Elementary and Darboux first integrals for planar polynomial vector fields
 J. Llibre, C. Pantazi and S. Walcher

Chara Pantazi

Kassel, August 3, 2016

Contents

(1) Planar polynomial vector fields and associated foliations
(2) Motivation
(3) Elementary and Darboux First Integrals
(4) Exceptional Cases

Plan

(1) Planar polynomial vector fields and associated foliations

(2) Motivation

(3) Elementary and Darboux First Integrals

4) Exceptional Cases

- Quadratic extension
- Cubic Extentions

We consider the polynomial (differential) system in \mathbf{C}^{2} defined by

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

with $P, Q \in \mathbf{C}[x, y]$. The polynomial vector field is

$$
X=P(x, y) \frac{\partial}{\partial x}+Q(x, y) \frac{\partial}{\partial y}
$$

Definition
We call a function

$$
f_{1}^{\lambda_{1}} \cdots f_{r}^{\lambda_{r}} \exp \left(g /\left(f_{1}^{n_{1}} \cdots f_{r}^{n_{r}}\right)\right)=\exp (R) \cdot \prod S_{i}^{c_{i}},
$$

with rational functions R and S_{i} and complex constants c_{i}, a Darboux function.

We consider the polynomial (differential) system in \mathbf{C}^{2} defined by

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

with $P, Q \in \mathbf{C}[x, y]$. The polynomial vector field is

$$
X=P(x, y) \frac{\partial}{\partial x}+Q(x, y) \frac{\partial}{\partial y}
$$

Definition

We call a function

$$
f_{1}^{\lambda_{1}} \cdots f_{r}^{\lambda_{r}} \exp \left(g /\left(f_{1}^{n_{1}} \cdots f_{r}^{n_{r}}\right)\right)=\exp (R) \cdot \prod S_{i}^{c_{i}}
$$

with rational functions R and S_{i} and complex constants c_{i}, a Darboux function.

Consider $\mu=f_{1}^{-d_{1}} \cdots f_{r}^{-d_{r}}$. Define

$$
Z_{g}=\text { Hamiltonian vector field of } g /\left(f_{1}^{d_{1}-1} \cdots f_{r}^{d_{r}-1}\right)
$$

Then, the trivial vector field

$$
\begin{equation*}
f_{1}^{d_{1}} \cdots f_{r}^{d_{r}} \cdot Z_{g}=f \cdot X_{g}-\sum_{i=1}^{r}\left(d_{i}-1\right) g \frac{f}{f_{i}} \cdot X_{f_{i}} \tag{2}
\end{equation*}
$$

is polynomial and admits $\mu=f_{1}^{-d_{1}} \cdots f_{r}^{-d_{r}}$.
Under conditions: $\mathcal{F}=\mathcal{F}^{0}$ (Christopher,Llibre, Pantazi and Walcher)
Proposition If d_{1}, \ldots, d_{r} are rational numbers then every element of \mathcal{F}^{0} admits a rational (hence elementary) first integral.

Chavariga, Giacomini,Gine, Llibre and also Llibre, Pantazi

Let

$$
H(x, y)=f_{1}^{\lambda_{1}} \cdots f_{r}^{\lambda_{r}} \exp \left(g /\left(f_{1}^{n_{1}} \cdots f_{r}^{n_{r}}\right)\right)
$$

be a Darboux function with $\lambda_{1}, \cdots, \lambda_{r} \in \mathbf{C}, n_{1}, \cdots, n_{r} \in \mathbf{N} \cup\{0\}$ and $g \in \mathbf{C}[x, y]$ coprime with f_{i} whenever $n_{i} \neq 0$. Then H is a first integral of the polynomial vector field

$$
\widehat{X}=\prod_{k=1}^{r} f_{k}^{n_{k}+1} \cdot\left(\sum_{k=1}^{r} \lambda_{k} X_{f_{k}} / f_{k}+Z_{g}^{\left(n_{1}+1, \ldots, n_{r}+1\right)}\right)
$$

which, in turn, admits the integrating factor $\prod_{k=1}^{r} f_{k}^{-\left(n_{k}+1\right)}$. Moreover, any polynomial vector field admitting the first integral H admits a rational integrating factor.

Vector fields with Rational first integral are special ones.

If X admits a Darboux first integral but not a rational first integral then it admits (up to constant multiples) a unique integrating factor, and this integrating factor is rational.
but also the inverse is true
\square

Vector fields with Rational first integral are special ones.

If X admits a Darboux first integral but not a rational first integral then it admits (up to constant multiples) a unique integrating factor, and this integrating factor is rational.
but also the inverse is true

If the vector field X admits a rational integrating factor then it admits a Darboux first integral.

Vector fields with Rational first integral are special ones.

If X admits a Darboux first integral but not a rational first integral then it admits (up to constant multiples) a unique integrating factor, and this integrating factor is rational.
but also the inverse is true

Rosenlicht

If the vector field X admits a rational integrating factor then it admits a Darboux first integral.

Let $\mathbb{K}=\mathbf{C}(x, y)$ with derivations $\partial / \partial x$ and $\partial / \partial y$.
Every derivation of \mathbb{K} has the form $Y=R \frac{\partial}{\partial x}+S \frac{\partial}{\partial y}$ with rational R and S.

- An extension field \mathbb{L} of \mathbb{K} is called elementary if there is a finite tower of extension fields $\mathbb{K}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \cdots \subset \mathbb{L}_{n}=\mathbb{L}$ such that \mathbb{L}_{i+1} is obtained from \mathbb{L}_{i} by adjoining an algebraic element, an exponential (i.e. an element w such that $Y(w) / w \in \mathbb{L}_{i}$ for some derivation Y) or a logarithm (i.e. an element w such that $Z(w)=Z(a) / a$ for some $a \in \mathbb{L}_{i}$ and some derivation Z).
- An extension field \mathbb{L} is called Liouvillian over \mathbb{K} if there is a finite tower of extension fields $\mathbb{K}=\mathbb{L}_{0} \subset \mathbb{L}_{1} \subset \cdots \subset \mathbb{L}_{n}=\mathbb{L}$ such that \mathbb{L}_{i+1} is obtained from \mathbb{L}_{i} by adjoining an algebraic element, an integral element (i.e. an element w such that $Z(w)=a$ for some $a \in \mathbb{L}_{i}$), or an exponential. Every element of is called a Liouvillian function of two variables.

Due to Singer and also by Christopher

Liouvillian first integrals came from Darboux functions

Now we concentrate to the case of Elementary first integrals (over $\mathbb{K}=\mathbf{C}(x, y))$.

Due to Singer and also by Christopher

Liouvillian first integrals came from Darboux functions

Now we concentrate to the case of Elementary first integrals (over $\mathbb{K}=\mathbf{C}(x, y))$.

Prelle and Singer's Theorem

(a) If the polynomial vector field X admits an elementary first integral then there exist an integer $m \geq 0$, algebraic functions v, u_{1}, \ldots, u_{m} over \mathbb{K} and nonzero constants $c_{1}, \ldots, c_{m} \in \mathbb{C}$ such that

$$
\begin{equation*}
X(v)+\sum_{i=1}^{m} c_{i} \frac{X\left(u_{i}\right)}{u_{i}}=X\left(v+\sum_{i=1}^{m} c_{i} \log \left(u_{i}\right)\right)=0 \tag{3}
\end{equation*}
$$

but $v+\sum_{i=1}^{m} c_{i} \log \left(u_{i}\right)$ is not constant. The c_{i} may be chosen linearly independent over the rational numbers \mathbb{Q}. $\prod u_{i}{ }_{i}{ }_{i} \exp v$.
(b) If the vector field X admits an elementary first integral then it admits an integrating factor of the special form

$$
\begin{equation*}
\mu=f_{1}^{-d_{1}} \cdots f_{r}^{-d_{r}}, \tag{4}
\end{equation*}
$$

with irreducible and pairwise relatively prime polynomials f_{1}, \ldots, f_{r}, and exponents $d_{1}, \ldots, d_{r} \in \mathbb{Q}$.

Given an algebraic function w, we denote its minimal polynomial by

$$
M_{w}(T):=T^{d}+\sum_{i=1}^{d} g_{i} T^{d-i} \in \mathbb{K}[T]
$$

Here $-g_{1}$ is the trace of w $(-1)^{d} g_{d}$ is the norm of w.

The other zeros of M_{w} (in a suitable extension field \mathbb{F} of \mathbb{K}) are called the conjugates of w.

Theorem: Llibre,Pantazi and Walcher

Let the polynomial vector field X admit the elementary first integral $v+\sum_{i=1}^{m} c_{i} \log \left(u_{i}\right)$, where $m>0$ and v, u_{1}, \ldots, u_{m} are nonconstant algebraic functions over $\mathbb{K}=\mathbb{C}(x, y)$, and furthermore c_{1}, \ldots, c_{m} are complex constants linearly independent over \mathbb{Q}. If X does not admit a rational first integral then the following hold.
(a) If some u_{j} has non-constant norm, or if v has non-constant trace, then X admits a Darboux first integral.
(b) Moreover, if $\mu=f_{1}^{-d_{1}} \cdots f_{r}^{-d_{r}}$ is an integrating factor for X, with some u_{j} having non-constant norm, then it is uniquely determined (up to a nonzero complex factor) and all d_{i} are nonnegative integers.

It remains exceptional cases' admitting an elementary first integral

$$
v+\sum_{i=1}^{m} c_{i} \log \left(u_{i}\right)
$$

with all u_{i} of constant norm and v of constant trace.

Assume $m=1$. Then take $c_{1}=1$. Then $u \exp v$ or $v+\log u$ So we have

$$
\begin{equation*}
X(v)+\frac{X(u)}{u}=0, \quad X(v+\log u)=0 \tag{5}
\end{equation*}
$$

with u and v non-constant algebraic functions over \mathbb{K} (but not both in \mathbb{K}), with u of constant norm and v of constant trace.

Theorem for Quadratic Extensions

Assume $X(v)+\frac{X(u)}{u}=0$ with u of constant norm and v of constant trace, both contained in a degree two extension of \mathbb{K}, but neither contained in \mathbb{K}. Then, with no loss of generality, one may take u and v to satisfy

$$
u^{2}+2 g \cdot u+1=0 \text { and } v=b(g+u)
$$

with a non-constant rational function g and a nonzero rational function b.
(a) There is a rational function s such that

$$
\begin{aligned}
& P=-s \cdot\left(\left(g^{2}-1\right) b_{y}+(b g-1) g_{y}\right), \\
& Q=s \cdot\left(\left(g^{2}-1\right) b_{x}+(b g-1) g_{x}\right),
\end{aligned}
$$

defines a polynomial vector field. If one requires P and Q to have relatively prime entries then s is unique up to a factor in \mathbb{C}^{*}.
(b) This vector field admits the elementary first integral $v+\log u$ and the integrating factor $\left(\sqrt{g^{2}-1} \cdot s\right)^{-1}$.

Theorem for Quadratic Extensions

- If this vector field admits a Darboux first integral then it admits a rational first integral.

Example

This is known Prelle and Singer: Let $g=x$ and $b=y$. The vector field

$$
\widehat{x}=\binom{1-x^{2}}{x y-1}
$$

admits the integrating factor $1 / \sqrt{1-x^{2}}$ and the elementary first integral

$$
H(x, y)=y \cdot \sqrt{x^{2}-1}+\log \left(-x+\sqrt{x^{2}-1}\right) .
$$

Prelle and Singer showed by differential-algebraic arguments that no rational first integral exists.

Example

The polynomial differential system

$$
\begin{aligned}
& \dot{x}=1-x^{2}, \\
& \dot{y}=1-x^{2}-x y,
\end{aligned}
$$

admits the integrating factor $\left(x^{2}-1\right)^{-3 / 2}$ and the elementary first integral

$$
H=\frac{e^{\frac{y}{\sqrt{x^{2}-1}}}}{x+\sqrt{x^{2}-1}}
$$

(or equivalently $\log H=\frac{y}{\sqrt{x^{2}-1}}-\log \left(x+\sqrt{x^{2}-1}\right)$).
This system has no Darboux first integral.

Example

The polynomial differential system

$$
\begin{aligned}
& \dot{x}=1-x^{2}, \\
& \dot{y}=1-x^{2}-x y,
\end{aligned}
$$

admits the integrating factor $\left(x^{2}-1\right)^{-3 / 2}$ and the elementary first integral

$$
H=\frac{e^{\frac{y}{\sqrt{x^{2}-1}}}}{x+\sqrt{x^{2}-1}}
$$

(or equivalently $\log H=\frac{y}{\sqrt{x^{2}-1}}-\log \left(x+\sqrt{x^{2}-1}\right)$).
This system has no Darboux first integral. It is sufficient to prove there is no rational first integral.

Example

$$
\begin{aligned}
& \dot{x}=1-x^{2} \\
& \dot{y}=1-x^{2}-x y,
\end{aligned}
$$

Stationary points: $(1,0)$ and $(-1,0)$,
$x \pm 1=0$ are invariant algebraic curves with cofactors $-x \pm 1$,
NO other invariant algebraic curves exist.
The only possible rational FI: $(x-1)^{m}(x+1)^{n}$, with integers m and n.

$$
m \cdot(-x+1)+n \cdot(-x-1)=0
$$

m and n must be both zero.

Consider: $\mathbb{F}=\mathbb{K}[u]=\mathbb{K}[v]$ be a degree three extension of \mathbb{K}, with u of norm one and v of trace zero and X admitting the elementary first integral

$$
X(v)+\frac{X(u)}{u}=0, \quad X(v+\log u)=0
$$

Proposition Let μ be the integrating factor of X (which is unique up to a nonzero scalar). Then $\mathbb{F}=\mathbb{K}[\mu]$ and there exists $g \in \mathbb{K}$ such that

$$
\begin{equation*}
\mu^{3}-g=0 \tag{6}
\end{equation*}
$$

A general element of $\mathbb{F}=\mathbb{K}[\mu]$ has the form

$$
\begin{equation*}
w:=a+b \cdot \mu+c \cdot \mu^{2} ; \quad a, b, c \in \mathbb{K} \tag{7}
\end{equation*}
$$

and by Hilbert's Theorem 90 we have $u=\frac{\sigma(w)}{w}$, for some nonzero w, while the trace zero element has the form

$$
v=r \cdot \mu+s \cdot \mu^{2} ; \quad r, s \in \mathbb{K}
$$

Lemma

Let $w \in \mathbb{F}^{*}, w:=a+b \cdot \mu+c \cdot \mu^{2}$, and $u=\sigma(w) / w$. Moreover let $r, s \in \mathbb{K}$ and

$$
v:=r \cdot \mu+s \cdot \mu^{2} \in \mathbb{F}
$$

an element of trace zero. The elementary function

$$
H:=v+\log u
$$

is a first integral of a nonzero rational vector field with integrating factor μ if and only if the identities

$$
\begin{aligned}
& s_{x}+\frac{2}{3} s g^{-1} g_{x}+R_{12} / N(w)=0 \\
& s_{y}+\frac{2}{3} s g^{-1} g_{y}+R_{22} / N(w)=0
\end{aligned}
$$

are satisfied. R_{12}, R_{22} are rational functions.

$$
\begin{aligned}
R_{12} & \left.=b c^{2} g \cdot\left(c_{x} / c-b_{x} / b+\frac{1}{3} g_{x} / g\right)\right) \\
& +a b^{2} \cdot\left(b_{x} / b-a_{x} / a+\frac{1}{3} g_{x} / g\right) \\
& +a^{2} c \cdot\left(a_{x} / a-c_{x} / c-\frac{2}{3} g_{x} / g\right) .
\end{aligned}
$$

In general, no rational solution exists for the system of partially differential equations.

Proposition

Let w, u and v be as above ($w:=a+b \cdot \mu+c \cdot \mu^{2}$), and denote by $N(w)=c^{3} \cdot g^{2}-3 a b c \cdot g+b^{3} \cdot g+a^{3}$ the norm of w.
(a) For every derivation Y of \mathbb{K} one has

$$
\frac{Y(u)}{\mu \cdot u}=\frac{1}{N(w)} A_{Y}+\frac{\mu}{N(w)} B_{Y}, \quad A_{Y}, B_{Y} \text { rationals }
$$

(b) There exists a nontrivial polynomial vector field X which admits the first integral $H:=v+\log u$ if and only if the identity

$$
Y(s)+\frac{2}{3} s \cdot \frac{Y(g)}{g}+\frac{1}{N(w)} B_{Y}=0
$$

holds for all derivations Y of \mathbb{K}.
(c) Given any $u \in \mathbb{F}$ with norm one, there exists at most one rational function s such that H (with $v=r \cdot \mu+s \cdot \mu^{2}$ and arbitrary $r \in \mathbb{K}$) is a first integral for some nontrivial polynomial vector field.

Example

We keep notation and terminology from above. Let g be arbitrary with $g_{x} \neq 0, a \in \mathbb{C}^{*}$ and set

$$
\begin{gathered}
w:=a+\mu, \quad N(w)=g+a^{3}, \quad R_{12}=\frac{a}{3} \cdot \frac{g_{x}}{g} . \\
s_{x}+\frac{2}{3} s g^{-1} g_{x}+R_{12} / N(w)=0 .
\end{gathered}
$$

Fix $y=y_{0}$. We show there exists no rational function \widehat{s} such that

$$
\widehat{s}^{\prime}+\frac{2}{3} \widehat{s} \cdot \frac{\hat{g}^{\prime}}{\hat{g}}+\frac{a}{3} \cdot \frac{\hat{g}^{\prime}}{\hat{g} \cdot\left(\widehat{g}+a^{3}\right)}=0 .
$$

The general solution of this differential equation is given by

$$
S=\widehat{g}^{-2 / 3} \cdot q, \quad q^{\prime}=-\frac{a}{3} \cdot \frac{\widehat{g}^{2 / 3} \cdot \hat{g}^{\prime}}{\widehat{g} \cdot\left(\widehat{g}+a^{3}\right)}=-\frac{a}{3} \cdot \frac{\widehat{g}^{\prime}}{\hat{g}^{1 / 3} \cdot\left(\widehat{g}+a^{3}\right)} .
$$

Example

A substitution leads to the indefinite integration problem

$$
-\frac{a}{3} \cdot \int \frac{d t}{t^{1 / 3}\left(t+a^{3}\right)}=-a \cdot \int \frac{z}{z^{3}+a^{3}} d z
$$

with one more substitution $z=t^{1 / 3}, t=z^{3}$ and $d t=3 z^{2} d z$. With ζ a primitive third root of unity, one has

$$
-a \cdot \frac{z}{z^{3}+a^{3}}=\frac{1}{3}\left(\frac{1}{z+a}+\frac{\zeta^{2}}{z+\zeta a}+\frac{\zeta}{1+\zeta^{2} a}\right)
$$

and therefore (upon back-substitution) one has a local representation

$$
q=\frac{1}{3} \cdot\left(\log \left(\widehat{g}^{1 / 3}+a\right)+\zeta^{2} \log \left(\widehat{g}^{1 / 3}+\zeta a\right)+\zeta \log \left(\widehat{g}^{1 / 3}+\zeta^{2} a\right)\right)+\text { const. }
$$

Since q is a transcendental function for any value of the constant, we are done.

Representative references far to be complete

- A. Bostan, G. Chéze, T. Cluzeau, J.-A. Weil: Efficient algorithms for computing rational first integrals and Darboux polynomials of planar polynomial vector fields. Math. Comp. 85 (2016), 1393-1425.
- J. Chavarriga, H. Giacomini, J. Giné, J. Llibre: Darboux integrability and the inverse integrating factor. J. Differential Eqs. 194 (2003), 116-139.
- C. Christopher: Liouvillian first integrals of second order polynomial differential equations. Electronic J. Differential Eqs. 1999, no. 49 (1999), 1-7.
- C. Christopher, J. Llibre, C. Pantazi, S. Walcher: Darboux integrating factors: Inverse problems. J. Differential Eqs. 250 (2011), 1-25.
- M. J. Prelle and M. F. Singer: Elementary first integrals of differential equations. Trans. Amer. Math. Soc. 279 (1983), 613-636.
- M. Rosenlicht: Liouville's theorem on functions with elementary integrals. Pacific J. Math. 24 (1968), 153-161.
- M. Rosenlicht: On Liouville's theory of elementary functions. Pacific J. Math. 65 (1976), 485-492.
- Sin M.F. Singer: Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc. 333 (1992), 673-688.

