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Motivation

We consider the polynomial (differential) system in C2 defined by

dx

dt
= ẋ = P(x , y),

dy

dt
= ẏ = Q(x , y), (1)

with P,Q ∈ C[x , y ]. The polynomial vector field is

X = P(x , y)
∂

∂x
+ Q(x , y)

∂

∂y
,

Definition

We call a function

f λ1
1 · · · f

λr
r exp(g/(f n1

1 · · · f
nr
r )) = exp(R) ·

∏
Sci
i ,

with rational functions R and Si and complex constants ci , a Darboux
function.
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Motivation

Consider µ = f −d1
1 · · · f −drr . Define

Zg = Hamiltonian vector field of g/
(

f d1−1
1 · · · f dr−1

r

)
.

Then, the trivial vector field

f d1
1 · · · f

dr
r · Zg = f · Xg −

r∑
i=1

(di − 1)g
f

fi
· Xfi (2)

is polynomial and admits µ = f −d1
1 · · · f −drr .

Under conditions: F = F0 (Christopher,Llibre, Pantazi and Walcher)

Proposition If d1, . . . , dr are rational numbers then every element of F0

admits a rational (hence elementary) first integral.
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Motivation

Chavariga, Giacomini,Gine, Llibre and also Llibre,Pantazi

Let
H(x , y) = f λ1

1 · · · f
λr
r exp(g/(f n1

1 · · · f
nr
r ))

be a Darboux function with λ1, · · · , λr ∈ C, n1, · · · , nr ∈ N ∪ {0} and
g ∈ C[x , y ] coprime with fi whenever ni 6= 0. Then H is a first integral of
the polynomial vector field

X̂ =
r∏

k=1

f nk+1
k ·

(
r∑

k=1

λkXfk/fk + Z
(n1+1,...,nr+1)
g

)

which, in turn, admits the integrating factor
∏r

k=1 f
−(nk+1)
k . Moreover,

any polynomial vector field admitting the first integral H admits a rational
integrating factor.
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Motivation

Vector fields with Rational first integral are special ones.

If X admits a Darboux first integral but not a rational first integral then
it admits (up to constant multiples) a unique integrating factor, and this
integrating factor is rational.

but also the inverse is true

Rosenlicht

If the vector field X admits a rational integrating factor then it admits a
Darboux first integral.
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Motivation

Let K = C(x , y) with derivations ∂/∂x and ∂/∂y .
Every derivation of K has the form Y = R ∂

∂x + S ∂
∂y with rational R and S .

An extension field L of K is called elementary if there is a finite tower
of extension fields K = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L such that Li+1 is
obtained from Li by adjoining an algebraic element, an exponential
(i.e. an element w such that Y (w)/w ∈ Li for some derivation Y ) or
a logarithm (i.e. an element w such that Z (w) = Z (a)/a for some
a ∈ Li and some derivation Z ).

An extension field L is called Liouvillian over K if there is a finite
tower of extension fields K = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L such that
Li+1 is obtained from Li by adjoining an algebraic element, an
integral element (i.e. an element w such that Z (w) = a for some
a ∈ Li ), or an exponential. Every element of is called a Liouvillian
function of two variables.
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Motivation

Due to Singer and also by Christopher

Liouvillian first integrals came from Darboux functions

Now we concentrate to the case of Elementary first integrals (over
K = C(x , y)).
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Elementary and Darboux First Integrals

Prelle and Singer’s Theorem

(a) If the polynomial vector field X admits an elementary first integral
then there exist an integer m ≥ 0, algebraic functions v , u1, . . . , um
over K and nonzero constants c1, . . . , cm ∈ C such that

X (v) +
m∑
i=1

ci
X (ui )

ui
= X

(
v +

m∑
i=1

ci log(ui )

)
= 0, (3)

but v +
∑m

i=1 ci log(ui ) is not constant. The ci may be chosen linearly
independent over the rational numbers Q.

∏
ui

ci exp v .

(b) If the vector field X admits an elementary first integral then it admits
an integrating factor of the special form

µ = f −d1
1 · · · f −drr , (4)

with irreducible and pairwise relatively prime polynomials f1, . . . , fr ,
and exponents d1, . . . , dr ∈ Q.
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Elementary and Darboux First Integrals

Given an algebraic function w , we denote its minimal polynomial by

Mw (T ) := T d +
d∑

i=1

giT
d−i ∈ K[T ].

Here −g1 is the trace of w
(−1)dgd is the norm of w .

The other zeros of Mw (in a suitable extension field F of K) are called the
conjugates of w .
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Elementary and Darboux First Integrals

Theorem: Llibre,Pantazi and Walcher

Let the polynomial vector field X admit the elementary first integral
v +

∑m
i=1 ci log(ui ), where m > 0 and v , u1, . . . , um are nonconstant alge-

braic functions over K = C(x , y), and furthermore c1, . . . , cm are complex
constants linearly independent over Q. If X does not admit a rational first
integral then the following hold.

(a) If some uj has non-constant norm, or if v has non-constant trace, then
X admits a Darboux first integral.

(b) Moreover, if µ = f −d1
1 · · · f −drr is an integrating factor for X , with

some uj having non-constant norm, then it is uniquely determined (up
to a nonzero complex factor) and all di are nonnegative integers.
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Exceptional Cases

It remains exceptional cases‘ admitting an elementary first integral

v +
m∑
i=1

ci log(ui )

with all ui of constant norm
and v of constant trace.

Assume m = 1. Then take c1 = 1. Then u exp v or v + logu So we have

X (v) +
X (u)

u
= 0, X (v + logu) = 0 (5)

with u and v non-constant algebraic functions over K (but not both in K),
with u of constant norm
and v of constant trace.
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Exceptional Cases Quadratic extension

Theorem for Quadratic Extensions

Assume X (v) + X (u)
u = 0 with u of constant norm and v of constant trace,

both contained in a degree two extension of K, but neither contained in K.
Then, with no loss of generality, one may take u and v to satisfy

u2 + 2g · u + 1 = 0 and v = b(g + u)

with a non-constant rational function g and a nonzero rational function b.

(a) There is a rational function s such that

P = −s ·
(
(g 2 − 1)by + (bg − 1)gy

)
,

Q = s ·
(
(g 2 − 1)bx + (bg − 1)gx

)
,

defines a polynomial vector field. If one requires P and Q to have
relatively prime entries then s is unique up to a factor in C∗.

(b) This vector field admits the elementary first integral v + log u and the
integrating factor (

√
g 2 − 1 · s)−1.
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Exceptional Cases Quadratic extension

Theorem for Quadratic Extensions

If this vector field admits a Darboux first integral then it admits a
rational first integral.
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Exceptional Cases Quadratic extension

Example

This is known Prelle and Singer: Let g = x and b = y . The vector field

X̂ =

(
1− x2

xy − 1

)
admits the integrating factor 1/

√
1− x2 and the elementary first integral

H(x , y) = y ·
√

x2 − 1 + log
(
−x +

√
x2 − 1

)
.

Prelle and Singer showed by differential-algebraic arguments that no
rational first integral exists.
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Exceptional Cases Quadratic extension

Example

The polynomial differential system

ẋ = 1− x2,
ẏ = 1− x2 − xy ,

admits the integrating factor (x2 − 1)−3/2 and the elementary first integral

H =
e

y√
x2−1

x +
√

x2 − 1

(or equivalently log H = y√
x2−1

− log(x +
√

x2 − 1)).

This system has no Darboux first integral. It is sufficient to prove there is
no rational first integral.
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Exceptional Cases Quadratic extension

Example

ẋ = 1− x2,
ẏ = 1− x2 − xy ,

Stationary points: (1, 0) and (−1, 0),
x ± 1 = 0 are invariant algebraic curves with cofactors −x ± 1,
NO other invariant algebraic curves exist.
The only possible rational FI: (x − 1)m(x + 1)n, with integers m and n.

m · (−x + 1) + n · (−x − 1) = 0

m and n must be both zero.
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Exceptional Cases Cubic Extentions

Consider: F = K[u] = K[v ] be a degree three extension of K, with u of
norm one and v of trace zero and X admitting the elementary first integral

X (v) +
X (u)

u
= 0, X (v + logu) = 0

Proposition Let µ be the integrating factor of X (which is unique up to a
nonzero scalar). Then F = K[µ] and there exists g ∈ K such that

µ3 − g = 0. (6)

A general element of F = K[µ] has the form

w := a + b · µ+ c · µ2; a, b, c ∈ K, (7)

and by Hilbert’s Theorem 90 we have u = σ(w)
w , for some nonzero w ,

while the trace zero element has the form

v = r · µ+ s · µ2; r , s ∈ K.
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Exceptional Cases Cubic Extentions

Lemma

Let w ∈ F∗, w := a + b · µ+ c · µ2, and u = σ(w)/w . Moreover let
r , s ∈ K and

v := r · µ+ s · µ2 ∈ F

an element of trace zero. The elementary function

H := v + log u

is a first integral of a nonzero rational vector field with integrating factor µ
if and only if the identities

sx + 2
3 sg−1gx + R12/N(w) = 0,

sy + 2
3 sg−1gy + R22/N(w) = 0,

are satisfied. R12,R22 are rational functions.
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Exceptional Cases Cubic Extentions

R12 = bc2g ·
(
cx/c − bx/b + 1

3 gx/g)
)

+ ab2 ·
(
bx/b − ax/a + 1

3 gx/g
)

+ a2c ·
(
ax/a− cx/c − 2

3 gx/g
)
.

In general, no rational solution exists for the system of partially differential
equations.
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Exceptional Cases Cubic Extentions

Proposition

Let w , u and v be as above (w := a + b · µ+ c · µ2), and denote by
N(w) = c3 · g 2 − 3abc · g + b3 · g + a3 the norm of w .

(a) For every derivation Y of K one has

Y (u)

µ · u
=

1

N(w)
AY +

µ

N(w)
BY , AY ,BY rationals

(b) There exists a nontrivial polynomial vector field X which admits the
first integral H := v + log u if and only if the identity

Y (s) +
2

3
s · Y (g)

g
+

1

N(w)
BY = 0

holds for all derivations Y of K.

(c) Given any u ∈ F with norm one, there exists at most one rational
function s such that H (with v = r · µ+ s · µ2 and arbitrary r ∈ K) is
a first integral for some nontrivial polynomial vector field.
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Exceptional Cases Cubic Extentions

Example

We keep notation and terminology from above. Let g be arbitrary with
gx 6= 0, a ∈ C∗ and set

w := a + µ, N(w) = g + a3, R12 =
a

3
· gx

g
.

sx +
2

3
sg−1gx + R12/N(w) = 0.

Fix y = y0. We show there exists no rational function ŝ such that

ŝ ′ +
2

3
ŝ · ĝ ′

ĝ
+

a

3
· ĝ ′

ĝ · (ĝ + a3)
= 0.

The general solution of this differential equation is given by

S = ĝ−2/3 · q, q′ = −a

3
· ĝ 2/3 · ĝ ′

ĝ · (ĝ + a3)
= −a

3
· ĝ ′

ĝ 1/3 · (ĝ + a3)
.
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Exceptional Cases Cubic Extentions

Example

A substitution leads to the indefinite integration problem

−a

3
·
∫

dt

t1/3(t + a3)
= −a ·

∫
z

z3 + a3
dz

with one more substitution z = t1/3, t = z3 and dt = 3z2 dz . With ζ a
primitive third root of unity, one has

−a · z

z3 + a3
=

1

3

(
1

z + a
+

ζ2

z + ζa
+

ζ

1 + ζ2a

)
,

and therefore (upon back-substitution) one has a local representation

q =
1

3
·
(

log(ĝ 1/3 + a) + ζ2 log(ĝ 1/3 + ζa) + ζ log(ĝ 1/3 + ζ2a)
)

+ const.

Since q is a transcendental function for any value of the constant, we are
done.
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Exceptional Cases Cubic Extentions
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Exceptional Cases Cubic Extentions
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