab code 181

end
end

end
end

N e t l i s t L i n e=f g e t s (f i d N e t l i s t) ;
Nelem=s i z e x ∗ s i z e y ;
indChip =1;
ChannelsIN=ze ro s (Nelem , 4) ;
ChannelsOUT=ze ro s (Nelem , 4) ;
%%now analyze the convo lver l i n e s to e x t r a c t c o n n e c t i v i t y
whi l e (indChip <= Nelem)

i f (l ength (N e t l i s t L i n e) >= 18)
i f (strcmp (N e t l i s t L i n e (1 : 1 8) , ’ convolut ionRoute { ’) == 1)

%%analyzeLine to e x t r a c t input and output channe l s
A=s s c a n f (Ne t l i s tL ine , ’ convolut ionRoute {%d,%d,%d,%d} {%d,%d,%d,%d } ’) ;
ChannelsIN (indChip , :)=A(1 : 4) ;
ChannelsOUT(indChip , :)=A(5 : 8) ;
indChip = indChip + 1 ;

end
end
N e t l i s t L i n e=f g e t s (f i d N e t l i s t) ;

end

%%Parameters needed to wr i t e the VHDL: xs i z e , y s i z e , number o f r e p l i c a
%%events f o r each s p l i t t e r channel , number o f t o t a l channe l s
nChannels=max(max ([ChannelsIN ChannelsOUT])) ;

%%e x t r a c t channe l s in the borders to route them to the mu l t i p l exe r
Se lectedChanne l s=ze ro s (2∗ s i z e x+s i z e y) ;
TiedPorts=ze ro s (2∗ s i z e x+s i z e y) ;
ind =1;
chip =1;
%run a l l the columms
f o r k=1: s i z e x

%%take UP−channel from NoC border
Se lectedChanne l s (ind) = ChannelsOUT(chip , 1) ;
%%take DOWN−channel from NoC border
Se lectedChanne l s (ind+1) = ChannelsOUT(chip+s i z ey −1 ,3) ;
%%take UP−channe l s to t i e−up
TiedPorts (ind) = ChannelsIN (chip , 1) ;
%%take DOWN−channe l s to t i e−up
TiedPorts (ind+1) = ChannelsIN (chip+s i z ey −1 ,3) ;
ind=ind +2;
chip=chip+s i z e y ;

end
chip=(s i z ex −1)∗ s i z e y +1; %%go to the l a s t column
%%run a l l the rows
f o r k=1: s i z e y

%%take RIGHT−channel from NoC border
Se lectedChanne l s (ind) = ChannelsOUT(chip , 2) ;
%%take RIGHT−channel to t i e−up
TiedPorts (ind) = ChannelsIN (chip , 2) ;
ind=ind +1;
chip=chip +1;

end

[bitsNelem , b i t s S p l i t , bitsOUT , bitsADD]=genTOPentity (fidOUT , s i z ex , s i z ey , m u l t i p l i c i t y) ;

w r i t e S i g n a l s (fidOUT , nChannels , bitsADD , s i z ex , s i z e y) ;

t i e P o r t s (fidOUT , TiedPorts) ;

wr i t eC lock ing (fidOUT) ;

i n s t a n t i a t e S p l i t t e r (fidOUT , c h a n n e l s S p l i t) ;

182 Appendix II: Matlab functions for NoC VHDL generation

f o r k=1: s i z e x ∗ s i z e y
writeConvolver (fidOUT , k , s i z e x ∗ s i z ey , ChannelsIN (k , :) , ChannelsOUT(k , :)) ;

end

writeProg (fidOUT , s i z e y) ;

writeOUTMUX(fidOUT ,2∗ s i z e y+s i z ex , Se lectedChanne l s) ;

f p r i n t f (fidOUT , ’ end Behav iora l ;\n ’) ;

%%%%c r e a t e a u x i l i a r vhdl b locks needed f o r con f i gu ra t i on , s p l i t t i n g and
%%%%merging
i f (strcmp (mode , ’ source ’) == 1)

writeProgNetworkSour (s i z ex , s i z ey , m u l t i p l i c i t y) ;
e l s e

writeProgNetwork (s i z ex , s i z ey , m u l t i p l i c i t y) ;
end
writeINPUTspl i t ter (s i z ey , m u l t i p l i c i t y) ;

writeMUX(2∗ s i z e y+s i z e x) ;

%c l o s e f i l e s
f c l o s e (f i d N e t l i s t) ;
f c l o s e (fidOUT) ;

e l s e
i f (f i d N e t l i s t == −1)

f p r i n t f (’ Error opening the n e t l i s t f i l e \n ’) ;
e l s e i f (fidOUT == −1)

f p r i n t f (’ Error opening the output f i l e \n ’) ;
e l s e

f p r i n t f (’ Error opening f i l e s \n ’)
end

end

11.2.2 Top entity generation

f unc t i on [b i t s , b i t s S p l i t , bitsOUT , bitsADD]=genTOPentity (fidOUT , xs i z e , y s i z e , Nsp l i t)
%%x s i z e : number o f e lements in X coord inate
%%y s i z e : number o f e lements in Y coord inate
%%Nsp l i t : maximum s p l i t t e r output m u l t i p l i c i t y . Maximum number o f events
%%that can be generated f o r each input event

Tota lS i z e=x s i z e ∗ y s i z e ;
f l a g =1;
b i t s =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s < Tota lS i z e)
b i t s = b i t s + 1 ;

e l s e
f l a g =0;

end
end

b i t s S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s S p l i t < Nsp l i t +1)
b i t s S p l i t = b i t s S p l i t + 1 ;

e l s e
f l a g =0;

end
end

NoutChannels=x s i z e ∗2+ y s i z e ;
bitsOUT=1;

11.2 Matlab code 183

f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ bitsOUT < NoutChannels)
bitsOUT = bitsOUT + 1 ;

e l s e
f l a g =0;

end
end

f p r i n t f (fidOUT , ’ l i b r a r y IEEE ;\n ’) ;
f p r i n t f (fidOUT , ’ use IEEE . STD LOGIC 1164 .ALL;\n\n ’) ;

f p r i n t f (fidOUT , ’ l i b r a r y UNISIM;\n ’) ;
f p r i n t f (fidOUT , ’ use UNISIM . VComponents . a l l ;\n\n ’) ;

f p r i n t f (fidOUT , ’ e n t i t y TOP i s \n ’) ;
f p r i n t f (fidOUT , ’ Port (c lkIN : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERin : in STD LOGIC VECTOR(22 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqIN : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackIN : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t s e l : in STD LOGIC VECTOR(%d downto 0) ;\n ’ , bitsOUT−1);
f p r i n t f (fidOUT , ’\ t AERout : out STD LOGIC VECTOR(31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUT1 : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUT1 : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t Rx : IN STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t Tx : OUT STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t RTS: OUT STD LOGIC) ; \ n ’) ;
f p r i n t f (fidOUT , ’ end TOP;\n\n\n ’) ;

f p r i n t f (fidOUT , ’ a r c h i t e c t u r e Behav iora l o f TOP i s \n\n ’) ;

f p r i n t f (fidOUT , ’ component TopConvRouter\n ’) ;
f p r i n t f (fidOUT , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERinL : in STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqINl : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackINl : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERinR : in STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqINr : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackINr : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERinU : in STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqINu : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackINu : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERinD : in STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqINd : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackINd : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERoutL : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUTl : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUTl : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERoutR : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUTr : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUTr : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERoutU : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUTu : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUTu : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERoutD : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUTd : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUTd : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t NSS : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t SCLK : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t MOSI : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t MISO : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t PD: in s t d l o g i c) ; \ n ’) ;
f p r i n t f (fidOUT , ’ end component ;\n\n\n ’) ;

184 Appendix II: Matlab functions for NoC VHDL generation

f p r i n t f (fidOUT , ’ component progNETWORK\n ’) ;
f p r i n t f (fidOUT , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t RX : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t TX : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t RTS : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t DATA : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t SCLK : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t PD : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t NSS : out STD LOGIC VECTOR(%d downto 0) ;\n ’ , Tota lS ize −1);
f o r k=1: y s i z e

i f (k==y s i z e)
f p r i n t f (fidOUT , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0)) ; \ n ’

, k , 8∗ Nsp l i t+b i t s S p l i t −1);
e l s e

f p r i n t f (fidOUT , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0) ;\n ’ ,
k , 8∗ Nsp l i t+b i t s S p l i t −1);

end
end
f p r i n t f (fidOUT , ’ end component ;\n\n\n ’) ;

bitsADD=8∗Nsp l i t+b i t s S p l i t ;

f p r i n t f (fidOUT , ’ component INPUTsplitter \n ’) ;
f p r i n t f (fidOUT , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t AERin : in STD LOGIC VECTOR(22 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqIN : in STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackIN : out STD LOGIC;\n ’) ;
f o r k=1: y s i z e

f p r i n t f (fidOUT , ’\ t AERout%d : out STD LOGIC VECTOR (31 downto 0) ;\n ’ , k) ;
f p r i n t f (fidOUT , ’\ t reqOUT%d : out STD LOGIC;\n ’ , k) ;
f p r i n t f (fidOUT , ’\ t ackOUT%d : in STD LOGIC;\n ’ , k) ;

end
f o r k=1: y s i z e

i f (k==y s i z e)
f p r i n t f (fidOUT , ’\ t ADD%d : in STD LOGIC VECTOR (%d downto 0)) ; \ n ’ ,

k , 8∗ Nsp l i t+b i t s S p l i t −1);
e l s e

f p r i n t f (fidOUT , ’\ t ADD%d : in STD LOGIC VECTOR (%d downto 0) ;\n ’ ,
k , 8∗ Nsp l i t+b i t s S p l i t −1);

end
end
f p r i n t f (fidOUT , ’ end component ;\n ’) ;

f p r i n t f (fidOUT , ’ component OUTmux\n ’) ;
f p r i n t f (fidOUT , ’ Port (s e l : in STD LOGIC VECTOR (%d downto 0) ;\n ’ , bitsOUT−1);
f o r k=1:NoutChannels

f p r i n t f (fidOUT , ’\ t AERin%d : in STD LOGIC VECTOR (31 downto 0) ;\n ’ , k) ;
f p r i n t f (fidOUT , ’\ t reqIN%d : in STD LOGIC;\n ’ , k) ;
f p r i n t f (fidOUT , ’\ t ackIN%d : out STD LOGIC;\n ’ , k) ;

end

f p r i n t f (fidOUT , ’\ t AERout : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUT1 : out STD LOGIC;\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUT1 : in STD LOGIC) ; \ n ’) ;
f p r i n t f (fidOUT , ’ end component ;\n\n\n ’) ;

f p r i n t f (fidOUT , ’ component c l k w i z v 1 6 \n ’) ;
f p r i n t f (fidOUT , ’ port \n ’) ;
f p r i n t f (fidOUT , ’ (\ n ’) ;
f p r i n t f (fidOUT , ’\ t CLK IN1 : in s t d l o g i c ;\n ’) ;
f p r i n t f (fidOUT , ’\ t CLK OUT1 : out s t d l o g i c ;\n ’) ;
f p r i n t f (fidOUT , ’\ t RESET : in s t d l o g i c ;\n ’) ;
f p r i n t f (fidOUT , ’\ t LOCKED : out s t d l o g i c \n ’) ;

11.2 Matlab code 185

f p r i n t f (fidOUT , ’\ t) ; \ n ’) ;
f p r i n t f (fidOUT , ’ end component ;\n\n\n ’) ;

11.2.3 Signals defintion

%%func t i on that w r i t e s a l l the s i g n a l s needed f o r the i n t e r n a l a r c h i t e c t u r e

func t i on w r i t e S i g n a l s (fidOUT , nChannels , b i t s S p l i t , x s i z e , y s i z e)

ind =1;
whi l e (ind <= nChannels)

i f (ind+3 <= nChannels)
f p r i n t f (fidOUT , ’ s i g n a l AER%d ,AER%d ,AER%d ,AER%d : s t d l o g i c v e c t o r

(31 downto 0) ;\n ’ , ind , ind +1, ind +2, ind +3);
ind = ind + 4 ;

e l s e i f (ind+2 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l AER%d ,AER%d ,AER%d : s t d l o g i c v e c t o r

(31 downto 0) ;\n ’ , ind , ind +1, ind +2);
ind = ind + 3 ;

e l s e i f (ind+1 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l AER%d ,AER%d : s t d l o g i c v e c t o r (31 downto 0) ;\n ’ ,

ind , ind +1);
ind = ind + 2 ;

e l s e i f (ind == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l AER%d : s t d l o g i c v e c t o r (31 downto 0) ;\n ’ , ind) ;
ind = ind + 1 ;

end
end

ind =1;
whi l e (ind <= nChannels)

i f (ind+3 <= nChannels)
f p r i n t f (fidOUT , ’ s i g n a l req%d , req%d , req%d , req%d : s t d l o g i c ;\n ’ ,

ind , ind +1, ind +2, ind +3);
ind = ind + 4 ;

e l s e i f (ind+2 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l req%d , req%d , req%d : s t d l o g i c ;\n ’ ,

ind , ind +1, ind +2);
ind = ind + 3 ;

e l s e i f (ind+1 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l req%d , req%d : s t d l o g i c ;\n ’ , ind , ind +1);
ind = ind + 2 ;

e l s e i f (ind == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l req%d : s t d l o g i c ;\n ’ , ind) ;
ind = ind + 1 ;

end
end

ind =1;
whi l e (ind <= nChannels)

i f (ind+3 <= nChannels)
f p r i n t f (fidOUT , ’ s i g n a l ack%d , ack%d , ack%d , ack%d : s t d l o g i c ;\n ’ ,

ind , ind +1, ind +2, ind +3);
ind = ind + 4 ;

e l s e i f (ind+2 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l ack%d , ack%d , ack%d : s t d l o g i c ;\n ’ ,

ind , ind +1, ind +2);
ind = ind + 3 ;

e l s e i f (ind+1 == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l ack%d , ack%d : s t d l o g i c ;\n ’ , ind , ind +1);
ind = ind + 2 ;

e l s e i f (ind == nChannels)
f p r i n t f (fidOUT , ’ s i g n a l ack%d : s t d l o g i c ;\n ’ , ind) ;
ind = ind + 1 ;

186 Appendix II: Matlab functions for NoC VHDL generation

end
end

f p r i n t f (fidOUT , ’ s i g n a l NSS : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , x s i z e ∗ ys i z e −1);
f p r i n t f (fidOUT , ’ s i g n a l SCLK,MOSI,PD : s t d l o g i c ;\n ’) ;
f o r k=1: y s i z e

f p r i n t f (fidOUT , ’ s i g n a l ADD%d : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , k , b i t s S p l i t −1);
end
f p r i n t f (fidOUT , ’ s i g n a l clkHS , c lk , l o ck : s t d l o g i c ;\n ’) ;
f p r i n t f (fidOUT , ’ begin \n\n\n ’) ;

11.2.4 Tie handshaking signals of unused channels

f unc t i on t i e P o r t s (fidOUT , TiedPorts)

f o r k=1: l ength (TiedPorts)
f p r i n t f (fidOUT , ’AER%d <= (othe r s => ’ ’ 1 ’ ’) ; \ n ’ , TiedPorts (k)) ;
f p r i n t f (fidOUT , ’ req%d <= ’ ’ 1 ’ ’ ; \n ’ , TiedPorts (k)) ;

end

f p r i n t f (fidOUT , ’\ n\n ’) ;

11.2.5 Clock generation block instantation

f unc t i on wr i t eClock ing (fidOUT)

f p r i n t f (fidOUT , ’CM : c l k w i z v 1 6 \n ’) ;
f p r i n t f (fidOUT , ’ port Map\n ’) ;
f p r i n t f (fidOUT , ’ (\ n ’) ;
f p r i n t f (fidOUT , ’\ t CLK IN1 => clkIN ,\n ’) ;
f p r i n t f (fidOUT , ’\ t CLK OUT1 => clkHS ,\n ’) ;
f p r i n t f (fidOUT , ’\ t RESET => r e s e t ,\n ’) ;
f p r i n t f (fidOUT , ’\ t LOCKED => l o ck) ; \ n\n\n ’) ;

f p r i n t f (fidOUT , ’ p roce s s (clkHS , r e s e t)\n ’) ;
f p r i n t f (fidOUT , ’ begin \n ’) ;
f p r i n t f (fidOUT , ’ i f (r e s e t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (fidOUT , ’\ t c l k <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (fidOUT , ’ e l s i f (clkHS = ’ ’ 1 ’ ’ and clkHS ’ ’ event) then\n ’) ;
f p r i n t f (fidOUT , ’\ t c l k <= not c l k ;\n ’) ;
f p r i n t f (fidOUT , ’ end i f ;\n ’) ;
f p r i n t f (fidOUT , ’ end proce s s ;\n\n\n ’) ;

11.2.6 Input splitter instantiation

f unc t i on i n s t a n t i a t e S p l i t t e r (fidOUT , c h a n n e l s S p l i t)

f p r i n t f (fidOUT , ’ S p l i t t e r : INPUTsplitter \n ’) ;
f p r i n t f (fidOUT , ’ Port Map(\n ’) ;
f p r i n t f (fidOUT , ’\ t c l k => clkHS ,\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (fidOUT , ’\ t AERin => AERin ,\n ’) ;
f p r i n t f (fidOUT , ’\ t reqIN => reqIN ,\n ’) ;
f p r i n t f (fidOUT , ’\ t ackIN => ackIN ,\n ’) ;

f o r k=1: l ength (c h a n n e l s S p l i t)
f p r i n t f (fidOUT , ’\ t AERout%d => AER%d ,\n ’ , k , c h a n n e l s S p l i t (k)) ;
f p r i n t f (fidOUT , ’\ t reqOUT%d => req%d ,\n ’ , k , c h a n n e l s S p l i t (k)) ;
f p r i n t f (fidOUT , ’\ t ackOUT%d => ack%d ,\n ’ , k , c h a n n e l s S p l i t (k)) ;

end

f o r k=1: l ength (c h a n n e l s S p l i t)
i f (k==length (c h a n n e l s S p l i t))

11.2 Matlab code 187

f p r i n t f (fidOUT , ’\ t ADD%d => ADD%d) ; \ n ’ , k , k) ;
e l s e

f p r i n t f (fidOUT , ’\ t ADD%d => ADD%d ,\n ’ , k , k) ;
end

end

f p r i n t f (fidOUT , ’\ n\n ’) ;

11.2.7 Convolution module

f unc t i on writeConvolver (fidOUT ,N, Nconv , inChannels , outChannels)

f p r i n t f (fidOUT , ’ conv%d : TopConvRouter\n ’ ,N) ;
f p r i n t f (fidOUT , ’ Port Map (c l k => clkHS ,\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (fidOUT , ’\ t AERinL => AER%d ,\n ’ , inChannels (4)) ;
f p r i n t f (fidOUT , ’\ t reqINl => req%d ,\n ’ , inChannels (4)) ;
f p r i n t f (fidOUT , ’\ t ackINl => ack%d ,\n ’ , inChannels (4)) ;
f p r i n t f (fidOUT , ’\ t AERinR => AER%d ,\n ’ , inChannels (2)) ;
f p r i n t f (fidOUT , ’\ t reqINr => req%d ,\n ’ , inChannels (2)) ;
f p r i n t f (fidOUT , ’\ t ackINr => ack%d ,\n ’ , inChannels (2)) ;
f p r i n t f (fidOUT , ’\ t AERinU => AER%d ,\n ’ , inChannels (1)) ;
f p r i n t f (fidOUT , ’\ t reqINu => req%d ,\n ’ , inChannels (1)) ;
f p r i n t f (fidOUT , ’\ t ackINu => ack%d ,\n ’ , inChannels (1)) ;
f p r i n t f (fidOUT , ’\ t AERinD => AER%d ,\n ’ , inChannels (3)) ;
f p r i n t f (fidOUT , ’\ t reqINd => req%d ,\n ’ , inChannels (3)) ;
f p r i n t f (fidOUT , ’\ t ackINd => ack%d ,\n ’ , inChannels (3)) ;

f p r i n t f (fidOUT , ’\ t AERoutL => AER%d ,\n ’ , outChannels (4)) ;
f p r i n t f (fidOUT , ’\ t reqOUTl => req%d ,\n ’ , outChannels (4)) ;
f p r i n t f (fidOUT , ’\ t ackOUTl => ack%d ,\n ’ , outChannels (4)) ;
f p r i n t f (fidOUT , ’\ t AERoutR => AER%d ,\n ’ , outChannels (2)) ;
f p r i n t f (fidOUT , ’\ t reqOUTr => req%d ,\n ’ , outChannels (2)) ;
f p r i n t f (fidOUT , ’\ t ackOUTr => ack%d ,\n ’ , outChannels (2)) ;
f p r i n t f (fidOUT , ’\ t AERoutD => AER%d ,\n ’ , outChannels (3)) ;
f p r i n t f (fidOUT , ’\ t reqOUTd => req%d ,\n ’ , outChannels (3)) ;
f p r i n t f (fidOUT , ’\ t ackOUTd => ack%d ,\n ’ , outChannels (3)) ;
f p r i n t f (fidOUT , ’\ t AERoutU => AER%d ,\n ’ , outChannels (1)) ;
f p r i n t f (fidOUT , ’\ t reqOUTu => req%d ,\n ’ , outChannels (1)) ;
f p r i n t f (fidOUT , ’\ t ackOUTu => ack%d ,\n ’ , outChannels (1)) ;

f p r i n t f (fidOUT , ’\ t NSS => NSS(%d) ,\n ’ ,N−1);
f p r i n t f (fidOUT , ’\ t SCLK => SCLK,\n ’) ;
f p r i n t f (fidOUT , ’\ t MOSI => MOSI,\n ’) ;
f p r i n t f (fidOUT , ’\ t MISO => open ,\n ’) ;
f p r i n t f (fidOUT , ’\ t PD => PD) ; \ n\n\n ’) ;

11.2.8 Configuration module instantiation

f unc t i on writeProg (fidOUT , y s i z e)

f p r i n t f (fidOUT , ’ progBlock : progNETWORK\n ’) ;
f p r i n t f (fidOUT , ’ Port Map(c l k => clkHS ,\n ’) ;
f p r i n t f (fidOUT , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (fidOUT , ’\ t RX => RX,\n ’) ;
f p r i n t f (fidOUT , ’\ t TX => TX,\n ’) ;
f p r i n t f (fidOUT , ’\ t RTS => RTS,\n ’) ;
f p r i n t f (fidOUT , ’\ t DATA => MOSI,\n ’) ;
f p r i n t f (fidOUT , ’\ t SCLK => SCLK,\n ’) ;
f p r i n t f (fidOUT , ’\ t PD => PD,\n ’) ;
f p r i n t f (fidOUT , ’\ t NSS => NSS,\n ’) ;
f o r k=1: y s i z e

i f (k==y s i z e)
f p r i n t f (fidOUT , ’\ t ADD%d => ADD%d) ; \ n ’ , k , k) ;

188 Appendix II: Matlab functions for NoC VHDL generation

e l s e
f p r i n t f (fidOUT , ’\ t ADD%d => ADD%d ,\n ’ , k , k) ;

end
end

f p r i n t f (fidOUT , ’\ n\n ’) ;

11.2.9 Output multiplexer instantiation

f unc t i on writeOUTMUX(fidOUT , nChannels , Se lectedChanne l s)

f p r i n t f (fidOUT , ’MUX : OUTmux\n ’) ;
f p r i n t f (fidOUT , ’ Port Map (s e l => s e l ,\n ’) ;

f o r k=1: nChannels
f p r i n t f (fidOUT , ’\ t AERin%d => AER%d ,\n ’ , k , Se lectedChanne l s (k)) ;
f p r i n t f (fidOUT , ’\ t reqIN%d => req%d ,\n ’ , k , Se lectedChanne l s (k)) ;
f p r i n t f (fidOUT , ’\ t ackIN%d => ack%d ,\n ’ , k , Se lectedChanne l s (k)) ;

end

f p r i n t f (fidOUT , ’\ t AERout => AERout ,\n ’) ;
f p r i n t f (fidOUT , ’\ t reqOUT1 => reqOUT1 ,\n ’) ;
f p r i n t f (fidOUT , ’\ t ackOUT1 => ackOUT1) ; \ n ’) ;

f p r i n t f (fidOUT , ’\ n\n ’) ;

11.2.10 Input splitter VHDL description

f unc t i on writeINPUTspl i t ter (y s i z e , Mult)

b i t s S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s S p l i t < Mult+1)
b i t s S p l i t = b i t s S p l i t + 1 ;

e l s e
f l a g =0;

end
end

f i d=fopen (’ INPUTsplitter . vhd ’ , ’w ’) ;
i f (f i d == −1)

f p r i n t f (’ Error c r e a t i n g a u x i l i a r INOUTsplitter f i l e \n ’) ;
e l s e

f p r i n t f (f i d , ’ l i b r a r y IEEE ;\n ’) ;
f p r i n t f (f i d , ’ use IEEE . STD LOGIC 1164 .ALL;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c a r i t h . a l l ;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c u n s i g n e d . a l l ;\n\n ’) ;

f p r i n t f (f i d , ’ e n t i t y INPUTsplitter i s \n ’) ;
f p r i n t f (f i d , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t AERin : in STD LOGIC VECTOR(22 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’\ t reqIN : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t ackIN : out STD LOGIC;\n ’) ;

f o r k=1: y s i z e
f p r i n t f (f i d , ’\ t AERout%d : out STD LOGIC VECTOR (31 downto 0) ;\n ’ , k) ;
f p r i n t f (f i d , ’\ t reqOUT%d : out STD LOGIC;\n ’ , k) ;
f p r i n t f (f i d , ’\ t ackOUT%d : in STD LOGIC;\n ’ , k) ;

end

f o r k=1: y s i z e
i f (k==y s i z e)

11.2 Matlab code 189

f p r i n t f (f i d , ’\ t ADD%d : in STD LOGIC VECTOR (%d downto 0)) ; \ n ’ ,
k , 8∗Mult+b i t s S p l i t −1);

e l s e
f p r i n t f (f i d , ’\ t ADD%d : in STD LOGIC VECTOR (%d downto 0) ;\n ’ ,

k , 8∗Mult+b i t s S p l i t −1);
end

end

f p r i n t f (f i d , ’ end INPUTsplitter ;\n\n ’) ;

f p r i n t f (f i d , ’ a r c h i t e c t u r e Behav iora l o f INPUTsplitter i s \n ’) ;

f o r k=1: y s i z e
f p r i n t f (f i d , ’TYPE e s t a t e%d i s (IDLE%d ,GEN REQ OUT%d ,WAIT HANDSHAKE%d) ; \ n ’ ,

k , k , k , k) ;
f p r i n t f (f i d , ’SIGNAL c u r r e n t s t a t e%d , n e x t s t a t e%d : e s t a t e%d ;\n ’ , k , k , k) ;

end
f o r k=1: y s i z e

f p r i n t f (f i d , ’SIGNAL count%d , n count%d : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ ,
k , k , b i t s S p l i t −1);

end
f o r k=1: y s i z e

f p r i n t f (f i d , ’SIGNAL busy%d : s t d l o g i c ;\n ’ , k) ;
end
f p r i n t f (f i d , ’ s i g n a l reqINl , nreqINl : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ begin \n\n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (’) ;
f o r k=1: ys i z e −1

f p r i n t f (f i d , ’ busy%d , ’ , k) ;
end
f p r i n t f (f i d , ’ busy%d)\n ’ , y s i z e) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’ i f (’) ;
f o r k=1: ys i z e −1

f p r i n t f (f i d , ’ busy%d= ’ ’0 ’ ’ and ’ , k) ;
end
f p r i n t f (f i d , ’ busy%d = ’ ’ 0 ’ ’) then\n ’ , y s i z e) ;
f p r i n t f (f i d , ’\ t ackIN <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’ e l s e \n ’) ;
f p r i n t f (f i d , ’\ t ackIN <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’ end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

f o r k=1: y s i z e
f p r i n t f (f i d , ’ AERout%d (31) <= ’ ’ 0 ’ ’ ; \n ’ , k) ;

end

f o r k=1: y s i z e
f p r i n t f (f i d , ’ AERout%d(22 downto 0) <= AERin ;\n ’ , k) ;

end

f p r i n t f (f i d , ’ nreqINl <= reqIN ;\n ’) ;

f o r k=1: y s i z e
f p r i n t f (f i d , ’ p roc e s s (count%d ,ADD%d)\n ’ , k , k) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t case count%d i s \n ’ , k) ;
ind =8;
f o r m=1:(Mult−1)

f p r i n t f (f i d , ’\ t \ t when ”%s ” =>\n ’ , dec2bin (m, b i t s S p l i t)) ;
f p r i n t f (f i d , ’\ t \ t \ t AERout%d(30 downto 23) <= ADD%d(%d downto %d) ; \ n ’ ,

k , k , ind +7, ind) ;
ind=ind +8;

end
f p r i n t f (f i d , ’\ t \ t when othe r s => \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t AERout%d(30 downto 23) <= ADD%d(7 downto 0) ;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t end case ;\n ’) ;

190 Appendix II: Matlab functions for NoC VHDL generation

f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;
end

f o r k=1: y s i z e
f p r i n t f (f i d , ’ p roc e s s (c u r r e n t s t a t e%d , reqINl , ackOUT%d ,ADD%d , count%d)\n ’

, k , k , k , k) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’ n e x t s t a t e%d <= c u r r e n t s t a t e%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’ reqOUT%d <= ’ ’ 1 ’ ’ ; \n ’ , k) ;
f p r i n t f (f i d , ’ n count%d <= count%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’ busy%d <= ’ ’ 0 ’ ’ ; \ n\n ’ , k) ;
f p r i n t f (f i d , ’ case c u r r e n t s t a t e%d i s \n ’ , k) ;
f p r i n t f (f i d , ’\ t when IDLE%d =>\n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t i f (reqINl = ’ ’ 0 ’ ’ and ADD%d(%d downto %d) /= ”%s ”)

then\n ’ , k , 8∗Mult+b i t s S p l i t −1 ,8∗Mult , dec2bin (0 , b i t s S p l i t)) ;
f p r i n t f (f i d , ’\ t \ t \ t n e x t s t a t e%d <= GEN REQ OUT%d ;\n ’ , k , k) ;

f p r i n t f (f i d , ’\ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t when GEN REQ OUT%d =>\n ’ , k) ;

f p r i n t f (f i d , ’\ t \ t busy%d <= ’ ’ 1 ’ ’ ; \n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t i f (count%d < ADD%d(%d downto %d)) then\n ’ ,

k , k , 8∗Mult+b i t s S p l i t −1 ,8∗Mult) ;
f p r i n t f (f i d , ’\ t \ t \ t reqOUT%d <= ’ ’ 0 ’ ’ ; \n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (ackOUT%d = ’ ’ 0 ’ ’) then\n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e%d <= WAIT HANDSHAKE%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (reqINl = ’ ’ 1 ’ ’) then\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e%d <= IDLE%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n count%d <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’ , k) ;

f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t end i f ;\n ’) ;

f p r i n t f (f i d , ’\ t when WAIT HANDSHAKE%d =>\n ’ , k) ;
f p r i n t f (f i d , ’\ t busy%d <= ’ ’ 1 ’ ’ ; \n ’ , k) ;
f p r i n t f (f i d , ’\ t i f (ackOUT%d = ’ ’ 1 ’ ’) then\n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t n e x t s t a t e%d <= GEN REQ OUT%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t \ t n count%d <= count%d + 1;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t n e x t s t a t e%d <= IDLE%d ;\n ’ , k , k) ;
f p r i n t f (f i d , ’\ t end case ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

end

f p r i n t f (f i d , ’ p roc e s s (c lk , r e s e t)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (r e s e t = ’ ’ 1 ’ ’) then\n ’) ;
f o r k=1: y s i z e

f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e%d <= IDLE%d ;\n ’ , k , k) ;
end
f o r k=1: y s i z e

f p r i n t f (f i d , ’\ t \ t count%d <= (othe r s=> ’ ’ 0 ’ ’) ; \ n ’ , k) ;
end
f p r i n t f (f i d , ’\ t \ t reqINl <= ’ ’ 1 ’ ’ ; \n ’) ;

f p r i n t f (f i d , ’\ t e l s i f (c l k = ’ ’ 1 ’ ’ and clk ’ ’ event) then\n ’) ;
f o r k=1: y s i z e

f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e%d <= n e x t s t a t e%d ;\n ’ , k , k) ;
end
f o r k=1: y s i z e

f p r i n t f (f i d , ’\ t \ t count%d <= n count%d ;\n ’ , k , k) ;
end
f p r i n t f (f i d , ’\ t \ t reqINl <= nreqINl ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;

f p r i n t f (f i d , ’ end Behav iora l ;\n ’) ;
f c l o s e (f i d) ;

end

11.2 Matlab code 191

11.2.11 Output multiplexer VHDL description

f unc t i on writeMUX(nChannels)

b i t s S e l =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s S e l < nChannels)
b i t s S e l = b i t s S e l + 1 ;

e l s e
f l a g =0;

end
end

f i d=fopen (’OUTmux. vhd ’ , ’w ’) ;
i f (f i d == −1)

f p r i n t f (’ Error c r e a t i n g a u x i l i a r OUTmux f i l e \n ’) ;
e l s e

f p r i n t f (f i d , ’ l i b r a r y IEEE ;\n ’) ;
f p r i n t f (f i d , ’ use IEEE . STD LOGIC 1164 .ALL;\n ’) ;
f p r i n t f (f i d , ’ e n t i t y OUTmux i s \n ’) ;
f p r i n t f (f i d , ’ Port (s e l : in STD LOGIC VECTOR (%d downto 0) ;\n ’ , b i t s S e l −1);
f o r k=1: nChannels

f p r i n t f (f i d , ’\ t AERin%d : in STD LOGIC VECTOR (31 downto 0) ;\n ’ , k) ;
f p r i n t f (f i d , ’\ t reqIN%d : in STD LOGIC;\n ’ , k) ;
f p r i n t f (f i d , ’\ t ackIN%d : out STD LOGIC;\n ’ , k) ;

end
f p r i n t f (f i d , ’\ t AERout : out STD LOGIC VECTOR (31 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’\ t reqOUT1 : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t ackOUT1 : in STD LOGIC) ; \ n ’) ;
f p r i n t f (f i d , ’ end OUTmux;\n\n\n ’) ;

f p r i n t f (f i d , ’ a r c h i t e c t u r e Behav iora l o f OUTmux i s \n ’) ;
f p r i n t f (f i d , ’ begin \n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (s e l , ’) ;
f o r k=1: nChannels

f p r i n t f (f i d , ’ AERin%d , reqIN%d , ’ , k , k) ;
end
f p r i n t f (f i d , ’ ackOUT1)\n\n ’) ;

f p r i n t f (f i d , ’ begin \n ’) ;
f o r k=1: nChannels

f p r i n t f (f i d , ’ ackIN%d <= reqIN%d ;\n ’ , k , k) ;
end

f p r i n t f (f i d , ’\ t case s e l i s \n ’) ;
f o r k=1:nChannels−1

f p r i n t f (f i d , ’\ t \ t when ”%s ” =>\n ’ , dec2bin (k−1, b i t s S e l)) ;
f p r i n t f (f i d , ’\ t \ t \ t AERout <= AERin%d ;\n ’ , k) ;

f p r i n t f (f i d , ’\ t \ t \ t reqOUT1 <= reqIN%d ;\n ’ , k) ;
f p r i n t f (f i d , ’\ t \ t \ t ackIN%d <= ackOUT1 ;\n ’ , k) ;

end
f p r i n t f (f i d , ’\ t \ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t AERout <= AERin%d ;\n ’ , nChannels) ;
f p r i n t f (f i d , ’\ t \ t \ t reqOUT1 <= reqIN%d ;\n ’ , nChannels) ;
f p r i n t f (f i d , ’\ t \ t \ t ackIN%d <= ackOUT1 ;\n ’ , nChannels) ;

f p r i n t f (f i d , ’\ t end case ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;

f p r i n t f (f i d , ’ end Behav iora l ;\n ’) ;

f c l o s e (f i d) ;
end

192 Appendix II: Matlab functions for NoC VHDL generation

11.2.12 Configuration block VHDL description for the destination-
driven routing

f unc t i on writeProgNetwork (xs i z e , y s i z e , Mult)

b i t s S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s S p l i t < Mult+1)
b i t s S p l i t = b i t s S p l i t + 1 ;

e l s e
f l a g =0;

end
end

BitsAdd=y s i z e ∗(Mult∗8+ b i t s S p l i t) ;
oct=f l o o r (BitsAdd / 8) ;
i f (rem(BitsAdd , 8) ˜= 0)

oct=oct + 1 ;
end

b i t s C S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s C S p l i t < oct)
b i t s C S p l i t = b i t s C S p l i t + 1 ;

e l s e
f l a g =0;

end
end

bit sChip =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ bitsChip< x s i z e ∗ y s i z e)
b i t sChip = bitsChip + 1 ;

e l s e
f l a g =0;

end
end

f i d=fopen (’progNETWORK. vhd ’ , ’w ’) ;
i f (f i d == −1)

f p r i n t f (’ Error c r e a t i n g a u x i l i a r progNETWORK f i l e \n ’) ;
e l s e

f p r i n t f (f i d , ’ l i b r a r y IEEE ;\n ’) ;
f p r i n t f (f i d , ’ use IEEE . STD LOGIC 1164 .ALL;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c a r i t h . a l l ;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c u n s i g n e d . a l l ;\n\n\n ’) ;
f p r i n t f (f i d , ’ e n t i t y progNETWORK i s \n ’) ;
f p r i n t f (f i d , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RX : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t TX : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RTS : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t DATA : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t SCLK : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t PD : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t NSS : out STD LOGIC VECTOR(%d downto 0) ;\n ’ , x s i z e ∗ ys i z e −1);
f o r k=1: y s i z e

i f (k == y s i z e)
f p r i n t f (f i d , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0)) ; \ n ’ , k , Mult∗8+ b i t s S p l i t −1);

e l s e
f p r i n t f (f i d , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0) ;\n ’ , k , Mult∗8+ b i t s S p l i t −1);

end
end

11.2 Matlab code 193

f p r i n t f (f i d , ’ end progNETWORK;\n\n\n ’) ;

f p r i n t f (f i d , ’ a r c h i t e c t u r e Behav iora l o f progNETWORK i s \n\n\n ’) ;

f p r i n t f (f i d , ’ component RS232\n ’) ;
f p r i n t f (f i d , ’ Port (\n ’) ;
f p r i n t f (f i d , ’\ t c l k : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t Rx : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t Tx : OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RTS: OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t dataReady : OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t dataOUT : OUT STD LOGIC VECTOR(7 downto 0)) ; \ n ’) ;
f p r i n t f (f i d , ’ end component ;\n\n ’) ;

f p r i n t f (f i d , ’ component SPIgen i s \n ’) ;
f p r i n t f (f i d , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t SCLK : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t MOSI : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t ready : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t data : in STD LOGIC VECTOR (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’\ t enTX : in STD LOGIC) ; \ n ’) ;
f p r i n t f (f i d , ’ end component ;\n ’) ;

f p r i n t f (f i d , ’TYPE e s t a t e i s (IDLE ,CONF UNIT,WAIT SEND OCT,SEND OCT,WAIT TX) ; \ n ’) ;
f p r i n t f (f i d , ’SIGNAL c u r r e n t s t a t e , n e x t s t a t e : e s t a t e ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l dataR , enTX, ready : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l dataSer , TXdata , n TXdata : s t d l o g i c v e c t o r (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l Bytes , n Bytes : s t d l o g i c v e c t o r (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l countOCT , n countOCT : s t d l o g i c v e c t o r (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l cCHIP , n cCHIP : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , bitsChip −1);
f p r i n t f (f i d , ’ s i g n a l spd , n spd : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l s e l , n s e l : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , x s i z e ∗ ys i z e −1);
f p r i n t f (f i d , ’ s i g n a l n Sp l i t , S p l i t : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , BitsAdd−1);
f p r i n t f (f i d , ’ s i g n a l n cSp l i t , c S p l i t : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , b i t sCSp l i t −1);
f p r i n t f (f i d , ’ s i g n a l endSp l i t : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ begin \n\n ’) ;

f p r i n t f (f i d , ’ uart : RS232\n ’) ;
f p r i n t f (f i d , ’ Port Map(\n ’) ;
f p r i n t f (f i d , ’\ t c l k => c lk ,\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (f i d , ’\ t Rx => RX,\n ’) ;
f p r i n t f (f i d , ’\ t Tx => TX,\n ’) ;
f p r i n t f (f i d , ’\ t RTS => RTS,\n ’) ;
f p r i n t f (f i d , ’\ t dataReady => dataR ,\n ’) ;
f p r i n t f (f i d , ’\ t dataOUT => dataSer) ; \ n ’) ;

f p r i n t f (f i d , ’ spiINT : SPIgen\n ’) ;
f p r i n t f (f i d , ’ Port Map (c l k => c lk ,\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (f i d , ’\ t SCLK => SCLK,\n ’) ;
f p r i n t f (f i d , ’\ t MOSI => DATA,\n ’) ;
f p r i n t f (f i d , ’\ t ready => ready ,\n ’) ;
f p r i n t f (f i d , ’\ t data => TXdata ,\n ’) ;
f p r i n t f (f i d , ’\ t enTX => enTX) ; \ n\n ’) ;

cCHIP=ones (x s i z e ∗ ys i z e , x s i z e ∗ y s i z e) ;
ind=x s i z e ∗ y s i z e ;
f o r k=1: x s i z e ∗ y s i z e

cCHIP(k , ind)=0;
ind=ind−1;

end

f p r i n t f (f i d , ’ NSS <= s e l ;\n ’) ;
f p r i n t f (f i d , ’ decNSS : p roc e s s (cCHIP , ready , s e l)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;

194 Appendix II: Matlab functions for NoC VHDL generation

f p r i n t f (f i d , ’\ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t case cCHIP i s \n ’) ;
f o r k=1: x s i z e ∗ y s i z e

f p r i n t f (f i d , ’\ t \ t \ t when ”%s ” =>\n ’ , dec2bin (k−1, b i t sChip)) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n s e l <= ” ’) ;
f o r m=1: x s i z e ∗ y s i z e

f p r i n t f (f i d , ’%d ’ , cCHIP(k ,m)) ;
end
f p r i n t f (f i d , ’ ” ; \ n ’) ;

end
f p r i n t f (f i d , ’\ t \ t \ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n s e l <= (othe r s => ’ ’ 1 ’ ’) ; \ n ’) ;

f p r i n t f (f i d , ’\ t \ t end case ;\n ’) ;
f p r i n t f (f i d , ’\ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t n s e l <= s e l ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (countOCT , ready , spd)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (ready = ’ ’ 0 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t n spd <= spd ;\n ’) ;
f p r i n t f (f i d , ’\ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t i f (countOCT >= ”00001011”) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n spd <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n spd <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;
f p r i n t f (f i d , ’PD <= spd ;\n ’) ;

ind =0;
f o r k=1: y s i z e

i f (ind+Mult∗8+ b i t s S p l i t −1 > BitsAdd)
f p r i n t f (f i d , ’ADD%d <= S p l i t (%d downto %d) ; \ n ’ , k , BitsAdd−1, ind) ;

e l s e
f p r i n t f (f i d , ’ADD%d <= S p l i t (%d downto %d) ; \ n ’ , k , ind+Mult∗8+ b i t s S p l i t −1, ind) ;

end
ind=ind + Mult∗8 + b i t s S p l i t ;

end

f p r i n t f (f i d , ’\ n\n ’) ;

f p r i n t f (f i d , ’ s p l i t t e r : p roc e s s (cSp l i t , Sp l i t , dataR , dataSer)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’ n c S p l i t <= c S p l i t ;\n ’) ;
f p r i n t f (f i d , ’ endSp l i t <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’ n S p l i t <= S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t case c S p l i t i s \n ’) ;

ind =0;
f o r k=1: oct

f p r i n t f (f i d , ’\ t \ t when ”%s ” =>\n ’ , dec2bin (k−1, b i t s C S p l i t)) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’) then\n ’) ;
i f (ind + 7 > BitsAdd−1)

ex=BitsAdd−ind−1;
f p r i n t f (f i d , ’\ t \ t \ t \ t n S p l i t (%d downto %d) <= dataSer(%d downto 0) ;\n ’ , ind+ex , ind , ex) ;

e l s e
f p r i n t f (f i d , ’\ t \ t \ t \ t n S p l i t (%d downto %d) <= dataSer ;\n ’ , ind +7, ind) ;

end
ind=ind +8;
f p r i n t f (f i d , ’\ t \ t \ t \ t n c S p l i t <= c S p l i t + 1 ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;

end
f p r i n t f (f i d , ’\ t \ t when othe r s =>\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t endSp l i t <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t end case ;\n ’) ;

11.2 Matlab code 195

f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

f p r i n t f (f i d , ’FSM: proce s s (c u r r e n t s t a t e , dataR , dataSer , Bytes , countOCT , ready , cCHIP , TXdata , endSp l i t)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t n e x t s t a t e <= c u r r e n t s t a t e ;\n ’) ;
f p r i n t f (f i d , ’\ t n Bytes <= Bytes ;\n ’) ;
f p r i n t f (f i d , ’\ t enTX <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t n countOCT <= countOCT ;\n ’) ;
f p r i n t f (f i d , ’\ t n cCHIP <= cCHIP ;\n ’) ;
f p r i n t f (f i d , ’\ t n TXdata <= TXdata ;\n\n ’) ;

f p r i n t f (f i d , ’\ t case c u r r e n t s t a t e i s \n ’) ;
f p r i n t f (f i d , ’\ t \ t when IDLE=>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’ and endSp l i t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= CONF UNIT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n Bytes <= dataSer ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;

f p r i n t f (f i d , ’\ t \ t when CONF UNIT=>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n TXdata <= dataSer ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t \ t n e x t s t a t e <= SEND OCT;\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t \ t n e x t s t a t e <= WAIT SEND OCT;\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when WAIT SEND OCT =>\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= SEND OCT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when SEND OCT =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t enTX <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n e x t s t a t e <= WAIT TX;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n countOCT <= countOCT + 1;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when WAIT TX =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (countOCT < Bytes) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= CONF UNIT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n cCHIP <= cCHIP + 1;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n Bytes <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n countOCT <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n e x t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t end case ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (c lk , r e s e t)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (r e s e t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t Bytes <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;

f p r i n t f (f i d , ’\ t \ t TXdata <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t countOCT <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t cCHIP <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t spd <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t s e l <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t S p l i t <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t c S p l i t <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t e l s i f (c l k = ’ ’ 1 ’ ’ and clk ’ ’ event) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e <= n e x t s t a t e ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t Bytes <= n Bytes ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t TXdata <= n TXdata ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t countOCT <= n countOCT ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t cCHIP <= n cCHIP ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t spd <= n spd ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t s e l <= n s e l ;\n ’) ;

196 Appendix II: Matlab functions for NoC VHDL generation

f p r i n t f (f i d , ’\ t \ t S p l i t <= n S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t c S p l i t <= n c S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;

f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;
f p r i n t f (f i d , ’ end Behav iora l ;\n ’) ;
f c l o s e (f i d) ;

end

11.2.13 Configuration block VHDL description for the source-
driven routing

f unc t i on writeProgNetworkSour (x s i z e , y s i z e , Mult)
b i t s S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s S p l i t < Mult+1)
b i t s S p l i t = b i t s S p l i t + 1 ;

e l s e
f l a g =0;

end
end

BitsAdd=y s i z e ∗(Mult∗8+ b i t s S p l i t) ;
oct=f l o o r (BitsAdd / 8) ;
i f (rem(BitsAdd , 8) ˜= 0)

oct=oct + 1 ;
end

b i t s C S p l i t =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ b i t s C S p l i t < oct)
b i t s C S p l i t = b i t s C S p l i t + 1 ;

e l s e
f l a g =0;

end
end

bit sChip =1;
f l a g =1;
whi l e (f l a g == 1)

i f (2ˆ bitsChip< x s i z e ∗ y s i z e)
b i t sChip = bitsChip + 1 ;

e l s e
f l a g =0;

end
end

f i d=fopen (’progNETWORK. vhd ’ , ’w ’) ;
i f (f i d == −1)

f p r i n t f (’ Error c r e a t i n g a u x i l i a r progNETWORK f i l e \n ’) ;
e l s e

f p r i n t f (f i d , ’ l i b r a r y IEEE ;\n ’) ;
f p r i n t f (f i d , ’ use IEEE . STD LOGIC 1164 .ALL;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c a r i t h . a l l ;\n ’) ;
f p r i n t f (f i d , ’USE IEEE . s t d l o g i c u n s i g n e d . a l l ;\n\n\n ’) ;
f p r i n t f (f i d , ’ e n t i t y progNETWORK i s \n ’) ;
f p r i n t f (f i d , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RX : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t TX : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RTS : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t DATA : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t SCLK : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t PD : out STD LOGIC;\n ’) ;

11.2 Matlab code 197

f p r i n t f (f i d , ’\ t NSS : out STD LOGIC VECTOR(%d downto 0) ;\n ’ , x s i z e ∗ ys i z e −1);
f o r k=1: y s i z e

i f (k == y s i z e)
f p r i n t f (f i d , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0)) ; \ n ’ , k , Mult∗8+ b i t s S p l i t −1);

e l s e
f p r i n t f (f i d , ’\ t ADD%d : out STD LOGIC VECTOR(%d downto 0) ;\n ’ , k , Mult∗8+ b i t s S p l i t −1);

end
end
f p r i n t f (f i d , ’ end progNETWORK;\n\n\n ’) ;

f p r i n t f (f i d , ’ a r c h i t e c t u r e Behav iora l o f progNETWORK i s \n\n\n ’) ;

f p r i n t f (f i d , ’ component RS232\n ’) ;
f p r i n t f (f i d , ’ Port (\n ’) ;
f p r i n t f (f i d , ’\ t c l k : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t Rx : IN STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t Tx : OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t RTS: OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t dataReady : OUT STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t dataOUT : OUT STD LOGIC VECTOR(7 downto 0)) ; \ n ’) ;
f p r i n t f (f i d , ’ end component ;\n\n ’) ;

f p r i n t f (f i d , ’ component SPIgen i s \n ’) ;
f p r i n t f (f i d , ’ Port (c l k : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t : in STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t SCLK : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t MOSI : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t ready : out STD LOGIC;\n ’) ;
f p r i n t f (f i d , ’\ t data : in STD LOGIC VECTOR (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’\ t enTX : in STD LOGIC) ; \ n ’) ;
f p r i n t f (f i d , ’ end component ;\n ’) ;

f p r i n t f (f i d , ’TYPE e s t a t e i s (IDLE ,PREV CONF UNIT,CONF UNIT,WAIT SEND OCT,SEND OCT,WAIT TX) ; \ n ’) ;
f p r i n t f (f i d , ’SIGNAL c u r r e n t s t a t e , n e x t s t a t e : e s t a t e ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l dataR , enTX, ready : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l dataSer , TXdata , n TXdata : s t d l o g i c v e c t o r (7 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l Bytes , n Bytes : s t d l o g i c v e c t o r (15 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l countOCT , n countOCT : s t d l o g i c v e c t o r (15 downto 0) ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l cCHIP , n cCHIP : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , bitsChip −1);
f p r i n t f (f i d , ’ s i g n a l spd , n spd : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ s i g n a l s e l , n s e l : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , x s i z e ∗ ys i z e −1);
f p r i n t f (f i d , ’ s i g n a l n Sp l i t , S p l i t : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , BitsAdd−1);
f p r i n t f (f i d , ’ s i g n a l n cSp l i t , c S p l i t : s t d l o g i c v e c t o r (%d downto 0) ;\n ’ , b i t sCSp l i t −1);
f p r i n t f (f i d , ’ s i g n a l endSp l i t : s t d l o g i c ;\n ’) ;
f p r i n t f (f i d , ’ begin \n\n ’) ;

f p r i n t f (f i d , ’ uart : RS232\n ’) ;
f p r i n t f (f i d , ’ Port Map(\n ’) ;
f p r i n t f (f i d , ’\ t c l k => c lk ,\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (f i d , ’\ t Rx => RX,\n ’) ;
f p r i n t f (f i d , ’\ t Tx => TX,\n ’) ;
f p r i n t f (f i d , ’\ t RTS => RTS,\n ’) ;
f p r i n t f (f i d , ’\ t dataReady => dataR ,\n ’) ;
f p r i n t f (f i d , ’\ t dataOUT => dataSer) ; \ n ’) ;

f p r i n t f (f i d , ’ spiINT : SPIgen\n ’) ;
f p r i n t f (f i d , ’ Port Map (c l k => c lk ,\n ’) ;
f p r i n t f (f i d , ’\ t r e s e t => r e s e t ,\n ’) ;
f p r i n t f (f i d , ’\ t SCLK => SCLK,\n ’) ;
f p r i n t f (f i d , ’\ t MOSI => DATA,\n ’) ;
f p r i n t f (f i d , ’\ t ready => ready ,\n ’) ;
f p r i n t f (f i d , ’\ t data => TXdata ,\n ’) ;
f p r i n t f (f i d , ’\ t enTX => enTX) ; \ n\n ’) ;

cCHIP=ones (x s i z e ∗ ys i z e , x s i z e ∗ y s i z e) ;
ind=x s i z e ∗ y s i z e ;
f o r k=1: x s i z e ∗ y s i z e

198 Appendix II: Matlab functions for NoC VHDL generation

cCHIP(k , ind)=0;
ind=ind−1;

end

f p r i n t f (f i d , ’ NSS <= s e l ;\n ’) ;
f p r i n t f (f i d , ’ decNSS : p roc e s s (cCHIP , ready , s e l)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t case cCHIP i s \n ’) ;
f o r k=1: x s i z e ∗ y s i z e

f p r i n t f (f i d , ’\ t \ t \ t when ”%s ” =>\n ’ , dec2bin (k−1, b i t sChip)) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n s e l <= ” ’) ;
f o r m=1: x s i z e ∗ y s i z e

f p r i n t f (f i d , ’%d ’ , cCHIP(k ,m)) ;
end
f p r i n t f (f i d , ’ ” ; \ n ’) ;

end
f p r i n t f (f i d , ’\ t \ t \ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n s e l <= (othe r s => ’ ’ 1 ’ ’) ; \ n ’) ;

f p r i n t f (f i d , ’\ t \ t end case ;\n ’) ;
f p r i n t f (f i d , ’\ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t n s e l <= s e l ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (countOCT , ready , spd)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (ready = ’ ’ 0 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t n spd <= spd ;\n ’) ;
f p r i n t f (f i d , ’\ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t i f (countOCT >= ”0000000000001001”) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n spd <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n spd <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;
f p r i n t f (f i d , ’PD <= spd ;\n ’) ;

ind =0;
f o r k=1: y s i z e

i f (ind+Mult∗8+ b i t s S p l i t −1 > BitsAdd)
f p r i n t f (f i d , ’ADD%d <= S p l i t (%d downto %d) ; \ n ’ , k , BitsAdd−1, ind) ;

e l s e
f p r i n t f (f i d , ’ADD%d <= S p l i t (%d downto %d) ; \ n ’ , k , ind+Mult∗8+ b i t s S p l i t −1, ind) ;

end
ind=ind + Mult∗8 + b i t s S p l i t ;

end

f p r i n t f (f i d , ’\ n\n ’) ;

f p r i n t f (f i d , ’ s p l i t t e r : p roc e s s (cSp l i t , Sp l i t , dataR , dataSer)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’ n c S p l i t <= c S p l i t ;\n ’) ;
f p r i n t f (f i d , ’ endSp l i t <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’ n S p l i t <= S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t case c S p l i t i s \n ’) ;

ind =0;
f o r k=1: oct

f p r i n t f (f i d , ’\ t \ t when ”%s ” =>\n ’ , dec2bin (k−1, b i t s C S p l i t)) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’) then\n ’) ;
i f (ind + 7 > BitsAdd−1)

ex=BitsAdd−ind−1;
f p r i n t f (f i d , ’\ t \ t \ t \ t n S p l i t (%d downto %d) <= dataSer(%d downto 0) ;\n ’ , ind+ex , ind , ex) ;

e l s e
f p r i n t f (f i d , ’\ t \ t \ t \ t n S p l i t (%d downto %d) <= dataSer ;\n ’ , ind +7, ind) ;

end

11.2 Matlab code 199

ind=ind +8;
f p r i n t f (f i d , ’\ t \ t \ t \ t n c S p l i t <= c S p l i t + 1 ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;

end
f p r i n t f (f i d , ’\ t \ t when othe r s =>\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t endSp l i t <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t end case ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

f p r i n t f (f i d , ’FSM: proce s s (c u r r e n t s t a t e , dataR , dataSer , Bytes , countOCT , ready , cCHIP , TXdata , endSp l i t)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t n e x t s t a t e <= c u r r e n t s t a t e ;\n ’) ;
f p r i n t f (f i d , ’\ t n Bytes <= Bytes ;\n ’) ;
f p r i n t f (f i d , ’\ t enTX <= ’ ’ 0 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t n countOCT <= countOCT ;\n ’) ;
f p r i n t f (f i d , ’\ t n cCHIP <= cCHIP ;\n ’) ;
f p r i n t f (f i d , ’\ t n TXdata <= TXdata ;\n\n ’) ;

f p r i n t f (f i d , ’\ t case c u r r e n t s t a t e i s \n ’) ;
f p r i n t f (f i d , ’\ t \ t when IDLE=>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’ and endSp l i t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= PREV CONF UNIT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n Bytes (7 downto 0) <= dataSer ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when PREV CONF UNIT=>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’ and endSp l i t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= CONF UNIT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n Bytes (15 downto 8) <= dataSer ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;

f p r i n t f (f i d , ’\ t \ t when CONF UNIT=>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (dataR = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n TXdata <= dataSer ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t \ t n e x t s t a t e <= SEND OCT;\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t \ t n e x t s t a t e <= WAIT SEND OCT;\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when WAIT SEND OCT =>\n ’) ;

f p r i n t f (f i d , ’\ t \ t \ t i f (ready = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= SEND OCT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when SEND OCT =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t enTX <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n e x t s t a t e <= WAIT TX;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n countOCT <= countOCT + 1;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when WAIT TX =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t i f (countOCT < Bytes) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= CONF UNIT;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t e l s e \n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n cCHIP <= cCHIP + 1;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n e x t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n Bytes <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t \ t n countOCT <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t end i f ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t when othe r s =>\n ’) ;
f p r i n t f (f i d , ’\ t \ t \ t n e x t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t end case ;\n ’) ;
f p r i n t f (f i d , ’ end proce s s ;\n\n\n ’) ;

f p r i n t f (f i d , ’ p roc e s s (c lk , r e s e t)\n ’) ;
f p r i n t f (f i d , ’ begin \n ’) ;
f p r i n t f (f i d , ’\ t i f (r e s e t = ’ ’ 1 ’ ’) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e <= IDLE;\n ’) ;
f p r i n t f (f i d , ’\ t \ t Bytes <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;

f p r i n t f (f i d , ’\ t \ t TXdata <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t countOCT <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t cCHIP <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;

200 Appendix II: Matlab functions for NoC VHDL generation

f p r i n t f (f i d , ’\ t \ t spd <= ’ ’ 1 ’ ’ ; \n ’) ;
f p r i n t f (f i d , ’\ t \ t s e l <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t S p l i t <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t \ t c S p l i t <= (othe r s => ’ ’ 0 ’ ’) ; \ n ’) ;
f p r i n t f (f i d , ’\ t e l s i f (c l k = ’ ’ 1 ’ ’ and clk ’ ’ event) then\n ’) ;
f p r i n t f (f i d , ’\ t \ t c u r r e n t s t a t e <= n e x t s t a t e ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t Bytes <= n Bytes ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t TXdata <= n TXdata ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t countOCT <= n countOCT ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t cCHIP <= n cCHIP ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t spd <= n spd ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t s e l <= n s e l ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t S p l i t <= n S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t \ t c S p l i t <= n c S p l i t ;\n ’) ;
f p r i n t f (f i d , ’\ t end i f ;\n ’) ;

f p r i n t f (f i d , ’ end proce s s ;\n\n ’) ;
f p r i n t f (f i d , ’ end Behav iora l ;\n ’) ;
f c l o s e (f i d) ;

end

References

[1] S. Grossberg, E. Mingolla, and J. Williamson, “Synthetic aperture radar process-
ing by a multiple scale neural system for boundary and surface representation,”
Neural Networks, vol. 8, pp. 1005–1028, 1995. 3, 19

[2] T. Serre, L. Wolf, S. Bileschi, M. Reisenhuber, and T. Poggio, “Robust object
recognition with cortex-like mechanism,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, pp. 411–426, March 2007. 3, 12, 19, 21, 65

[3] E. Culurciello, R. Etienne-Cummings, and K. Boahen, “A biomorphic digital im-
age sensor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 281– 294, February
2003. 3, 5

[4] J. Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona, and
B. Linares-Barranco, “A contrast retina with on-chip calibration for neu-
romporhic spike based AER vision systems,” IEEE Transactions on Circuits
and Systems I, vol. 54, pp. 1444–1458, July 2007. 3, 5

[5] J. P. Carrasco, T. Serrano-Gotarredona, C. Serrano-Gotarredona, B. Acha, and
B. Linares-Barranco, “On the computational power of AER vision processing
hardware,” Proceedings of the XXII International Conference Design Circuits
Integrated Systems, 2007. 4

[6] M. Silvilotti, “Wiring considerations in analog VLSI systems with application to
field-programmable networks.” PhD. Thesis, California Institute of Technology,
Pasadena, CA, 1991. 4

[7] A. Ruedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P. Burgi, S. Gyger, and
P. Nussbaum, “A 128x128 pixel 120-dB dynamic-range vision-sensor chip for
image contrast and orientation extraction,” IEEE Journal of Solid-State Circuits,
vol. 38, pp. 2325– 2333, February 2003. 5

[8] C. Shoushun and A. Bermak, “Arbitrated time-to-first spike CMOS image sen-
sor with on-chip histogram equalization,” IEEE Transactions on VLSI systems,
vol. 15, pp. 346–357, March 2007. 5

[9] M. Azadmehr, J. Abrahamsen, and P. Hafliger, “A foveated AER imager chip,”
Proceedings of the International Symposium on Circuits and Systems (ISCAS),
pp. 2751–2754, Kobe Japan 2005. 5

201

202 References

[10] K. Zaghloul and K. Boahen, “Optic nerve signals in a neuromorphic chip,” IEEE
Transactions on Biomedical Engineering, vol. 51, pp. 657–675, April 2004. 5

[11] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128x128 120dB 30mW asyn-
chronous vision sensor that responds to relative intensity change,” IEEE Journal
of Solid-State Circuits, vol. 43, pp. 566–576, February 2008. 5, 21, 60

[12] J. Lazzaro, “Silicon auditory processors as computer peripherals,” IEEE Trans-
actions on Neural Networks, vol. 4, pp. 523–528, May 1993. 5

[13] G. Cauwenberghs, N. Kumar, W. Himmelbauer, and A. Andreou, “An analog
VLSI chip with asynchronous interface for auditory feature extraction,” IEEE
Transactions on Circuits and Systems I, vol. 45, pp. 600–606, May 1998.

[14] V. Chan, S. Liu, and A. van Schaik, “AER EAR: a matched silicon cochlea pair
with address event representation interface,” IEEE Transactions on Circuits and
Systems I, vol. 54, pp. 48–59, January 2007. 5

[15] E. Chicca, A. Whatley, P. Lichtsteiner, V. Dante, T. Delbrück, P. D. Giudice,
R. Douglas, and G. Indiveri, “A multi-chip pulse-based neuromorphic infrastruc-
ture and its application to a model of orientation selectivity,” IEEE Transactions
on Circuits and Systems I, vol. 54, pp. 981–993, May 2007. 5, 17, 30, 32

[16] M. Oster, Y. Wang, R. Douglas, and S.-C. Liu, “Quantification of a spiked-based
winner-take-all VLSI network,” IEEE Transactions on Circuits and Systems I,
vol. 55, pp. 3160–3169, 2008. 5

[17] P. Vernier, A. Mortara, X. Arreguit, and E. Vittoz, “An integrated cortical layer
for orientation enhancement,” IEEE Journal of Solid-State Circuits, vol. 32, pp.
177–186, February 1997. 5, 24, 32

[18] T. Choi, P. Merolla, J. Arthur, K. Boahen, and B. Shi, “Neuromorphic implemen-
tation of orientation hypercolumns,” IEEE Transactions on Circuits and Systems
I, vol. 52, pp. 1049–1060, 2005. 24, 32

[19] T. Serrano-Gotarredona, A. Andreou, and B. Linares-Barranco, “AER image fil-
tering architecture for vision processing systems,” IEEE Transactions on Circuits
and Systems II, vol. 46, pp. 1064–1071, September 1999. 24

[20] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez, and
B. Linares-Barranco, “A neuromorphic cortical-layer microchip for spike-based
event processing vision systems,” IEEE Transactions on Circuits and Systems I,
vol. 53, pp. 2548–2566, December 2006. 21, 24, 32, 151, 157

[21] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,
C. Serrano-Gotarredona, J. Pérez-Carrasco, B. Linares-Barranco, A. Linares-
Barranco, G. Jiménez-Moreno, and A. Civit-Ballcels, “On real-time AER 2-D
convolutions hardware for neuromorphic spike based cortical processing,” IEEE
Transactions on Neural Networks, vol. 19, pp. 1196–1219, July 2008. 21, 24

References 203

[22] L. Camuñas-Mesa, A. Acosta-Jiménez, C. Zamarreño-Ramos, T. Serrano-
Gotarredona, and B. Linares-Barranco, “A 32x32 pixel convolution processor chip
for address event vision sensors with 155ns event latency and 20Meps through-
put,” IEEE Transactions on Circuits and Systems, vol. 58, pp. 777–790, April
2011. 24, 32, 60, 71

[23] L. Camuñas-Mesa, C. Zamarreño-Ramos, A. Linares-Barranco, A. Acosta-
Jiménez, T. Serrano-Gotarredona, and B. Linares-Barranco, “An event-driven
multi-kernel convolution processor module for event-driven vision sensors,” IEEE
Journal of Solid-State Circuits, in Press. 5, 24, 71, 151, 157

[24] T. Teixeira, A. Andreou, and E. Culurciello, “Event-based imaging with active
illumination in sensor networks,” Proceedings of the IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 644–647, 2005. 5

[25] A. Delorme, L. Perrinet, and S. Thorpe, “Networks of integrate-and-fire neurons
using rank-order coding B: spike timing dependence plasticity and emergence of
orientation selectivity,” Neurocomputing, pp. 539–545, 2001. 5

[26] C. Shoushun and A. Bermak, “A low power CMOS imager based on time-to-
first-spike encoding and fair AER,” Proceedings of the International Symposium
on Circuits and Systems (ISCAS), vol. 5, pp. 5306– 5309, May 2005. 5

[27] R. Williams and K. Herrup, “The control of neuron number,” Annual Review on
Neuroscience, vol. 11, pp. 423–453, 1988. 11

[28] B. Pakkenberg and H. Gundersen, “Neocortical neuron number in humans: effect
of sex and age,” Journal of Comparative Neurology, vol. 384, pp. 312–320, 1997.
11

[29] R. Collobert and J. Weston, “An unified architecture for natural language pro-
cessing: deep natural networks with multitask learning,” Proc. Int. Conf. on
Machine Learning (ICML 2008), pp. 160–167, 2008. 12, 21

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324,
1998. 21

[31] C. Garcia and M. Delakis, “Convolutional face finder: A neural architecture
for fast and robust face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, pp. 1408–1423, November 2004. 19

[32] P. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional neural
networks applied to visual document analysis,” Seventh International Conference
on Document Analysis and Recognition, pp. 958– 963, Aug. 2003. 19

[33] K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a cascade of
classifiers,” Proc. of Document Recognition and Retrieval 13, Electronic Imaging,
p. 6067, 2006.

204 References

[34] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional neural
networks for document processing,” Tenth International Workshop on Frontiers
in Handwriting Recognition, 2006.

[35] A. Abdulkader, “A two-tier approach for arabic offline handwriting recognition,”
Tenth International Workshop on Frontiers in Handwriting Recognition, 2006.

[36] K. Chellapilla and P. Simard, “A new radical based approach to offline handwrit-
ten east-asian character recognition,” Tenth International Workshop on Frontiers
in Handwriting Recognition, 2006. 19

[37] A. Ahmed, Y. Gong, and E. Xing, “Training hierarchical feed-forward visual
recognition models using transfer learning from pseudo-tasks,” Proceedings of
the 10th European Conference on Computer Vision: Part III, 2008. 19

[38] J. Weston, F. Ratle, and R.Collobert, “Deep learning via semi-supervised em-
bedding,” Proceedings of the 25th international conference on Machine learning,
2008. 12, 19

[39] V. J. et al, “Supervised learning of image restoration with convolutional net-
works,” IEEE 11th International Conference on Computer Vision (ICCV 2007),
pp. 1–8, October 2007. 12, 21

[40] R. Hadsell, P. Sermanet, M. Scoffier, A. Erkan, K. Kavackuoglu, U. Muller, and
Y. LeCun, “Learning long-range vision for autonomous off-road driving,” Journal
Field Robotics, vol. 26(2), pp. 120–144, February 2009. 12, 21

[41] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod,
and S. Talay, “Large scale FPGA-based convolutional neural networks,” in R.
Bekkerman, M. Bilenko and J. Langford (Eds) Machine Learning on Very Large
Data Sets, vol. Cambridge University Press, 2011. 12, 26

[42] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: a runtime-reconfigurable dataflow processor for vision,” Proceedings
of Embedded Computer Vision Workshop (ECVW’11), 2011. 12, 26

[43] Y. Shi, S. B. Furber, J. Garside, and L. Plana, “Fault tolerant delay insensitive
inter-chip communication,” Proceeding of 15th IEEE International Symposium
on Asynchronous Circuits and Systems, Async 2009, vol. 12, pp. 78–847, May
2009. 12

[44] X. Jin, M. Luján, L. Plana, S. Davies, S. Temple, and S. Furber, “Modeling
spiking neural networks on SpiNNaker,” Computing in Science and Engineering,
vol. 12, pp. 91–97, September-October 2010. 12

[45] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog neural
networks,” IEEE International Joint Conference on Neural Networks (IJCNN
2008), pp. 431–438, June 2008. 14, 15

References 205

[46] S. Hartmann, S. Schiefer, S. Scholze, J. Partzsch, C. Mayr, S. Henker, and
R. Schüffny, “Highly integrated packet-based AER communication infrastructure
with 3Gevents/s throughput,” Proceedings of the IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), pp. 950–953, 2010. 16, 32, 35,
75, 76

[47] R. Vogelstein, U. Mallik, J. Vogelstein, and G. Cauwenberghs, “Dynamically
reconfigurable silicon array of spiking neurons with conductance-based synapses,”
IEEE Transactions on Neural Networks, vol. 18, pp. 253–265, January 2007. 17,
30, 31, 32

[48] S. Joshi, S. Deiss, M. Arnold, J. Park, T. Yu, and G. Cauwenberghs, “Scal-
able event routing in hierarchical neural array architecture with global synaptic
connectivity,” 12th International Workshop on Cellular Nanoscale Networks and
Their Applications (CNNA), pp. 1–6, February 2010. 17, 31, 34

[49] K. Boahen, “A burst-mode word-serial address-event link-I: transmitter design,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1269–
1280, July 2004. 18

[50] ——, “A burst-mode word-serial address-event link-II: receiver design,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1281– 1291,
July 2004.

[51] ——, “A burst-mode word-serial address-event link-III: analysis and test results,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 1292–
1300, July 2004. 18

[52] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gómez-Rodŕıguez, L. Camuñas-Mesa, R. Berner, M. Rivas-Pérez,
T. Delbrück, S.-C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. C.
Ballcels, T. Serrano-Gotarredona, A. Acosta-Jimenez, and B. Linares-Barranco,
“CAVIAR: a 45K-neuron, 5M-synapse 12G-connects/s AER hardware sensory-
processing-learning-actuating system for high speed visual object recognition
and tracking,” IEEE Transactions on Neural Networks, vol. 20, pp. 1417–1438,
September 2009. 18, 21, 31, 33

[53] E. T. Rolls and G. Deco, “Computational neuroscience of vision.” Oxford Uni-
versity Press, 2002. 19

[54] R. DeValois, D. Albrecht, and L. Thorell, “Spatial frequency selectivity of cells
in macaque visual cortex,” Vision Research, vol. 22, pp. 545–559, 1982. 19

[55] R. DeValois, E. Yund, and N. Hepler, “The orientation and direction selectivity
of cells in macaque visual cortex,” Vision Research, vol. 22, pp. 531–544, 1982.

[56] P. Schiller, B. Finlay, and S. Volman, “Quantitative studies of single-cell prop-
erties in monkey striate cortex. Spatial frequency,” Journal of Neurophysiology,
vol. 39, pp. 1334–1351, 1976. 19

206 References

[57] K. Fukushima, “Visual feature extraction by a multilayered network of analog
threshold elements,” IEEE Transactions on Systems Science and Cybernetics,
vol. SSC-5, pp. 322–333, October 1969. 19

[58] K. Fukushima and K. Wake, “Handwritten alphanumeric character recognition
by the Neocognitron,” IEEE Transactions on Neural Networks, vol. 2, pp. 355–
365, May 1991. 19, 65

[59] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech and time
series,” The Handbook of Brain Science and Neural Networks. M. Arbib (Ed.),
Cambridge, MA: MIT Press., pp. 255–258, 1995. 19

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324,
November 1998.

[61] C. Neubauer, “Evaluation of convolution neural networks for visual recognition,”
IEEE Transactions on Neural Networks, vol. 9, pp. 685–696, 1998.

[62] S. Lawrence, C. Giles, A. Tsoi, and A. Back, “Face recognition: a convolutional
neural network approach,” IEEE Transactions on Neural Networks, vol. 8, pp.
98–113, 1997. 19

[63] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual
system,” Nature, vol. 381, pp. 520–2, 1996. 21

[64] S. Thorpe, R. Guyonneaua, N. Guilbauda, J. M. Allegrauda, and R. VanRullen,
“SpikeNet: real-time visual processing with one spike per neuron,” Neurocom-
puting, vol. 58-60, pp. 857–64, 2004. 21

[65] K. Boahen, “Point-to-point connectivity between neuromorphic chips using ad-
dress events,” IEEE Transactions on Circuits and Systems Part II, vol. 47, pp.
416–434, May 2000. 24

[66] F. Nasse, C. Thurau, and G. Fink, “Face detection using GPU-based convolu-
tional neural networks,” Lectures Notes in Computer Science, vol. 5702, Com-
puter Analysis of Images and Patterns, pp. 83–90, 2009. 26

[67] M. Sankaradas, V. Jakkul, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. Graff, “A massively parallel coprocessor for convolutional
neural networks,” 20th IEEE International Conference on Application-Specific
Systems, Architectures and Processors., pp. 53–58, 2009. 26

[68] P. Merolla, J. Arthur, B. E. Shi, and K. Boahen, “Programmable connections in
neuromorphic grids,” Proceedings of International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), pp. 80–84, August 2006. 31, 33

References 207

[69] J. Lin, P. Merolla, J. Arthur, and K. Boahen, “Expandable networks for neuro-
morphic chips,” IEEE Transactions on Circuits and Systems, Part-I, vol. 54, pp.
301–311, February 2007. 33

[70] S. Bamford, A. Murray, and D. Willshaw, “Large developing receptive fields
using a distributed and locally reprogrammable address-event receiver,” IEEE
Transactions on Neural Networks, vol. 21, pp. 286–304, February 2010. 31, 33

[71] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and S. Furber,
“SpiNNaker: Mapping neural networks onto a massively-parallel chip multipro-
cessor,” IEEE International Joint Conference on Neural Networks (IJCNN), pp.
2849–2856, June 2008. 31, 35

[72] J. Fieres, J. Schemmel, and K. Meier, “Realizing biological spiking network mod-
els in a configurable wafer-scale hardware system,” IEEE International Joint
Conference on Neural Networks (IJCNN), pp. 969–976, June 2008. 31, 35

[73] C. Mayr, H. Eisenreich, S. Henker, and R. Schüffny, “Pulsed multi-layered image
filtering: A VLSI implementation,” International Journal of Applied Mathemat-
ics and Computer Sciences), vol. 1, pp. 60–65, 2005. 30, 32

[74] A. Cassidy, A. Andreou, and J. Georgiou, “Design of a one million neuron single
FPGA neuromorphic system for real-time multimodal scene analysis,” 45th An-
nual Conference on Information Sciences and Systems (CISS), pp. 1–6, March
2011. 30, 50

[75] Y. Wang and S.-C. Liu, “Programmable synaptic weights for an aVLSI network
of spiking neurons,” Proceedings of the 2007 IEEE International Symposium on
Circuits and Systems, pp. 4531–4534, May 2006. 32

[76] A. Cassidy, T. Murray, A. Andreou, and J. Georgiou, “Evaluating On-Chip Inter-
connects for Low Operating Frequency Silicon Neuron Arrays,” IEEE Int. Symp.
on Circ. and Syst. (ISCAS), pp. 2437–2440, May 2011. 32

[77] D. Gross and C. M. Harris, “Fundamentals of queueing theory,” 3rd ed. John
Wiley & Sons, Inc, 1998. 32

[78] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,” IEEE
Computers), vol. 35, pp. 70–78, January 2002. 35

[79] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote, S. Van-
gal, G. Ruhl, and N. Borkar, “A 2 Tb/s 6×4 mesh network for a single-chip
cloud computer with DVFS in 45nm CMOS,” IEEE Journal of Solid-State Cir-
cuits, vol. 46, pp. 757–766, April 2011. 35

[80] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V. De, and R. V. D. Wijngaart, “A 48-core IA-32 processor in 45 nm CMOS

208 References

using on-die message-passing and DVFS for performance and power scaling,”
IEEE Journal of Solid-State Circuits, vol. 46, pp. 173–183, January 2011.

[81] S. Sarkar, G. Kulkarni, P. Pande, and A. Kalyanaraman, “Network-on-chip hard-
ware accelerators for biological sequence alignment,” IEEE Transactions on Com-
puters, vol. 59, pp. 29–41, January 2010. 35

[82] A. Linares-Barranco, R. Paz-Vicente, A. J. F. Gómez-Rodriguez, M. Rivas,
G. Jiménez, and A. Civit, “On the AER convolution processors for FPGA,”
Proceedings of the 2010 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 4237–4240, May 2010. 45, 60, 65

[83] D. Fasnacht, A. Whatley, and G. Indiveri, “A serial communication infrastructure
for multi-chip address event systems,” Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 648–651, May 2007. 47, 75,
76

[84] U. Ogras, P. Bogdan, and R. Marculescu, “An analytical approach for network-
on-chip performance analysis,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 29, pp. 2001–2013, December 2010. 50,
51, 52

[85] J. Hu, U. Y. Ogras, and R. Marculescu, “System-level buffer allocation for
application-specific networks-on-chip router design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25, pp. 2919–
2933, December 2006. 50

[86] A. Cassidy and A. Andreou, “Beyond Amdahl’s Law: An objective function that
links multiprocessor performance gains to delay and energy,” IEEE Transactions
on Computers, 2011. 50

[87] F. Hillier and G. Lieberman, “Introduction to operations research,” 6th Ed., New
York, McGraw-Hill, pp. 631–732, 1995. 52

[88] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco, “A
3.6µs asynchronous frame-free event-driven dynamic-vision-sensor,” IEEE Jour-
nal of Solid-State Circuits, vol. 46, pp. 1443–1455, June 2011. 60

[89] F. Gómez-Rodŕıguez, R. Paz-Vicente, A. Linares-Barranco, M. Rivas, L. Miró,
S. Vicente, G. Jiménez, and A. Civit, “AER tools for communications and debug-
ging,” Proceedings of the IEEE International Symposium of Circuits and Systems,
pp. 3253–3256, May 2006. 60, 62, 88

[90] J. Pérez-Carrasco, T. Serrano-Gotarredona, C. Serrano, B. Acha, and B. Linares-
Barranco, “High-speed character recognition system based on a complex hierar-
chical AER architecture,” Proceedings of the IEEE International Symposium on
Circuits and Systems. 65

References 209

[91] B. Razavi, “Design of integrated circuits for optical communications.” McGraw
Hill, New York, 2003. 72

[92] ——, “Challenges in the design high-speed clock and data recovery circuits,”
IEEE Communications Magazine, vol. 40, pp. 94–101, August 2002. 72

[93] M.-T. Hsieh and G. Sobelman, “Architectures for multi-gigabit wire-linked clock
and data recovery,” IEEE Circuits and Systems Magazine, vol. 8, pp. 45–57,
2008. 72

[94] J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto, and Y. Ohtomo,
“A 10.3 Gb/s burst-mode CDR using a ∆Σ DAC,” IEEE Journal of Solid-State
Circuits, vol. 43, pp. 2921–2928, December 2008. 72, 73

[95] M. Hossain and A. C. Carusone, “5-10Gb/s 70mW burst mode AC coupled re-
ceiver in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 524–
537, March 2010. 72, 73

[96] A. Li, J. Faucher, and D. V. Plant, “Burst-mode clock and data recovery in op-
tical multiaccess networks using broad-band PLLs,” IEEE Photonics Technology
Letters, vol. 18, pp. 73–75. 73, 74

[97] Q. Du, J. Zhuang, and T. Kwasniewski, “A low-power, fast acquisition, data re-
covery circuit with digital threshold decision for SFI-5 application,” IEEE Trans-
actions on VLSI Systems, vol. 17, pp. 1742–1748. 72, 73

[98] M. van Ierssel, A. Sheikholeslami, H. Tamura, and W. W. Walker, “A 3.2 Gb/s
CDR using semi-blind oversampling to achieve high jitter tolerance,” IEEE Jour-
nal of Solid-State Circuits, vol. 42, pp. 2224–2234, October 2007. 72, 73

[99] C. Zamarreno-Ramos, T. Serrano-Gotarredona, and B. Linares-Barranco, “An
instant-startup jitter-tolerant manchester-encoding serializer/deserializer scheme
for event-driven bit-serial LVDS interchip AER links,” IEEE Transactions on
Circuits and Systems-I : Regular Papers, 2011. 73, 76

[100] J. Kim and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on
blind oversampling,” IEEE Communications Magazine, vol. 41, pp. 68–74. 72

[101] S. Ahmed and T. Kwasniewski, “Overview of oversampling clock and data re-
covery circuits,” Canadian Conference on Electrical and Computer Engineering,
pp. 1876–1881, May 2005. 72

[102] K. Yamashita, M. Nakata, N. Kamogawa, O. Yumoto, and H. Kodera, “Compact-
same-size 52- and 156 Mb/s SDH optical transceiver modules,” IEEE/OSA Jour-
nal of Lightwave Technology, vol. 12, pp. 1607–1615, September 1994. 74

[103] I. Radovanovic, W. van Etten, and H. Freriks, “Ethernet-based passive opti-
cal local-area networks for fiber-to-the-desk application,” IEEE/OSA Journal of
Lightwave Technology, vol. 21, pp. 2534–2545, November 2003. 74

210 References

[104] L. Miró-Amarante, A. Jiménez-Fernández, A. Linares-Barranco, F. Gómez-
Rodŕıguez, G. J. R. Paz, A. Civit, and R. Serrano-Gotarredona, “LVDS serial
AER link performance,” Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1537–1540, May 2007. 76

[105] H. Berge and P. Häfliger, “High-speed serial AER on FPGA,” Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 857–860,
May 2007. 75, 76

[106] P. Popescu, A. Solheim, and M. Wight, “Experimental monolithic high speed
transceiver for Manchester encoded data,” Proceedings of the 1995 Bipolar/C-
MOS Circuits and Technology Meeting, pp. 110–113, October 1995. 76, 77, 81,
86

[107] ANSI/TEIA/EIA-644-1995, “Electrical characteristics of low voltage differential
signalling (LVDS) interface circuits,” Telecommunications Industry Association,
November 15, 1995. 76

[108] A. Boni, A. Pierazzi, and D. Vecchi, “LVDS I/O interface for Gbp/s-per-pin
operation in 0.35µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, pp.
706–711, April 2001. 76, 97, 103, 107, 111, 112, 115, 120, 128

[109] N. Semiconductors, “LVDS owner’s manual,” 4th edition. 76, 97

[110] D. Muller and W. Bartky, “A theory of asynchronous circuits,” Proceedings In-
ternational Symposium Theory of Switching, pp. 204–243, 1959. 79

[111] S. M. Mishra, S. S. Rofail, and K. S. Yeo, “Design of high performance double
edge-triggered flip-flops,” IEE Proceedings on Circuits, Devices and Systems, vol.
147, pp. 283–290, October 2000. 82

[112] T. L. W. Chung and M. Sachdev, “A comparative analysis of low-power low-
voltage dual-edge-triggered flip-flops,” IEEE Transactions on VLSI Systems,
vol. 10, pp. 913–918, December 2002. 82

[113] S. Cheng, H. Tong, J. Silva-Martinez, and A. I. Karsilayan, “Design and analysis
of an ultrahigh-speed glitch-free fully differential charge pump with minimum
output current variation and accurate matching,” IEEE Transactions on Circuits
and Systems, Part II, vol. 53, pp. pp. 843–847, September 2006. 85

[114] J. Craninckx and G. V. der Plas, “A 65fJ/conversion-step 0-to-50Ms/s 0-to-
0.7mW 9b charge-sharing SAR ADC in 90nm digital CMOS,” IEEE ISSCC Di-
gest of Technical Papers, pp. 246–600, February 2007. 87

[115] A. A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE Journal of
Solid-State Circuits, vol. 41, pp. 1803–1816, August 2006. 88

References 211

[116] M. Chen, A. Pierazzi, J. Silva-Mart́ınez, M. Nix, and M. Robinson, “Low-voltage
low-power LVDS drivers,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 472–
479, February 2005. 97, 105, 115, 120

[117] V. Bratov, J. Binkley, V. Katzman, and J. Choma, “Architecture and imple-
mentation of low-power LVDS output buffer for high-speed applications,” IEEE
Transactions on Circuits and Systems Part-I, vol. 53, pp. 2101–2108, October
2005. 97, 115

[118] A. Tajalli and Y. Leblebici, “A slew controlled LVDS output driver circuit in
0.18 µm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 44, pp.
538–548, February 2009. 97, 115

[119] K. Abugharbieh, S. Krishnan, J. Mohan, V. Devnath, and I. Duzevik, “An
ultralow-power 10-Gbits/s LVDS output driver,” IEEE Transactions on Circuits
and Systems Part-I, vol. 57, pp. 262–269, January 2010. 97, 115

[120] H. Lu, H.-W. Wang, C. Su, and C.-N. Liu, “Design of an all-digital LVDS driver,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, pp. 1635–
1644, August 2009. 97, 115, 121, 132

[121] P. Heydari and R. Mohanavelu, “Design of ultrahigh-speed low-voltage CMOS
CML buffers and latches,” IEEE Transactions on Very Large Scale of Iintegration
(VLSI) systems, vol. 12, pp. 1081–1093, Oct. 2004. 98

[122] A. Boni, “1.2-Gb/s true PECL 100K compatible I/O interface in 0.35-µm
CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 979–987, Jun. 2001.
98

[123] C. Zamarreño-Ramos, R. Serrano-Gotarredona, T. Serrano-Gotarredona, and
B. Linares-Barranco, “LVDS interface for AER links with burst mode opera-
tion capability,” Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 644–647, May 2008. 101, 110, 112, 126, 128, 130

[124] J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally, and
M. Horowitz, “A 14-mW 6.25-Gb/s transceiver in 90-nm CMOS,” IEEE Journal
of Solid-State Circuits, vol. 42, pp. 2745–2757, December 2007. 120, 121, 132

[125] K. L. J. Wong, H. Hatamkhani, M. Mansuri, and C. K. K. Yang, “A 27-mW
3.6-Gb/s I/O transceiver,” IEEE Journal of Solid-State Circuits, vol. 39, pp.
602–612, April 2004. 121, 132

[126] M. Kossel, C. Menolfi, J. Weiss, P. Buchmann, G. von Bueren, L. Rodoni,
T. Morf, T. Toifl, and M. Schmatz, “A T-coil-enhanced 8.5Gb/s high-swing SST
transmitter in 65nm Bulk CMOS with ≤-16 dB return loss over 10Ghz band-
width,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2905–2920, December
2008. 132

212 References

[127] K. Fukuda, H. Yamashita, F. Yuki, M. Yagyu, R. Nemoto, T. Takemoto, T. Saito,
N. Chujo, K. Yamamoto, H. Kanai, and A. Hayashi, “An 8Gb/s transceiver
with 3x-oversampling 2-threshold eye-tracking CDR circuit for -36.8dB-loss back-
plane,” IEEE International Solid-State Circuits Conference (ISSCC), 2008. 132

[128] J. Pérez-Carrasco, B. Acha, C. Serrano, L. Camuñas-Mesa, T. Serrano-
Gotarredona, and B. Linares-Barranco, “Fast vision through frameless event-
based sensing and convolutional processing: Application to texture recognition,”
IEEE Transactions on Neural Networks, vol. 21, pp. 609–620, April 2010. 135

[129] J. Pérez-Carrasco, C. Serrano, B. Acha, T. Serrano-Gotarredona, and B. Linares-
Barranco, “Spike-based convolutional network for real-time processing,” 20th In-
ternational Conference on Pattern Recognition (ICPR), pp. 3085–3088, August
2010. 135

[130] J. A. Pérez-Carrasco, “Simulation tool to build and analyze complex and hi-
erarchically structured AER-based systems which implement visual information
processing.” PhD. Thesis, University of Seville, 2011. 179

	portada
	thesis
	Agradecimientos
	1 Introduction
	1.1 Frame-constraint vs. Frame-free Event-based Vision Sensing and Processing
	1.2 The AER protocol
	1.3 Multiple AER chips assembly
	1.4 Structure of this dissertation

	2 Existing Large Scale Neuromorphic Hardware Platforms
	2.1 Introduction
	2.2 SpiNNaker project
	2.3 BrainScaleS project
	2.4 Multi-chip AER systems
	2.5 Convolutional Neural Networks
	2.6 Scalability properties of convolutional neural networks
	2.7 NeuFlow vision system
	2.8 AER convolution chips
	2.9 Conclusion

	3 Spiking Neural Networks Hardware Implementation
	3.1 Introduction
	3.2 Routing in Structured-Grid-AER
	3.2.1 Destination-driven Routing Algorithm
	3.2.2 Source-driven Routing Algorithm
	3.2.3 Comparison between both algorithms

	3.3 Router Design Details
	3.3.1 Destination-Driven Router
	3.3.2 Source-Driven Router
	3.3.3 FPGA Implementations Comparison

	3.4 Network Extension to Multiple FPGA
	3.5 System level design considerations
	3.5.1 Hardware resources requirements
	3.5.2 Event traffic estimation
	3.5.3 Example of use

	3.6 Experimental Results
	3.6.1 Full-Duplex Rocket-I/O-Based Parallel-Serial AER Interface
	3.6.2 Routers with Parallel-Serial Interfaces
	3.6.3 Single-FPGA Implementation of Gabor Filter Array
	3.6.4 Multi-FPGA Implementation of Gabor Filter Array
	3.6.5 Testing Single-FPGA Maximum Capacity
	3.6.6 Multi-Module Multi-Layer Convolutional Neural Network Recognition Example

	3.7 Conclusion

	4 The Event-Driven Bit-Serial Inter-Chip AER link
	4.1 Introduction
	4.2 Overview of clock-data-recovery (CDR) schemes
	4.3 High Speed Serial AER link
	4.4 Transmitter design
	4.4.1 Serializer
	4.4.2 High Speed Manchester Encoder

	4.5 Receiver design
	4.5.1 Clock Extraction circuit
	4.5.2 Delay tuning circuit
	4.5.3 Control voltage memorization circuit

	4.6 Experimental results
	4.7 Conclusion

	5 Current Mode Switchable I/O Circuitry for Low Power Serial Transmission of AER Streams
	5.1 Introduction
	5.2 Switchable high speed serial links
	5.3 AER protocol modification
	5.4 Driver circuit
	5.5 Receiver circuit
	5.6 Experimental results
	5.7 Conclusion

	6 Voltage Mode Switchable I/O Circuitry for Low Power Serial Transmission of AER Streams
	6.1 Introduction
	6.2 Voltage Mode versus current mode drivers
	6.3 Driver circuit
	6.4 Power management for switching drivers
	6.5 Receiver circuit
	6.6 Experimental results
	6.7 Conclusion

	7 Future Outlook: The Node Board
	7.1 Introduction
	7.2 Board architecture
	7.2.1 Parallel connectors
	7.2.2 High speed serial transmission
	7.2.3 Configuration resources
	7.2.4 Power supply design

	7.3 Experimental results
	7.4 Multiple NB Assembly
	7.5 Conclusion

	8 Conclusions
	9 List of Publications
	10 Appendix I: AER convolution modules in FPGA
	10.1 Introduction
	10.2 Sequential convolution module
	10.3 VHDL code for the convolution block
	10.3.1 Entity declaration
	10.3.2 Blocks and signals declaration
	10.3.3 Forgetting effect FSM and configuration parameter assignation
	10.3.4 Neuron State Update FSM
	10.3.5 Auxiliary blocks connection
	10.3.6 Auxiliary blocks VHDL description

	11 Appendix II: Matlab functions for NoC VHDL generation
	11.1 Introduction
	11.2 Matlab code
	11.2.1 Main function
	11.2.2 Top entity generation
	11.2.3 Signals defintion
	11.2.4 Tie handshaking signals of unused channels
	11.2.5 Clock generation block instantation
	11.2.6 Input splitter instantiation
	11.2.7 Convolution module
	11.2.8 Configuration module instantiation
	11.2.9 Output multiplexer instantiation
	11.2.10 Input splitter VHDL description
	11.2.11 Output multiplexer VHDL description
	11.2.12 Configuration block VHDL description for the destination-driven routing
	11.2.13 Configuration block VHDL description for the source-driven routing

	References

