
Real-time Physically-based Interaction between Avatars and Virtual Environments

Harald Schmidl and Ming C. Lin
University of North Carolina at Chapel Hill

Email: {schmidl,lin}@cs.unc.edu

Abstract

We present an interactive technique on virtual con-
tact handling for avatars in virtual environments
using XXX. If a contact has occurred between an
articulated avatar and a virtual environment, the
global penetration depth and contact points are esti-
mated based on a fast local penetration depth com-
putation for decomposed convex pieces. The pen-
etration depth and contact information are used for
geometric overlap avoidance between objects. If
applicable, joint angles for an articulated body are
computed using an inverse kinematics approach
based on cyclic coordinate descent. Resulting
dynamic response with friction is modeled with
impulse-based dynamics under the Coulomb fric-
tion law. We demonstrate the algorithm on a mod-
estly complex virtual environment. The resulting
system is able to maintain an interactive frame rate
of 30-60 Hz.

Keywords: Virtual reality, inverse kinematics, dynamics,
simulation, animation

Introduction
Motion is ubiquitous within both the physical world and any
virtual environment (VE). The problems of collision detec-
tion and contact response are central to many tasks involv-
ing real-time interaction and physically-based manipulation
in VEs, computer animation, simulation-based design, elec-
tronic prototyping, acquisition, evaluation, computer games,
etc. In many of these applications, motion among different
entities is often simulated by modeling the contact constraints
and impact dynamics. This is especially important in creating
an immersive VE for training and mission rehearsal.

The non-penetration constraints between a moving avatar
(driven by a user) and the VE need to be enforced in real-
time for interactive applications. This poses some challeng-
ing computational issues. First, a collision must be detected;
next, any overlap between the avatar and the environment
must be resolved, and appropriate physical response for the
entire articulated body must be computed – all in real time.
Contact resolution must be handled in a physically plausible
way. Figure 1 shows an example of a user’s articulated hand
interacting with a ball in real-time.

The additional challenge in virtual reality (VR) is to avoid
overlap and resolve contact in a way that not only produces

Figure 1: A ball is “snipped” over a table with a finger caus-
ing it to roll off the table.

physically plausible motion but also preserves human charac-
teristics of the avatar. We see ourselves faced with a number
of problems that need to be addressed. Any motion must be
physical within limits, a human (or other creature-like) avatar
is subject to biological constraints, and all computationsun-
derly stern real-time requirements. Biological constraints are
for instance joint limits that govern possible body posture. A
human will not usually go into contortion to avoid an obstacle
but maintains a comfortable posture even if walking through
a path with obstacles.

Real-time performance is necessary in order to achieve
good immersion into the VE. If the frame rate drops too low,
a lag between the user’s motion and the visual display will be
noticeable. This would considerably lessen the realism with
which our VE is perceived.

Our system addresses these problems with ”geometry-
driven physics” using a quick estimation of global penetration
depth (PD), combined with a hybrid approach that utilizes
dynamics and kinematics. Computation of the PD is essen-
tial for our approach. Having the PD and associated normal
direction allows us to separate overlapping objects. Unfortu-
nately, computation of the PD is non-trivial and generally ex-
pensive for non-convex objects. Only impractical algorithms
are known that would not satisfy our quest for real-time [8].
We use the convex PD to quickly estimate the non-convex PD.
Combined with an iterative approach this produces good re-
sults in practice. Furthermore, avoiding collisions fore.g.the
avatar’s articulated arm will necessitate adjustment of joint
angles. We address this by an inverse kinematics (IK) ap-

1

Figure 2: An avatar moves into a wall: the extended arm and
a leg are pushed back.

proach utilizing cyclic coordinate descent (CCD) [22]. Colli-
sion response is finally handled with impulse-based physics.
We chose a hybrid approach of kinematics and dynamics
through geometric overlap minimization, CCD, and impulses
despite of its inherent simplifications. Exact physics is not
our main concern but real-time performance is. We found our
system to stand the test of real-time performance and have
demonstrated so by incorporating it into a VR application.
We use a Cyberglove for interaction of an articulated hand
with static and dynamic objects in a VE and a whole body
avatar to demonstrate interaction with walls in the VE and
handling of avatar self-collisions. Figure 2 shows interaction
of a whole body avatar with a wall.

The remainder of this paper is structured as follows. Sec-
tion briefly summarizes related work. We present the over-
all system architecture in section . Section introduces our
heuristic for estimating non-convex PD quickly. Section
presents the hybrid approach of kinematics and impulses for
overlap avoidance and collision handling. Section describes
and analyzes experiments that we have conducted and pro-
vides also some implementation detail. We finally close this
paper in section with conclusions and a look at possible fu-
ture work.

Previous Work
We summarize previous and related work. A paper by Ar-
naldi et al. [1] presents a good introduction into the topic of
kinematic and dynamic animation of characters and discusses
pros and cons found in each. The authors state that dynamics
is especially beneficial if the quality of generated motion is
of concern, as is the case for walking or handling collisions.
Kinematics is stated to be applicable for grasping tasks or sit-
ting on a chair where joint angles and obstacle avoidance are
of concern.

Boulic et al. [4] talk about the drawbacks of pure IK for
animation. Direct kinematics is added to achieve better re-
alism of motion and preserve dynamics. IK is exclusively
used for overlap avoidance. The coach-trainee metaphor is
coined and expresses that avatar motion is as close as possi-
ble to user motion. Boulicet al. [3] introduce inverse kinet-
ics, which considers mass distribution besides traditional IK.

Positions of Sim-

ulated Objects

Collision Detection

and Penetration

Depth Computation

Impulse-Based

Dynamics Sim-

ulation

Virtual Coupling
Collision Detection

and Penetration

Depth Computation

Geometric Overlap

Elimination

Update Joint Angles

with IK

Positions of

Driven Objects
Positions of

Fixed Objects

Position Update for Simulated Objects

Position Update for Driven Objects

Figure 3: The architecture of our system.

This approach can be useful for posture control and keeping a
synthetic actor’s balance. Baerlocher and Boulic [2] present
task-priority formulation for IK. Their approach allows speci-
fication of an order in which tasks, such as obstacle avoidance
and aiming, are to be weighted. Monzaniet al. [18] discuss
motion retargeting with IK and an intermediate skeleton. The
advantage is that user motion can be mapped easily onto a
performer skeleton, even if the latter has rather differentge-
ometry. Their system will not handle self-collisions. Tolani
et al. [21] discuss strategies for purely kinematic handling of
human arms and legs. The goal is to develop a set of kine-
matically feasible solutions from which the user can choose.
The incentive is to meet goals of aiming, position, orientation,
and constraining an articulated chain’s end effector to lieon
a plane.

Overview of System Architecture
In this section, we give an overview of our proposed sys-
tem architecture for modeling physically-based interaction
between an avatar and a VE.

Preliminaries
We assume that all objects are rigid. Articulated bodies can
be represented as a collection of rigid objects, held together
by joints with joint constraints. All unit joints are planar, i.e.
they allow a rotation around one axis. This is the principle
of a knee joint. More complicated joints, such as the ball and
socket shoulder joint, can be modeled as a collection of planar
joints. For the shoulder we are using a collection of three pla-
nar joints whose axes share a common center to allow three
degrees of freedom.

We classify the objects in the VE asfixed, simulated, and
driven objects. A fixed object is locked at a given position
and orientation in space. Simulated objects can move around
freely subject to the laws of physics. A driven object follows
the movements of a human user. All objects in the VE are
modeled and simulated to interact with each other as we ex-
pect in the physical world. In particular, collisions have to be
modeled realistically and overlap has to be prevented.

System Architecture
We will now give an overview over the architecture of our
system. Refer to figure 3 for better understanding. Our al-
gorithm first finds new and non-overlapping positions for all

2

driven objects. This is described by the lower loop in figure 3.
Virtual coupling attracts the driven objects to the tracker, col-
lision detection and geometric overlap elimination find plau-
sible end effector positions, and IK finds suitable joint angles.
This process loops until all driven objects are updated without
overlap.

According to the upper loop, simulated objects move
then for the amount of time required for each frame under
non-penetration constraints and according to other laws of
physics. If collision is detected, the forward motion stops,
impulse-based simulation resolves the collision, and object
motion continues.

Both processes have as input all object positions. However,
only one type of object is updated at a time. First the driven
objects, then the simulated objects. This way, we prioritize
the position update, giving driven objects a stronger incentive
to meet their desired goals. Fixed objects always stay at their
assigned positions for the whole simulation. After all bodies
had their final positions computed they are rendered.

Estimating the Global Penetration Depth

We present now the mechanism for resolving our non-
penetration (or non-overlap) constraint. Good algorithmsare
known for collision detection [6, 7, 10, 9, 14, 17]. These algo-
rithms have in common the tracking of closest features with
Voronoi regions. A dual space extension to these algorithms
exists which can efficiently compute the PD for convex ob-
jects [11]. In analogy to Voronoi tracking, the algorithm finds
a locally optimal solution by walking on the surface of the
Minkowski sums. A local Gauss map allows implicit com-
putation of the Minkowski sum’s surface. This algorithm has
been extended to handle non-convexity [13]. However, this
extension has been found to perform poorly from a standpoint
of computational efficiency.

General PD computation can be performed based on ex-
plicit Minkowski sums. However, explicit computation of
the Minkowski sum can be of costO(n6) in the worst
case [8]. Furthermore, the resulting algorithms are gener-
ally known to be subject to robustness problems. More ef-
ficient hardware-based approaches for estimating the general
PD are known [12]. However, these approaches are best
suited for small contact areas with many contacts and high
detail. The simulations in which VR applications are inter-
ested have generally relatively simple contact geometry but
necessitate keeping track of contacts over large areas. Hence,
we chose to use PD computation for piecewise convex pairs
and estimate the global PD through it.

We assume a convex decomposition of all objects [9, 11]
and knowledge of the PD per pair of convex pieces. For two
overlapping, non-convex objects we havei convex pairs and
associated PDs,pdi, and normals,ni. We estimate the gen-
eralPDg with:

PDg =

∑

pdi
2
ni

|
∑

pdi|
. (1)

Note thatPDg defines a direction. Intuitively, the length of
PDg, |PDg|, defines a measure for how much two overlap-
ping objects must be translated to diminish the overlap, and
the normalPDg/|PDg| defines the direction of translation.
For overlapping objectsA and B with contact normals per
convex pair pointing out ofB and intoA, we would translate

A

B

B

A

a) b)

Figure 4: Finding the general PD: a) a “reasonable” case, b)
a pathological case.

Figure 5: An articulated VR hand slides along a non-convex
corner between two walls in a virtual room.

A by 0.5PDg andB by −0.5PDg in order to diminish the
overlap purely by translation.

The described approach allows a quick estimate for the
global PD but can be made to fail for certain scenarios. For
an illustration see figure 4. Case a) shows a “reasonable” sce-
nario where overlap is not too deep and can be resolved by
translation following our ideas from the last paragraph. Case
b) is a more pathological case: the two normals cancel each
other out.

An optimization algorithm that uses also rotation for di-
minishing overlap is available [15] but for our purposes too
expensive. We strictly must achieve real-time performance.
We can mimic this optimization approach by interpolating
between the last cached, non-overlapping state and the cur-
rently overlapping state to find positions close to the initial
positions without overlap. This moves objects back towards
“where they came from” until the overlap is diminished.

Despite of its heuristic character, we found this approach
to work well in practice without visual jumps or artifacts, and
it performs excellent under the criterion of real-time perfor-
mance. See figure 5 for an example of an articulated hand
and arm sliding along a corner formed by two walls in a vir-
tual room. We summarize our algorithm for estimating the

3

global PD:

Estimate global PD

Input Convex decomposition of all objects.
Output Global PD per pair of general objects.

1. Cull non-overlapping pairs.
2. Determine the PD per convex pair.
3. ComputePDg with equation 1.
4. If needed, interpolate between current and last state.
ALGORITHM 1: Estimate the global PD for a general ob-
ject.

Hybrid Approach of Kinematics and Dynamics
This section explains our hybrid approach to handling overlap
and collisions for articulated bodies. This task falls intotwo
categories: geometric and kinematic overlap avoidance, and
handling resulting collisions and contacts by applicationof
impulses. We first explain how to find plausible positions by
removing all overlap.

Geometric and Kinematic Overlap Avoidance

The simplest form of resolving overlap for just one pair of
objects is by pushing the objects apart by their amount of
interpenetration. We found that even a complicated object,
such as an articulated hand, can be handled in this way. We
can find a plausible position for the hand by simply displacing
it by PDg according to equation 1.

We need to distinguish several cases. If a fixed object is
penetrated by a dynamic or driven object, only the latter will
be displaced to remove the overlap. If a driven and simulated
object overlap we assign a priority and try to remove overlap
only by displacement of driven objects. If this is not possible
we also move the simulated ones.

For a whole arm we can no longer use simple geometric
overlap avoidance but have to revert to a more sophisticated
method. We found a combination of a geometric and a kine-
matic approach to work well. Inverse kinematics can find
joint angles that place a kinematic chain’send effectorat a
desiredgoal location.

The IK problem can be solved by different numerical tech-
niques. Inverse Jacobian methods are known to not always
have stable solutions [19] due to singularities. Nonlinearop-
timization methods are generally providing good results but
the algorithms tend to be expensive [24]. We chose to employ
cyclic coordinate descent (CCD) due to its simplicity, speed,
and for our application good results.

CCD was introduced by Wang and Chen [22] and can be
viewed as a stepwise optimization algorithm. Joints are op-
timized one at a time until we arrive at a global minimum,
are close enough, or it was decided the minimum cannot be
reached. Despite of its heuristic character we found CCD to
produce pleasing results.

The principle of CCD is explained in figure 6. Identify link
i as the closest link to the chain’s root which interpenetrates
with an obstacle. Find all contactscil on it (l = 1..k). Calcu-
late the end effector on linki:

eei =

∑

cil

k
. (2)

Goal

End effector

Joint axis

φ

Chain root

Joint origin

Figure 6: Explanation of the CCD algorithm: the joint would
have to be rotated byφ in order to minimize the distance to
the goal.

To determine the goal, we projecteei onto the exterior of the
obstacle:

goali = eei ± PDgi, (3)

with PDgi the global PD of linki with the obstacle according
to equation 1. If linki is objectA in the pair made up by link
i and the obstacle we have to addPDg, and if it is objectB
we subtract according to the direction of the contact normal
as pointing into objectA.

To find the adjustment for jointh that will minimize the
end effector’s distance to the goal, CCD projects the vectors
that connect the joint origin with the goal and end effector
onto the joint plane. The projection of a pointp onto the joint
plane is calculated with

p′ = p − (n · (p − oh)) · ah. (4)

In this equation,ah is the joint axis,oh is the joint origin, and
p′ is the projected point.

After finding the projections of the end effector̂eei
′ and

the goal ˆgoali
′

with equation 4, the angle adjustment for joint
h is then given by:

φh = acos(êei
′ · ˆgoali

′

). (5)

We run this step from the end effector inwards to the root
over all joints until the distance between end effector and goal
was minimized to within a tolerance. We repeat the process
per chain until there are no more links with interpenetration.
Our examples have five chains for arms, legs, and neck. The
order in which we treat the chains is randomized to. Using
CCD this way allows overlap resolution also for self-colliding
chains,e.g.right arm with left arm.

Joints in a robot or human are subject to mechanical and
biological limits respectively. For planar joints, we enforce
limits by simply defining an allowable maximum and min-
imum angle. For joints that are a collection of planar joint
components we use reach cones [23] and perform a projec-
tion of a limb that has left a reach cone back to the nearest
location inside of the reach cone.

4

We observe a special case where the interpenetrating linki
is almost parallel to the obstacle’s surface. In order to avoid
unnatural poses we move limbi out of the obstacle with pure
translation byPDgi, and reconnect limbi − 1 by adjusting
all joints from limbi − 1 inwards with CCD.

We allow pseudo-magnetic attraction between the actual
joint angles as calculated with CCD and the desired angles as
given by the tracker. Even if there is no user motion the joints
try to move to the desired angles in order to have the visu-
ally displayed posture as close as possible to the user posture.
This has been described as coach-trainee metaphor [4].

Impulses
Having found non-overlapping positions with purely geomet-
ric overlap avoidance and IK, we can now apply impulses
to make dynamic objects bounce off the avatar and the en-
vironment realistically. We chose impulse physics [16] for
collision response. Despite of its shortcomings for systems
with large numbers of collisions, it is well suited for han-
dling virtual contacts for VEs. We are not interested in large,
crowded clusters of objects with many collisions, but rather
localized interaction between the human user and the envi-
ronment. Impulse physics achieves good level of realism and
superior running time behavior in this case.

Dynamic objects move forward in time until the next col-
lision occurs, the collision is resolved by updating velocities,
and motion continues. Problems can arise when the number
of collisions rises or objects are in close proximity [15, 20].
We alleviate the problem by virtual coupling between the
tracker and driven object. A stiff spring is inserted between
the tracker and the driven object:

mẍ = −Kx − Rẋ, (6)

with m the tracked object’s mass,x its position, andR and
K the spring constant and damping factor respectively.

We define a collision as a contact between objects with
negative relative normal velocity(v⊥ < 0) [5, 16, 15, 20].
Assume for now we have two colliding objectsA andB with
the collision normaln pointing fromB to A and the relative
contact velocityvab. The relative contact normal velocity can
be computed according to:

v⊥ = n · vab. (7)

An impulse is applied at each collision(v⊥ < 0) such that
the objects become separating(v⊥ ≥ 0). Newton’s empirical
model relates relative contact normal velocities before,v−,
and after impact,v+, by a coefficient of restitutionε:

v+ = −εv−. (8)

To make colliding objects instantaneously receding, we
calculate equal but opposite, frictionless impulsesj along the
direction of the contact normal:jn for objectA and−jn for
objectB. The following formula computes the impulse mag-
nitudej:

A = n ·
(

I−1
a (ra × n)

)

× ra,

B = n ·
(

I−1

b (rb × n)
)

× rb,

j =
−(1 + ε)v−

m−1

b + m−1
a + A + B

. (9)

Subscripts refer to the appropriate properties on objectsA and
B with m for object mass,I for object inertia, andr for the

ε/µ wood human metal
wood 0.3/0.3 0.2/0.2 0.2/0.1
human 0.2/0.2 0.1/0.1 0.2/0.1
metal 0.2/0.1 0.2/0.1 0.3/0.1

Table 1: Coefficients of restitution and friction for our possi-
ble material combinations.

moment arms connecting a object’s center of mass and the
contact point. Collisions are treated by application of im-
pulses sequentially in a priority queue [20].

Adding friction
Section does not take into account the effects of friction.
To model friction, typically a tangential, frictional impulse
is applied that opposes the direction of sliding. Accordingto
Coulomb’s friction law, the magnitude is set toµ times the
magnitude of the normal impulsej as computed according to
equation 9:

jt = −µj|vt|
−1vt, (10)

wherevt = vab − (n · vab) · n is the tangential part of the
collision velocityvab between objectsA and B and j was
computed with equation 9 [20].

Implementation and Results
We will now discuss and analyze experiments conducted. Im-
plementation data is also provided. Our model simulates an
art gallery with two rooms and several objects in them. This
model was provided by UNC’s EVE Group. Our algorithms
were implemented on a 1.7GHz Intel Xeo machine. The ar-
ticulated hand uses a Cyberglove. Tracking is done with a
UNC HiBall and ceiling tracker. Distance computations are
performed with SWIFT++ [9] and DEEP [11]. All objects
in the environment have material properties for friction and
restitution assigned. Refer to table 1 for the values used for ε
andµ. The reader may access videos and other related mate-
rial on http://www.cs.unc.edu/.

We created a number of scenarios that show the perfor-
mance of our system. The environment used for all scenes
has about 20 objects, some of which are composed of trian-
gles ranging in the hundreds. The articulated hand consists
of 15 elliptical parts with triangles numbers around 100. The
hand interacts with the environment by touching objects and
sliding along walls and the table, but also by playing with
a ball. The hand is assumed rigid for purposes of resolving
overlap. OncePDg is found, we push the hand back by pure
translation. This example does not use any IK.

We experimented with different values forK andR for the
virtual coupling in impulse handling and foundK = 1000.0
andR = 40.0 to work well. A stiff spring is necessary to give
the hand just enough freedom to prevent infinite loops when
it collides with simulated objects, yet it should not move too
far from its current location.

It became clear that fast collision handling is, as ex-
pected, essential for real-time performance. Pairwise colli-
sion queries are handled after a sweep and prune routine [7]
is used to filter out the object pairs for which exact colli-
sion query is not necessary. Figure 7 shows the frame time.
The first half of the graph shows the application in idle state.
The hand moves around in the room and overlap must be
checked. The following two plateaus correspond to the hand

5

Frame time

0

5

10

15

20

25

30

1 501 1001 1501 2001 2501 3001 3501

Frame #

ti
m

e
 [

m
s
]

Figure 7: Frame time during a simulation of 3653 frames.

Two arms into wall

0

5

10

15

20

25

30

35

1 501 1001 1501 2001

Frame #

F
ra

m
e
 t

im
e
 [

m
s
]

Figure 8: Frame time during thetwo armsscene.

sliding over a table, first in one then in the opposite direc-
tion. The frame time rises accordingly, falls off briefly as
contact breaks, but rises again as the hand slides in the op-
posite direction. The spikes towards the end correspond to a
ball being pushed over the table with the frame time rising
instantaneously as collisions occur.

We achieve overall real-time performance with varying
frame rate between 30Hz and 60Hz. In our particular sce-
nario, overlap elimination takes up about 50% of the running
time and collision handling with impulses 25%. The remain-
der of the time goes into rendering, maintaining general data
structures, and tracker reading.

Our next set of experiments uses an avatar in the same art
gallery environment to test our IK approach. The avatar’s mo-
tion is controlled by user input via mouse and keyboard due
to lack of full body tracking hardware. Table 2 summarizes
timing data for some scenarios we tested. Note that the num-
bers provided are averages. Some frames do not have any
interaction at all, while some others have many collisions.

The scenes are ordered according to computational cost. It
is clear that the cost for the overlap avoidance with IK rises
with the number of CCD iterations and joints handled. The
part that IK takes in the total frame time grows moderately as
the number of adjusted joints and iterations grows.

We also observed a correlation between number of itera-
tions and motion coherence. If a limb makes contact for the
first time more iterations will be necessary to remove the ini-
tial overlap. Once this task is done, consecutive frames have
a lower number of iterations and the total cost per frame is
reduced. Figure 8 shows three spikes in the second half of
the plot where the frame time rises rapidly but falls off rather
quickly. This was generated by the avatar making a sequence
of pushes into the wall. The spikes correspond to solving the
initial interpenetration with the following falloff wherethe
number of necessary iterations is gradually becoming less.

There is a similar correlation for the number of contacting
pairs and the part that collision detection plays in the total
frame time. As expected, collision queries play a bigger role
for the non-convexarm in cornerscene. The arm is more
tightly contacting from two sides and the cost of collision de-
tection rises accordingly. For all scenes, the total frame rate
stays clearly above 30fps,i.e. realtime.

Conclusion and Future Work
We close this treatise with conclusions and a look at possi-
ble future work. Our approach merges physically-based and
kinematic methods. Input is given by a human user and vis-
ible motion is as close as possible to it. IK is only used for
overlap avoidance, not for generation of the whole motion.
We can handle self-collisions and achieve real-time perfor-
mance. The latter is important for VR applications but also
games. The general PD is estimated efficiently and suffi-
ciently accurate through pairwise PD for convex pieces. De-
spite of these simplifications we find collision queries to bea
bottleneck in our system. It also cannot be excluded that col-
lisions are missed due to discreet collision testing. We plan
to include continuous collision detection in the future.

Acknowledgement
The authors wish to thank Eric Burns for help with imple-
menting the framework for tracker reading and using the Cy-
berglove.

References
[1] B. Arnaldi, G. Dumont, G. Hgron, N. Magnenat-

Thalmann, and D. Thalmann. Animation control with
dynamics. State-of-the-Art in Computer Animation,
pages 113–124, 1989.

[2] P. Baerlocher and R. Boulic. Task priority formulations
for the kinematic control of highly redundant articulated
structures.IEEE IROS ’98, pages 323–329, 1998.

[3] R. Boulic, R. Mas, and D. Thalmann. Inverse kinet-
ics for center of mass position control and posture op-
timization. Proc. European Workshop on Combined
Real and Synthetic Image Processing for Broadcast and
Video Production, November 1994.

[4] R. Boulic and D. Thalmann. Combined direct and in-
verse kinematic control for articulated figures motion

6

scene #frames t frame[ms] #joints/frame iter/frame t IK[%] pairs/frame t cq[%]
two arms 1496 14.63 16 3 12.7 3 17.4

self-collision 2327 15.99 28 5 14.6 5 21.1
two arms and leg 2440 17.47 32 6 16.7 6 24.8

arm in corner 2146 20.49 40 7 18.5 13 31.3

Table 2: Timings for different scenes with IK. We record the number of frames, frame time, joints per frame solved with IK,
iterations of CCD with readjusted goal per frame, part of IK per total frame time, overlapping pairs per frame, and part of
collision detection per total frame time.

editing. Computer Graphics Forum, 11(4):189–202,
1992.

[5] Raymond M. Brach. Rigid body collisions.Journal of
Applied Mechanics, 56:133–138, March 1989.

[6] Stephen Cameron. Enhancing GJK: computing the min-
imum and penetration distances between convex poly-
hedra. IEEE Int. Conf. Robotics & Automation, pages
3112–3117, April 1997.

[7] Jonathan C. Cohen, Ming C. Lin, Dinesh Manocha,
and Madhav K. Ponamgi. I-COLLIDE: An interactive
and exact collision detection system for large-scaled en-
vironments. Symposium on Interactive 3D Graphics,
pages 189–196, 1995.

[8] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri.
Computing the intersection-depth of polyhedra.Algo-
rithmica, 9:518–533, 1993.

[9] S. Ehmann and M. C. Lin. Accurate and fast proxim-
ity queries between polyhedra using convex surface de-
composition.Computer Graphics Forum (Proc. of Eu-
rographics’2001), 20(3), 2001.

[10] S. A. Ehmann and M. C. Lin. SWIFT: Accelerated
proximity queries between convex polyhedra by multi-
level voronoi marching. Technical report, Computer
Science Department, University of North Carolina at
Chapel Hill, 2000.

[11] Y. Kim, M. Lin, and D. Manocha. Deep: An incre-
mental algorithm for penetration depth computation be-
tween convex polytopes.Proc. of IEEE Conference on
Robotics and Automation, 2002.

[12] Y. Kim, M. Otaduy, M. Lin, and D. Manocha. Fast pen-
etration depth computation using rasterization hardware
and hierarchical refinement. Technical Report TR02-
014, Department of Computer Science, University of
North Carolina, 2002.

[13] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, , and Di-
nesh Manocha. Fast penetration depth computation for
physically-based animation.ACM Symposium on Com-
puter Animation, July 2002.

[14] Ming Lin and John Canny. A fast algorithm for incre-
mental distance calculation.International Conference
on Robotics and Automation, pages 1008–1014, 1991.

[15] Victor J. Milenkovic and Harald Schmidl.
Optimization-based animation. SIGGRAPH 01
Conference Proceedings, pages 37–46, 2001.

[16] Brian Mirtich. Impulse-based simulation of rigid bod-
ies. Proceedings of the 1995 Symposium on Interactive
3D Graphics, pages 181–189, 1995.

[17] Brian Mirtich. V-Clip: Fast and robust polyhedral col-
lision detection.Transactions on Graphics, 17(3):177–
208, 1998.

[18] J.-S. Monzani, P. Baerlocher, R. Boulic, and D. Thal-
mann. Using an intermediate skeleton and inverse kine-
matics for motion retargeting.Proc. Eurographics 2000,
2000.

[19] Z.R. Novakovic and B. Nemec. A solution of the inverse
kinematics problem using the sliding mode.IEEE jour-
nal of Robotics and Automation, 6(2):247–251, 1990.

[20] Harald Schmidl and Victor J. Milenkovic. A fast im-
pulsive contact suite for rigid body simulation.IEEE
TVCG, 10(2):189–197, March/April 2004.

[21] Deepak Tolani, Ambarish Goswami, and Norman I.
Badler. Real-time inverse kinematics techniques for an-
thropomorphic limbs. Graphical models, 62(5):353–
388, 2000.

[22] Li-Chun Tommy Wang and Chih Cheng Chen. A com-
bined optimization method for solving the inverse kine-
matics problem of mechanical manipulators.IEEE
Transactions on Robotics and Automation, 7(4):489–
499, August 1991.

[23] Jane Wilhelms and Allen Van Gelder. Fast and easy
reach-cone joint limits. Journal of graphics tools,
6(2):27–41, 2001.

[24] Jianmin Zhao and Norman I. Badler. Inverse kinemat-
ics positioning using nonlinear programming for highly
articulated figures. ACM Transactions on Graphics,
13(4):313–336, 1994.

7

