IMPLEMENTING COMMON CORE MATHEMATICS

 Successes \& Challenges in Rialto Unified School DISTRICT

2010-2012: SETTING THE STAGE

- Building a

Professional
Development Model

- Funding
- Billing/ Categoricals
- Professional

Development

- Mathematical Practices
- Accountable Talk
- DOK in Math
- Building Common Understanding
- Principal Learning Network Meetings
- Teachers
- BTSA
- DOK
- Student Engagement
- Parent Introduction
- DADs Night
- Parent University
- Parent Summit

2012-2013: THE TRANSITION,

 A SLow BEGINning- School Board CCSS Overview Presentation
- Instructional Shifts
- Course Models
- Sustaining the Professional Development Model
- Transition to LCFF
- Professional Development
- LCFF
- K-12 role out
- Emphases on: - Preschool - K-1
- Drawing Tools
- Looking at Functions
- K-2 Textbook Supplement

2013-2014: TRANSITION CONTINUES MAKING UP FOR LOST TIME

- LCAP
- Priority Areas
- Integrating Technology
- $1^{\text {st }}$ in Math
- Textbook Process
- Pilot
- Adoption
- Modifying Assessments
- Performance Tasks
- Triangulation using CSU/UC Math Diag. Testing Project
- Professional Development
- Webcasts/ Webinars
- PLN: DOK, AT in Math
- K-8 Strategies \& Focus Content
- Statistics \& Probability
- "Support Meetings"
- SBAC Fieldtesting
- Integrated Math
- Making the Case
- Voting
- Transitional $8^{\text {th }}$ Grade Course

Student Engagement Strategies

Building a robust list of student engagement strategies is essential for all teachers. When students are engaged in the classroom, they remain focused and on-task. This also provides for good classroom management and effective teaching and learning. The table below, provided by the Rialto Unified School District, illustrates several student engagement strategies for the mathematics classroom:

| Student Engagement
 Strategies | Math Example |
| :--- | :--- | :--- |

The Mathematics Framework was adopted by the California State Board of Education on November 6, 2013. The Mathematics Framework has not been edited for publication.

Coming to Consensus	Sharing their individual ideas, the group comes to a consensus to share with the whole class.	Each member of the group shares their answer to a given problem, the steps they used etc. When the group comes to a consensus, they share out with the whole class.

The Mathematics Framework was adopted by the California State Board of Education on November 6, 2013. The Mathematics Framework has not been edited for publication.

Getting Ready for the Common Core

ACCOUNTABLE TALK

- All grade levels, all content areas, all teachers
- Will be modeled in the Common Core trainings

CLOSE \& CRITICAL READING
- Incorporated in all trainings
- Incorporated in all disciplines

Common Core State Standards

Close \& Critical
Reading Lessons

Introducing the CCSS for ELA and Literacy in History/Social Studies Science and Technical Subjects.

The Mathematical Practice Standards

STANDARDS FOR MATHEMATICAL PRACTICE

- Will be utilized in all math trainings
- Essential to be part of every mathematics class K-12
- Will help to get our students working like mathematicians

MATHEMATICS CONTENT

2013-2014: Statistics and Probability have been included in all mathematics courses grades $\mathbf{6 , 7 , 8}$ and Common Core Algebra I, Geometry, Algebra as well as Math1, Math 2, and Math 3. It is therefore imperative that teachers get trained in this content which is entirely new content for secondary schools.

Staff Development - 2013-2014

- All workshops will be offered at the PDC unless the table below gives another location

Principals please always check PDC generated PSRs' for invited teachers and accuracy.

- "Group 1Elementary schools": Bemis, Curtis, Dunn, Henry, Hughbanks, Kelley, Kordyak, Morgan, Morris, Trapp
- "Group 2 Elementary schools": Boyd, Casey, Dollahan, Fitz, Garcia, Myers, Preston, Simpson, Werner
- Special Education teachers will be included in one of the grade level trainings.

Date/Time	Grade Span/Grade Level	Title of Workshop
$\begin{aligned} & \text { August 13, } 2013 \\ & \text { 8:00 a.m. }-10: 00 \text { a.m. } \end{aligned}$	Middle School- ELA Math/Dept. Chairs	Lesson Study Training
$\begin{aligned} & \text { August } 14,2013 \\ & 8: 00 \text { a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle School- Grade 8	Eighth Grade Common Core Transitional Mathematics Training (Round 1)
$\begin{aligned} & \text { August 20, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle School- Grade 6-Math/Science teachers only \& some self- contained	Sixth Grade Common Core Training-Math/Science- includes new STEM course
$\begin{aligned} & \text { August } 21,2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School - Grade 3 (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math-Grade 3-
September 3, 2013 August 22, 2013 8:00 a.m. - 3:00 p.m.	Elementary School- Grade 3 (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 3 NOTE: Change in day due to minimum day on August 22
August 27, 2013 8:00 a.m. - 3:00 p.m.	Middle School- Grade 6- Social Studies/ELA teachers only \& some self- contained	Sixth Grade Common Core Training- Social Science/ELA (includes new STEM course)
$\begin{aligned} & \text { August } 28,2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 4 (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math-Grade 4
$\begin{aligned} & \text { August } 29,2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 4 (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 4
September 4, 2013 8:00 a.m. - 3:00 p.m.	Elementary School- Grade 5 (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math-Grade 5
September 5, 2013 8:00 a.m. - 3:00 p.m.	Elementary School- Grade 5 (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 5
$\begin{aligned} & \text { September 5, } 2013 \\ & \text { 3:30p.m. }-5: 00 \text { p.m. } \end{aligned}$	High School- Addressing the Common Core Mathematical Practice Standards	Open to all $1 \because$ CANCELLED collaboratin $\stackrel{\text { rs and }}{\text { hers on My }}$ collaboratin CANCELLED hers on My Learning Plan (1.5 hours of extra duty pay)
September 10, 2013 (see times on right side)	Middle School Session 1: - Grade 7: Social St. \& SDC//SED Middle School Session 2: - Grade 8: Social St. \& SDC/SED NEW (Science is NOT COMING THAT DAY)	Session 1: 8:00 a.m. - 10:30 p.m. Session 2: 12:00 noon -2:30 p.m.
$\begin{aligned} & \text { September } 11,2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 2 (Round 2) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade 2
September 12, 2013 8:00 a.m. - 3:00 p.m.	Elementary School- Grade 2 (Round 2) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 2
$\begin{aligned} & \text { September } 18,2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle School- Next Generation Science StandardsGrades 7/8	NGSS- Grades 7/8 Science
$\begin{aligned} & \text { September } 19,2013 \\ & \text { 8:00 a.m. - 3:00 p.m. } \end{aligned}$	Middle School- Next Generation Science StandardsGrades 7/8	NGSS- Grades 7/8 Science
September 24, 2013 8:00 a.m. - 2:30 p.m.	Middle School- Grade 7/8 ELA SS Leads for lesson Study	ELA teachers: 8:00 a.m. - 10:30 p.m. Social Studies leads - Lesson Study: 12:00 noon -2:30 p.m.
$\begin{aligned} & \text { September } 25,2013 \\ & \text { 8:00 a.m. }-2: 30 \text { p.m. } \\ & \hline \end{aligned}$	Elementary School- Grade K (Round 3) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade K
$\begin{aligned} & \text { September } 26,2013 \\ & \text { 8:00 a.m. - } 2: 30 \text { p.m. } \\ & \hline \end{aligned}$	Elementary School- Grade K (Round 3) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade K
$\begin{aligned} & \text { October 1, } 2013 \\ & \text { 3:00-5:00 p.m. } \end{aligned}$	High Schools- Close and Critical Reading	Open to any high school teachers on My Learning Plan (1.5 hours of extra duty pay)
October 1, 2013 Moved to Oct 15, 2013	High Sehool ELA (Morning 8:00-10:30 a.m.) High Sehool Math (afternoon: 12 neon- 2:30 p.m.)	Eis me DATE CHANGE DUE TO
October 2, 2013 Moved to Oct 16, 2013	High Sehoel-ELA (Morning 8:00-10:30 - m .m.) High Sehoel Math (afterneon: 12 neon- $\mathbf{2 . 3 0}$ p.m.)	
$\begin{aligned} & \text { October 3, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \\ & \hline \end{aligned}$	Elementary School- Grade 3 (Round 2) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade 3
October 8, 2013 $\text { 8:00 a.m. }-3: 00 \text { p.m. }$	Elementary School- Grade 1 (Round 3) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade 1
$\begin{aligned} & \text { October 9, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \\ & \hline \end{aligned}$	Elementary School- Grade 1 (Round 3) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 1

Date/Time	Grade Span/Grade Level	Title of Workshop
$\begin{aligned} & \hline \text { October 10, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \\ & \hline \end{aligned}$	Elementary School- Grade 3 (Round 2) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 3
October 15, 2013	High School ELA (Morning 8:00-10:30 a.m.) High School Math (afternoon: 12 noon - 2:30 p.m.) High Sehools-Prebability and Statisties (1-f 2) Moved to Jan 21	Eisenhower and Carter (check list -all ELA teachers in the morning and Math teachers in the afternoon)
$\begin{aligned} & \text { October 16, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	High Sehools- Probability and Statisties(2 of 2) Moved to Jan 23	Gommon-Core Training in Math for the following sehools! Eisenhower and Garter (all-math-teaehers)
$\begin{aligned} & \text { October 17, 2013(Oct 24) } \\ & \text { 8:00 a.m. - 3:00 p.m. } \\ & \text { Moved to Jan 28, } 2014 \\ & \hline \end{aligned}$	High Sehools-Probability and Statistics (Part 1 of 2)	Common Core Training in Math for: Rialto High, Miler High and Zupanie High(all math teachers)
$\begin{aligned} & \text { October } 17,2013 \\ & \text { 3:00 - 5:00 p.m. } \end{aligned}$	Special Education Teachers- Grades K-6	Writing Training
$\begin{aligned} & \text { October } 22,2013 \\ & 8: 00 \text { a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle Schools - Probability and StatisticsGrade 7,8 and Algebra I	Common Core Training in Math for all middle schools Grade 7,8 and Algebra I teachers
October 24, 2013	High School ELA (Morning 8:00-10:30 a.m.) High School Math (afternoon: 12 noon - 2:30 p.m.) High Sehoels-Prebability and Statisties (Part 2 of 2) Moved to Jan 29, 2014	Rialto, Milor/Zupanic (all ELA teachers in the morning and Math teachers in the afternoon) Commen Core Training in Math for the following sehools: Rialto High, Miler and Zupanic High
$\begin{aligned} & \text { November 5, } 2013 \\ & 3: 00-5: 00 \text { p.m. } \end{aligned}$	High School- Accountable Talk	Open to any hig CANCELLED (1.5 hours of ex y Learning Plan
$\begin{aligned} & \text { November 12, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 4 (Round 2) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade 4
$\begin{aligned} & \text { November 13, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 4 (Round 2) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 4
$\begin{aligned} & \text { November 14, } 2013 \\ & \text { 8:00 a.m. - 3:00 p.m. } \end{aligned}$	Middle Schools - Transitional $8^{\text {th }}$ grade Common Core Math	Common Core Training in Math for all middle schools grade 8 teachers teaching Transitional $8^{\text {th }}$ grade Common Core Math (Round 2)
$\begin{aligned} & \text { November 19, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 5 (Round 2) (Schools -Designated as Group 1 schools)	Common Core Training in ELA/Math- Grade 5
$\begin{aligned} & \text { November 20, } 2013 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Elementary School- Grade 5 (Round 2) (Schools -Designated as Group 2 schools)	Common Core Training in ELA/Math- Grade 5
$\begin{aligned} & \text { January } 9,2014 \\ & \text { 3:00 p.m. - 5:00 p.m. } \end{aligned}$	Special Education teachers Grades K-6	Writing Training - Grade K-6 (Round 1)
$\begin{aligned} & \text { January } 16,2014 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle Schools - Transitional $8^{\text {th }}$ grade Common Core Math	Common Core Training in Math for all middle schools grade 8 teachers teaching Transitional $8^{\text {th }}$ grade Common Core Math (Round 3)
$\begin{aligned} & \text { January 21, } 2014 \\ & \text { 8:00 a.m. - 3:00 p.m. } \end{aligned}$	High Schools- Probability and Statistics (1 of 2)	Common Core Training in Math for the following schools: Eisenhower and Carter (all math teachers
$\begin{aligned} & \text { January } 23,2014 \\ & \text { 8:00 a.m. - 3:00 p.m. } \\ & \hline \end{aligned}$	High Schools- Probability and Statistics (2 of 2)	Common Core Training in Math for the following schools: Eisenhower and Carter (all math teachers
$\begin{aligned} & \text { January } 28,2014 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	High Schools- Probability and Statistics (1 of 2)	Common Core Training in Math for: Rialto High, Milor High and Zupanic High(all math teachers)
$\begin{aligned} & \text { January } 30,2014 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	High Schools- Probability and Statistics (2 of 2)	Common Core Training in Math for: Rialto High, Milor High and Zupanic High (all math teachers)
$\begin{aligned} & \text { January } 28,29 \text { \& } 30 \\ & \text { 9:00 a.m.-11:00a.m. } \end{aligned}$	Parent University	CCSS Overview
$\begin{aligned} & \text { January } 29,2014 \\ & \text { 8:00a.m.-10:00a.m. } \end{aligned}$	Think Together	Accountable Talk
$\begin{aligned} & \text { February } 3 \& 5 \\ & \text { 8:00 a.m. }-3: 00 \text { p.m. } \end{aligned}$	Middle School Lesson Study $6^{\text {th }}$ Grade Math- Kolb	CCSS Math Lesson Study

Date/Time	Grade Span/Grade Level	Title of Workshop
$\begin{aligned} & \text { February 4, } 2014 \\ & \text { 3:00p.m.- 5:00 p.m. } \\ & \hline \end{aligned}$	K-12 Teachers	Classroom Management: Pressing the Restart Button (Session 2)
$\begin{aligned} & \text { February 11, } 2014 \\ & \text { 8:00 a.m. - 3:00 p.m. } \end{aligned}$	Middle School 6 ($7 \& 8$ makeup)- Statistics and Probability	Common Core Training in Math
February 12, 2014	High School Soc St. (Morning 8:00-10:45 a.m.)	Rialto HS, Milor/Zupanic all Hist/SS
February 13, 2014	High School Soc St. (Morning 8:00-10:45 a.m.)	Carter \& Eisenhower all Hist/SS teachers
$\begin{aligned} & \text { February } 13,2014 \\ & \text { 3:00 p.m. }-5: 00 \text { p.m. } \end{aligned}$	Special Education Teachers Grades K-6	Writing Training- Grades K-6 (Round 3)
$\begin{aligned} & \text { February 20, } 2014 \\ & \text { 9:00-11:00 } \end{aligned}$	Parent University	Empowerment Through Testing Strategies
$\begin{aligned} & \text { February } 20,2014 \\ & \text { 3:30p.m.-5:00p.m. } \end{aligned}$	Elementary K-5	6+1 Traits of Writing: Word Choice
February 24 \&26, 2014	Middle School Lesson Study $6^{\text {th }}$ Grade Math -Frisbie	CCSS Math Lesson Study
$\begin{aligned} & \text { February } 24,2014 \\ & \text { 2:15n.m.-4:15n.m. } \end{aligned}$	Elementary Writing Training K-5: Garcia, Preston \&Casey	Step Up to Writing
$\begin{aligned} & \text { February } 25 \text { \& 26, } 2014 \\ & \text { 8:00a.m.-2:00p.m. } \\ & \hline \end{aligned}$	PLC Writing Coaching: Garcia, Preston \& Casey	Step Up to Writing \& 6 Traits
February 27, 2014 9:00a.m.-10:30 a.m.	Think Together	Math Talk
$\begin{array}{\|l\|} \hline \text { March 3, } 2014 \\ \text { 3:00p.m. } 4: 30 \text { p.m. } \\ \hline \end{array}$	High School Foreign Language, VAPA, and CTE Teachers	Accountable Talk
March 3 \& 5, 2014 8:00 a.m. - 3:00 p.m.	Middle School Lesson Study $6^{\text {wh }}$ Grade Math -Rialto Middle School	CCSS Math Lesson Study
$\begin{aligned} & \text { March 3, 2014 } \\ & \text { 2:30p.m.-3:30p.m. } \end{aligned}$	Elementary Writing Training K-5:Morgan, Kelley, \& Bemis	Step Up to Writing
$\begin{array}{\|l\|} \hline \text { March 4, 2014 } \\ \text { 9:00a.m.-11:00a.m. } \\ \hline \end{array}$	Parent University	Knowledge is Power!
March 4 \& 5, 2014 8:00a.m.-2:00p.m.	PLC Writing Coaching: Morgan, Kelley, \& Bemis	Step Up to Writing \& 6 Traits
$\begin{aligned} & \text { March 6, } 2014 \\ & \text { 9:00a.m.-11:00a.m. } \end{aligned}$	Parent University	Math: Yes you Can!
$\begin{aligned} & \hline \text { March 6, } 2014 \\ & \text { 3:30-5:00 } \\ & \hline \end{aligned}$	Special Education teachers Grades K-6	Writing Training- Grades K-6 (Round 4)
$\begin{array}{\|l\|} \hline \text { April 9, 2014 } \\ \text { 9:00a.m.-10:30a.m. } \\ \hline \end{array}$	Think Together	Step Up To Writing w/Thinking Maps
$\begin{aligned} & \text { April 29, 2014 } \\ & \text { 3:00p.m.-5:00p.m. } \end{aligned}$	K-12 Teachers	Classroom Management: Pressing the Restart Button (Session 3)

Specific for Elementary Schools

Date	Topic	Location
September 19,2013	6+1 Traits of Writing	
3:30 p.m. $-5: 00$ p.m.	Voice	K-5 teachers sign-up on My Learning Plan to get 1.5 hours of extra duty.
November 14, 2013	6+1 Traits of Writing	K-5 teachers sign-up on My Learning Plan to get 1.5 3:30 p.m. $-5: 00$ p.m
February 20,2014	Sentence Fluency	K-5 teachers sign-up on My Learning Plan to get 1.5 3:30 p.m. $-5: 00$ p.m
6+1 Traits of Writing	Word Choice	hours of extra duty.

Specific for Middle Schools

Date	Topic	Location
October 7, 2013 $1: 45$ p.m. $-3: 00$ p.m.	Argumentative Writing for ELA teachers only	Jehte (Kolb): ELAA/SS: MPR
grades 6, 7, and 8	Math/Science,Special Education	
October 28, 2013 Close and Critical Reading (SS) 1:45p.m. $-3: 00$ p.m. Journaling in Math and Science	RMS (Kolb): ELA/SS: MPR	
November 18, 2013	TBD	Math/Sc: Assigned rooms
1:45p.m. $-3: 00$ p.m.		Kolb (Jehue): ELA/SS: Multi-purpose room

Middle School Common Core Lesson Studies (2013-2014) ELA and Mathematics
Possible Lesson Study Dates ELA $\mathbf{6}^{\text {th }}$ Grade:

Site Dates	Prep Day 2hrs. After School	Full Day Lesson Study (subs provided)
Jehue	September 23	September 25
Kucera	October 14	October 16
Kolb	October 21	October 23
Frisbie	November 4	November 6
RMS	December 2	December 4

Possible Lesson Study Dates Math $6^{\text {th }}$ Grade:

Site Dates	Prep Day 2hrs. After School	Full Day Lesson Study (subs provided)
Jehue	January 13	January 15
Kucera	January 27	January 29
Kolb	February 3	February5
Frisbie	February 24	February 26
RMS	March 3	March 5

Possible Lesson Study Dates ELA 7th \& 8 ${ }^{\text {th }}$ Grade:			
Site Dates	Prep Day 2.5 hours per grade level Subs Rotate	$7^{\text {th }}$ Grade Full Day Lesson Study	$8^{\text {th }}$ Grade Full Day Lesson Study
Jehue	August 20	August 21	August 22
Kolb	September 17	September 18	September 19
Kucera	October 8	October 9	October 10
Frisbie	October 29	October 30	October 31
RMS	November 12	November 13	November 14

Possible Lesson Study Dates Math 7th \& $\boldsymbol{8}^{\text {th }}$ Grade:

Site Dates	Prep Day 2.5 hours per grade level Subs Rotate	$7^{\text {th }}$ Grade Full Day Lesson Study	$8^{\text {th }}$ Grade Full Day Lesson Study
Kolb	August 27	August 28	August 29
Kucera	September 10	September 11	September 12
Jehue	September 24	September 25	September 26
Frisbie	October 29	October 30	October 31
RMS	December 3	December 4	December 5

Middle School- Transitional Math Support
Second Monday of Each Month (except months that trainings have been scheduled)
The support will address : (a) accountable talk and the questions to pose for the particular lessons for that month and (b) activities/ lessons that are on the pacing chart for that month (c) provide any clarifications needed

Month	Date
September	September 9, 2013: 1:15-2:45 p.m.
October	October 14, 2013: $1: 15-2: 45$ p.m.
November	No training on $2^{\text {nd }}$ Monday- Training schedule for Nov 14
December	December $9,2013: 1: 15-2: 45$ p.m.
January	No training on $2^{\text {nd }}$ Monday- Training schedule for Jan 16
February	February 10, 2014: $1: 15-2: 45$ p.m.
March	March10, 2014: $1: 15-2: 45$ p.m.
April	April $14,2014: \quad 1: 15-2: 45$ p.m.
May	May $12,2014: \quad 1: 15-2: 45$ p.m..

	Traditional Pathway			Integrated Pathway		
Conceptual Category	CC Algebra I	CC Geometry	CC Algebra II	CC Math I	CC Math 2	CC Math 3
Number \& Quantity (N)	N-RN1, NRN-2, N-RN3 N-Q1, N-Q2, N-Q3		N-CN1, N-CN 2, N-CN 7 , N-CN8+, N-CN $9+$	N-Q1*, N-Q2*, N-Q3*	N-RN1, N-RN2, N-RN3, N-CN1, N-CN2, N-CN7, $\mathrm{N}-\mathrm{CN} 8+, \mathrm{N}-\mathrm{CN} 9+$	N-CN8+, $\mathrm{N}-\mathrm{CN} 9+$
Algebra (A)	A-SSE1a, ${ }^{*}$ A-SSE $1 \mathrm{~b}^{*}$ A-SSE2*, A-SSE3a*, A-SSE3b*, A-SSE3c* A-APR1 A-CED1*, A-CED2*, ACED3*, A-CED4* A-REI1, A-REI 3, A-REI 3.1 , A-REI 4a, A-REI 4 b, A-REI 5 , A-REI 6, A-REI 7, A-REI 10, A-REI 11*, A-REI 12		A-SSE1a+, A-SSE1b* A-SSE2, A-SSE4 A-APR 1, A-APR 2, A-APR 3 , A-APR4, A-APR 5, A-APR 6 , A-APR7+, A-CED1*, A-CED2*, A-CED3*, A-CED4* A-REI2, A-REI 3.1, A-REI11	A-SSE 1a*, A-SSe1b*, A-SSE3*, A-SSE4*, A-REII, A-REI3, REI3.1, A-REI5, A-REI 6, A-REI10, A-REI11*, A-REI 12	A-SSE-1a** A-SSE $1 \mathrm{~b}^{*}$, A-SSE2, A-SSE3a, A-SSE3b, A-SSE3c A-APR 1, A-CED 1^{*} A-CED2*, A-CED 4 A-REI4a, A-RE14b, A-RE17	A-SSE1a, A-SSE1b, A-SSE2, A-SSE4 A-APR1, A-APR2, A-APR3, A-APR4, A-APR $5+^{*}$, A-APR6, A-APR7 A-CED1*, A-CED2*, A-CED3, A-CED4 A-REI2, A-REI11
Functions (F)	F-IF 1, F-IF2, F-IF3, F-IF 4 F-IF5*, F-IF $6^{*}, F-1 F 7 a^{*}$, F-IF7b*, F-IF7e*, F-IF8a, F-IF $8 \mathrm{~b}, \mathrm{~F}-\mathrm{IF} 9$ F-BF 1a*, F-BF 1b*, F-BF2*, F-BF3, F-BF 4 F-LE1a*, F-LE1b*, F-LE1c* F-LE2*, F-LE3*, F-LE5*		F-IF4, F-IF5, F-IF6 F-IF7b*, F-IF7c*, F-IF7e F-IF8, F-IF9 F-BF1b*, F-BF3, F-BF4a F-LE4, F-LE4. 1, F-LE4.2 F-LE4.3 F-TF1, F-TF2, F-TF2. 1 F-TF5*, F-TF8	F-IF1, F-IF2, F-IF3, FIF4*, F-IF5*, F-IF6*, F- IF7a*, F-IF7e*, F-IF9 F-BF1a*, F-BF 1b*, FBF2*, F-BF3 F-LE1a*, F-LE 1b*, F- LE1C ${ }^{*}$ F-LE2*, F-LE3* F-LE5*	F-IF4*, F-IF5**, F-IF6* F-IF7a*, F-IF7b*, F-IF8a*, F-IF8b, F-IF9 F-BF1a* ${ }^{*}$ F-BF1b*, F-BF3, F-BF4a F-LE3*, F-LE6* F-TF8	
Geometry (G)		G-C01, G-C02. G-C03. G-C04, G-C05. G-C06, G-C07, G-C08, G-C09, G-C09, G-C010, G-C011, G-C012, G-C013 G-SRT1, G-SRT2, G-SRT3,G-SRT4, G-SRT5, G-SRT6, G-SRT7,G-SRT8*, G-SRT8.1, G-SRT9+, G-SRT10+, G-SRT11+ G-C1, G-C2, G-C3, G-C4+, G-C5 G-GPE 1, G-GPE2, G-GPE4, G-GPE5, G-GPE6, G-GPE7* G-GMD1, G-GMD3*, G-GMD4, G-GMD5, G-GMD6 G-MG1*, G-MG2,* G-MG3*	G-GPE3.1	G-C01, G-C02. G-C03, G C04, G-CO5, G-C06, GC07, G-CO8, GC012, GCO13 G-GPE4, G-GPE5, G-GPE7*	G-co9, G-C010, G-c011, G-SRT1a, G-SRT1b, G-SRT2, G-SRT3, G-SRT4, G-SRT-5, GSRT-6, G-SRT7, G-SRT8, G-SRT8. 1 G-C1, G-C2, G-C3, G-C 4+, G-C 5 G-GPE; G-GPE2, G-GPR4, G-GMD1, G-GMD3**, G-GMD5* (rev) G-GMD 6 (rev)	$\begin{aligned} & \text { G-SRT9+, G-SRT10+, } \\ & \text { G-RT11+ } \\ & \text { G-GMD4 } \\ & \text { G-MG1, G-MG2*, } \\ & \text { G-MG3** } \\ & \text { G-GPE3.1 } \end{aligned}$
Statistics \& Probability (S)	S-ID1*, S-ID2*, S-ID3*, S-ID6a*, S-ID6b*, S-ID6c*, S-ID7,S-ID8,S-ID9*	S-CP1*, S-CP2*, S-CP3*, S-CP4*, SSP5* ${ }^{*}$ S-SP6 6^{*}, S-SP7* , S-SP8*, S-SP9* S-MD6*, S-MD7*	S-ID4*, S-IC1*, S-IC2* S-IC3*, SIC4*, S-IC5*, S-IC6*, S-MD6+*, S-MD $7+^{*}$	S-ID1*, S-ID2, S-ID 3 , S-ID 5, S-ID6a, S-ID 6 b, S-ID $6 \mathrm{c}, \mathrm{S}$-ID 7, S-ID $8, \mathrm{~S}$ ID 8, S-ID 9	S-CP1*, S-CP2*, S-CP3*, S-CP4* S-CP5*, S-CP6*, S-CP7*, S-CP8, S-CP9 S-MD-6*, S-MD7*	S-ID4*, S-IC1*, S-IC2*, S-IC3* S-IC4*, S-IC5*, S-IC6* S-IC6*, S-IC7*

Elementary Mathematics Pilot

Chapters to be Piloted
(Please keep notes in your Mathematics Tool Kit documenting your evidence)

Grade Level	Concept To be Field Tested	My Math (McMillan- McGraw Hill)-(MMH)	Go Math! (Houghton Mifflin Harcourt)
Kindergarten	Cardinality	Ch4: Compose and Decompose Numbers to 10	Ch4: Represent and Compose Numbers to 10
First Grade	Addition	Ch3: Addition Strategies to 20	Ch3: Addition Strategies
Second Grade	Subtraction	Ch4: Subtract Two Digits	Ch5: Two digit Subtraction

Pilot teachers please bring back evidence of using the online assessment component for each program and how student and parent friendly they were. The programs are Aleks (McMillan McGraw) and Knewton. (HMH).

2013 Parrent Summit SIPNI I Norkhop Sessions

Room	Title	Presenter
I-101 Session 2: II:20 Session 3:II:20	STEM: Science Hands-Dn Experiences in Science	Juanita Chan, Dianne Austin Instructional Strategists RUSD Professional Development
$1-103$ Session 2: II:20 Session 3: II:20	STEM: Science From Life Science to AP Bialagy- What daes your student need to do to take an AP Bialagy class at high school?	Robin Pearce, Teacher, AP Bialogy, Carter High School
c-112 Session 2: II:20 Session 3: 11:20	STEM:Technolagy 8 The Comman Care Common Core- Laying out our technology plan for schoals	Beth Ann Scantlebury, Chief Technolagy Dfficer Raul Maciel, Netwrork Services Manager Rialto Unified School District
C-113 Session 2: II:20 Session 3: $11: 20$	STEM: Technolagy far Students Technolagy as a communication toolWhat is Schoal Loop and how does it help you as a parent.	Jahn Roach, Directar Special Pragrams Rialto Unified School District
$1-102$ Session 2: II:20 Session 3: 11:20	STEM: Engineering Came learn mare about the MESA program at Rialta High Schaol	Mikal Thampson, Physics Teacher Julien Ansermet, Mathematics Teacher Rialto High School - MESA Program
$1-104$ Session 2: $10: 20$ Session 3: 11:20	STEM: Engineering Came learn mare about the MESA program at Kolb Middle School	Catherine Sanchez, Science Teacher Lizbeth Mariscal. Science Teacher Kolb Middle School - MESA Program
C-115 Session 2: 10:20 Session 3: 11:20	STEM: Mathematics Common Core in Mathematics, what is it . and how daes it benefit our students?	Jeff Burke, MathematicsCourdinator San Bernardina County Superintendent of Schools
C-116 Session 2: $10: 20$ Session 3: II:20	STEM: Mathematics Common Core in Mathematics, what is it , and how does it benefit our students?	Teressa Brawn, Courdinatar Elizabath Curtiss, Coardinator RUSD Professional Development

August 4, 2014
Dear Parent:
As Rialto USD transitions from the California Mathematics Standards to the Common Core (CC) Mathematics Standards for the 2014-2015 school year, we are pleased to inform you that your student was selected to be in the Accelerated Math Pathway based on his/her previous grade in mathematics, student placement test, benchmark scores and/or teacher recommendation. This means that he/she will be completing four years of mathematics in three years. Below is a schematic of the general pathway, honors pathway and the accelerated pathway from 6^{th} grade to high school:

Grade Level	Grade 6	Grade 7	Grade 8	Grade9	Grade 10	Grade 11	Grade 12
General Pathway	Course 1	Course 2	Course 3	Math 1	Math 2	$\text { Math } 3$	Statistics
Honors Pathway	Course1(H)	Course 2(H)	Course 3(H)	Math 1H	Math 2H	Math 3H	Pre-Cal(H) AP Stats
Accelerated Pathway	Course 2(Acc) (needed Course1 Stds.)	Course 3(Acc) ${ }_{\text {(needed Course } 2 \text { Stus.) }}$	$\begin{gathered} \text { Math } 1 \mathrm{H} \\ \text { (needed Course 3 Stus.). } \end{gathered}$	Math 2H	Math 3H	$\begin{aligned} & \mathrm{Pre}- \\ & \mathrm{Cal(H)} \\ & \hline \end{aligned}$	AP Calculus AP Stats

The Accelerated Pathway that Rialto USD is utilizing, aims to advance talented math students (not necessarily GATE) who met the criteria listed above, are dedicated and hardworking, have a love of mathematics and are willing to challenge themselves and excel. The reason why "Needed Course Standards" was added to each of the accelerated courses is that even though the students are accelerated by one grade level, the state still requires them to be tested at their grade level.

The Honors Pathway is for GATE students who are highly performing but not necessarily accelerated in math. They will still have the honors pathway that will take them to advanced math in the high school.

The General Pathway also takes students to three years of math (Math 3) at the high school with the option to take a fourth year in high school.

What is important to understand is the following:
*. In order to compare and increase math achievement in the US, it was important that all states adopt similar standards (46 out of 50 states have done that), so that important research can be conducted as to what works in the teaching and learning of mathematics which in turn will affect the way students are taught and assessed.

* California Algebra I, Geometry and Algebra II no longer exist. Instead the Common Core Algebra I, Geometry and Algebra II or the Common Core Integrated I, Integrated II and Integrated III now exist. The Common Core courses all include Statistics in them and the difference between the two common core sequence of classes is that Algebra and Geometry and Statistics are intertwined together in the integrated series.
* At the high school level, ALL students will be tested in mathematics ONLY at the $11^{\text {th }}$ grade on all the standards that they have studied in the $9^{\text {th }}, 10^{\text {th }}$ and $11^{\text {th }}$ grades. This test will also play a big role in determining which students have met "Early Assessment Progress (EAP) Status" at a UC/CSU institution, and do not have to take a remedial math course at the college level.
* Rialto USD, adopted the integrated math standards at the high school for two reasons (a) the integrated standards spiral each year building on earlier material (b) given that there is a single assessment in the $11^{\text {th }}$ grade that is high stakes and is integrated, and that ALL $11^{\text {th }}$ grade students have to take, students will naturally do better after taking an integrated course sequence.

Given these facts, it is important to realize that as your student has been accelerated, he/she will be required to do additional work in mathematics and have a more compacted course than other students at his/her grade level. It is therefore imperative that you monitor your student's progress in that class. This year, parents will be given access to the Parent Portal in Synergy to view their students' progress. More information on the Parent Portal will be given to you at back-to-school night.

In the case, where your student cannot keep up with the work due to extenuating factors, they can still go into the Honors track. The important factor is that your student is successful on the $11^{\text {th }}$ grade test and the honors track will have the depth and complexity allowing your student to be successful on the $11^{\text {th }}$ grade math test.

As these courses are extremely rigorous, it is important that you are informed that if your student does not perform and earns less than a B in the course each quarter, they will be transferred back into either the General of the Honors offerings of Math Classes. It is therefore imperative that you ensure that your student keeps up with the work assigned from this class and that you meet /inquire regularly how your student is progressing in this class. This consistent parent-teacher communication helps immensely to monitor your student's progress so that you can intervene when necessary and provide the extra support when needed so that your student can keep up with the course work and be successful.

Finally, a word regarding student testing. During the 2014-2015 school year California will be moving away from assessing students solely using multiple-choice tests but instead will have students take their assessments that will be either online or paper and pencil that will involve Performance Assessments, Enhanced Multiple-Choice, Enhanced Computer testing, Short Answer tasks and Multiple choice tests. Instead of bubbling their answers, students now will have to provide reasons and justification for their work. Some of Rialto USD's assessments will be of the same format, so please make sure that you ask your student for his/her assessments to review with them how they have answered the questions. Examples of questions can be obtained at http://www.smarterbalanced.org/smarter-balanced-assessments/

While this is an initial letter, explaining to you why your student was selected to be in the advanced math class, more information will be coming at Parent College nights, Parent Summit, and the Parent University. Please take advantage of these offerings so that you have a complete picture of what your student needs to do in order to be "College and Career Ready".

We greatly appreciate your cooperation and look forward to working with your student and you to advance them in the field of mathematics. Please fill out the attached form indicating that you have read and agreed to the conditions spelled out in this letter.

Sincerely,

ACCELERATION AGREEMENT IN MATHEMATICS

* I have read the attached letter indicating that my student will be in the Accelerated Mathematics Program for the 2014-2015 school year. I understand that my student has to maintain a B or better in this class.
* In the event, that my student is NOT progressing in this class, there will be a parentteacher meeting set up on a pre-agreed date to discuss why there is a lack of progress and develop a mutual action plan of intervention
* If at the end of the quarter, the student has NOT earned a B or better in mathematics, they will be put in the general or honors class for that grade level- An Accelerated Grade 6 student will return to Math 6 or Math 6 (Honors). Similarly, an Accelerated $7^{\text {th }}$ grade students will return to Math 7 or Math 7 (Honors) and an Accelerated $8^{\text {th }}$ grade student will return from Math 1 to Math 8 or Math 8 (Honors).
* I have read the attached letter and understand the criteria for the accelerated mathematics program being offered. Please check boxes below:
- I understand the purpose for acceleration
- I understand that my student needs to maintain a "B" or better in this class
- If my student does not earn a B or better, there will be an initial parent conference to develop an action plan
- If the student does not progress after that they will be put in the regular or honor mathematics class for that grade level

Name of Student:
Math Class:
Name of Parent/Guardian:
Phone Number:
E-mail address:

Parent/ Guardian Signature: \qquad

2014-2015

5th Grade Math Unit of Study

Critical Area 1 (Chapter 1-5): Fluency with Whole Numbers \& Decimals

Domains: Number \& Operations in Base Ten, Operations \& Algebraic Thinking, Number \& Operation-Fractions

Suggested Number of Days	Days: 66-76
Meaning	
Understandings (U) Students will understand how to: - extend division to two digit divisors - integrate decimal fractions into the place value system - develop the understanding of operations with decimals to the hundredths - develop fluency with whole number and decimal operations - solve decimal multiplication problems - solve decimal division problems	Essential Question(Q) Students will keep considering... 1. How to use place value multiplication and expressions to represent and solve problems? 2. How to divide whole numbers? 3. How to add and subtract decimals? 4. How to solve decimal and multiplication problems? 5. How to solve decimal division problems?
Acquisition	
Students will know (Knowledge) - Understand the Place Value System (5.NBT.1, NBT.2, NBT.3, NBT.4) - Write and interpret numerical expressions (5.OA.1, OA.2) - Perform operations with multi digit whole numbers \& with decimals to the hundredths (5.NBT.5, NBT.6, NBT.7) - Apply and extend previous understandings of multiplication and division to multiply and divide decimals (5.NF.3)	Students will be skilled and be able to (Demonstrate) - Draw diagrams to solve operational problems - Use base ten blocks to model operations - Use patterns in the placement of the decimal point to multiply by power of 10 - Use models to find the product of a decimal and a whole number and the product of two decimals to hundredths - Use models to divide whole numbers with and without remainders - Add and subtract decimals using a quick picture and base ten blocks - Student partner to describe to another pair the answer to the essential questions - Draft a rule to answer the essential question - Use math iournals to demonstrate understanding of learned concepts

Quarter 1 (August $4^{\text {th }}-$ October $^{\text {rd }}$)
 Unit 1: Ratios and Proportional Relationships
 Chapter 1: Ratios and proportional Reasoning Time: August $4^{\text {th }}$-August $\mathbf{2 6}^{\text {th }}$

How can you show that two objects are proportional?

* Why are unit rates helpful to being a smart consumer?
* Explain how to simplify complex fractions.
* Why does the ratio $\frac{3 f t}{1 y d}$ have a value of one?
* How do you determine if two ratios are proportional?
* What is the difference between a ratio, unit rate, and a proportion?
* Is there another way to determine if the relationship is proportional or not proportional?
* Does the order of the ratios matter?
* How is the information found in a table related to the information found in a graph?
* How is rate of change related to slope?
* How does slope help verify that a function is linear?
* What is the difference between direct variation and indirect variation?
- Inquiry Lab
- Lesson 1-1: Rates
[7.RP.2, 2b]
- Lesson 1-2: Complex Fractions and Unit Rates
[7.RP.1; 7.NS.3]
- Lesson 1-3: Convert Unit Rates [7.RP.2, 3]
- Lesson 1-4: Proportional and Nonproportional Relationships [7.RP.2, 2a, 2b]
- PSI - The Four-Step Plan
- Mid-Chapter Check
- Lesson 1-5: Graph Proportional Relationships [7.RP.2, 2a]
- Lesson 1-6: Solve Proportional Relationships [7.RP.2, 2b, 2c, 3]
- Lesson 1-7: Constant Rate of Change [7.RP.2, 2b, 2d]
- Lesson 1-8: Slope [7.RP.2, 2b]
- Lesson 1-9: Direct Variation [7.RP.2, 2a, 2b]]
- Chapter 1 Review and Test (form 3A) [Test by August $\mathbf{2 6}^{\text {th }}$]

Notes:

Open Task: Introduce the chapter by going over the Unit Project on page 183-184. Use the Vocabulary Review, Comic Strip, and Are You Ready to open the chapter.

- Introduce the 4 types of slope (positive, negative, zero, and undefined) in 1-8.
- In 1-6: Label units to lessen confusion.

End of Chapter PT (Road Trip) on page 93.

1. A brief history of mathematics can be found here:
http://www.storyofmathematics.com/index.html

$$
1 \mid \mathrm{Page}
$$

Math I

Math I-Big Ideas

This course needs to be taught around "Big Ideas". Unlike previous courses where chapters and skills were taught in isolation and it was not apparent why students studied certain skills, there is a need to connect concepts and skills and teach them in multiple perspectives. So for example, a "Big Idea" would be on Functions. Functions can be linear or non-linear. All functions involve five perspectives that are taken into consideration: Data Tables, Equations, Graphs, Word Problems, and Pictorial Representations. So students would take this "Big Idea" and apply it to linear, quadratic, exponential, step, logarithmic and trigonometric functions. Therefore there is a purpose and a connection made around these perspectives rather than teaching each function as something totally separate. Keeping this in mind, as you incorporate the Big Ideas that are listed below. Be sure to explicitly model the Standards for Mathematical Practice listed in the next pages. When students explain their reasoning have them justify their responses by using the Standards for Mathematical Practice they become familiar with them.

Timeline

Grade Level	Critical Area 1	Critical Area 2	Critical Area 3	Critical Area 4
K	Feb. $6^{\text {th }}$	April $24^{\text {th }}$	May $15^{\text {th }}$	
$1^{\text {st }}$	Nov. $21{ }^{\text {st }}$	Feb. $20^{\text {th }}$	April $10^{\text {th }}$	May $22^{\text {nd }}$
$2^{\text {nd }}$	Oct. $3^{\text {rd }}$	Feb. $17^{\text {th }}$	May $15^{\text {th }}$	June $2^{\text {nd }}$
$3^{\text {rd }}$	Dec. $12^{\text {th }}$	April $10^{\text {th }}$	June ${ }^{\text {rd }}$	
$4^{\text {th }}$	Nov. $21{ }^{\text {st }}$	March $13^{\text {th }}$	May $22^{\text {nd }}$	
$5^{\text {th }}$	Dec. $12^{\text {th }}$	April $10^{\text {th }}$	June $3^{\text {rd }}$	

K Critical areas

1: Counting and cardinality, operations and algebraic thinking, number and operations in base ten
2: Identifying and describing two and three dimensional shapes
3: Measurement, classify and sort data

$1^{\text {st }}$ Grade Critical areas

1: Addition and subtraction concepts and strategies and their relationship.
2: Count, model and compare numbers, 2 digit addition and subtraction.
3: Measurement and data representation.
4: 2 \& 3 dimensional geometry
$\mathbf{2}^{\text {nd }}$ Grade critical areas
1: Numbers, Operations and algebraic thinking.
2: Numbers, Operations and algebraic thinking.
3: Measurement and data representation.
4: geometry

$3^{\text {rd }}$ Grade critical areas

1: Numbers, Operations and algebraic thinking

Elementary Math Critical Area PT

Timeline

2: Numbers, Operations Fractions, and algebraic thinking

3: Measurement, data representation and geometry
$4^{\text {th }}$ Grade critical areas
1: Numbers, Operations and algebraic thinking.
2: Numbers, Operations Fractions, and algebraic thinking.
3: Measurement, data representation, geometry and algebraic thinking.
$5^{\text {th }}$ Grade critical areas

1: Numbers, Operations Fractions, and algebraic thinking.
2: Numbers, Operations Fractions, and algebraic thinking.
3: Measurement, data representation, geometry and algebraic thinking.

Performance Task Rubric

MAKING A QUILT

A level 3 response

A level 2 response

A level 1 response

A level 0 response

- Indicates that the student has made sense of the task, modeled accurately and persevered
- Shows an ability to accurately recognize 2-dimensional shapes and their attributes, and to draw quadrilaterals
- Demonstrates an understanding of how to partition shapes into parts with equal areas
- Addresses all aspects of the task using diagrams and sound mathematical concepts
- Indicates that the student has made sense of the task, modeled accurately and persevered
- Shows an ability to accurately recognize 2-dimensional shapes and their attributes, and to draw quadrilaterals
- Demonstrates an understanding of how to partition shapes into parts with equal areas
- Addresses most elements of the task, using diagrams and mathematically sound procedures
- May include a minor error of omission
- Shows that the student has made sense of at least some elements of the task
- Shows evidence of recognizing some 2-dimensional shapes
- May not indicate a complete understanding of more complex tasks such as how to partition shapes into parts with equal areas
- Shows little evidence that the student has made sense of the problems of the task
- Reflects a lack of understanding of 2-dimensional shapes and their attributes
- Shows little evidence of addressing the elements of the task

3. Darnell uses block prints to make this design for the quilt. Study the diagram to answer the questions.

a. How many shapes have right angles? Three 3
b. How many shapes have perpendicular lines? Are?
c. Put a T on the trapezoids. Are the trapezoids also quadrilaterals? Explain. Yes, because traperioids has 4 sides just like a quadrilateral.
d. Put an H on the hexagons. Are the hexagons also quadrilaterals? Explain.

No, becaureahexagon has le sides and 4 Angles.
e. Classify the shapes. Complete the chart to show how many there are of each shape.

K Triangles	Quadrilaterglsig Rhombuses	Pentagons	
0	7	0	1

4. Ricky makes a design for the quilt. The shape is a quadrilateral that is not a square. It has 4 sides that are of equal length. Draw the quadrilateral on the grid. Name the shape.
\qquad
Rhombus

Name \qquad CRITICAL

Geometry AREA
Making Quilts

The third grade art class is making quilts. Solve the problems below using what you know about geometric shapes.

1. Carly wants to make a block print for the quilt. She wants to draw a closed shape with 5 line segments and two right angles. Draw the shape. Label the right angles. Name the shape.

a. How many angles in the shape are greater than a right angle? 1000
b. How many angles in the shape are less than a right angle? one 1
c. How many sets of perpendicular lines did you draw "Two 2
d. How many sets of parallel lines did you draw? \qquad one 1
e. Did you draw any intersecting lines? Explain.

Yes there are 5 intersecting lines and they form 1 acute and 2 obtuse angle.
and 2 right angles.
2. Carly wants to change the shape to make a hexagon. Explain how she can do this.
Carly can open up the pentagon and add another line segment. she will have her hexagon and will have 6 line segments.

\qquad

ALGEBRA READINESS TEST

This is a diagnostic test of topics needed for success in a first course in algebra.
CALCULATORS MAY NOT BE USED WHEN TAKING THIS TEST.

AR - A 2010

A suggested time for this test is approximately 45 minutes.

INSTRUCTIONS

1. Wait until you are told to start before beginning the test.
2. The test booklet, the answer sheet, and all scratch paper must be turned in when the test is finished. DO NOT WRITE IN THIS BOOKLET.
3. Work each problem and select the best response from the given choices. On the answer sheet, bubble the choice that corresponds to your answer.
4. For you and your teacher to make the best use of the test results, you should not guess. If you cannot answer a question, leave it blank.
5. If you find certain problems very time consuming, leave them temporarily. Come back to them after you have gone through the entire test if you have time.
6. Calculators are not needed and may not be used when taking this test.

YOU MUST USE A \# 2 PENCIL. Do not use ink pens or mechanical pencils.

COMPLETELY FILL IN THE BUBBLE.

Bubbles may not be read if filled in too lightly or partially; if marked with a dot, check, or X ; or if more than one bubble is marked. To change a response, completely erase the bubble previously filled in. See the examples shown to the right.

[^0]1. $4.7-0.304+2.06=$
(A) 6.356
(B) 6.456
(C) 6.464
(D) 6.466
2. The prime factorization of 18 is
(A) 2×9
(B) 3×6
(C) $2 \times 2 \times 3$
(D) $2 \times 3 \times 3$
3. Rosa chooses one ball at random from the ten shown to the right. What is the probability the ball she chooses has both stripes and stars?
(A) $\frac{1}{10}$
(B) $\frac{1}{5}$
(C) $\frac{1}{2}$
(D) $\frac{3}{5}$

4. What integer is closest to $\frac{31}{7}$?
(A) 1
(B) 3
(C) 4
(D) 5
5. Pat drove her car 147 miles on a trip. At the end of the trip the car's total mileage was 3,835 . What was the mileage of the car at the beginning of Pat's trip?
(A) 3,982
(B) 3,688
(C) 3,588
(D) 2,688
6. $(3 a)(8 a b)=$
(A) $11 a b$
(B) $11 a^{2} b$
(C) $24 a b$
(D) $24 a^{2} b$

Educational Services CCSS Walkthrough 14/15

CORE FOCUS 4: SPEAKING \& LISTENING

INDICATORS	EVIDENCE OBSERVED OR GATHERED		
1. A language objective tied to the lesson is posted	1 2 No language objective		What to look for: *Teachers plan with a language objective in mind *Language Objective is posted for each lesson
2. Students orally share thoughts and add on to or critique others' thoughts	1 2 Students are not speaking		What to look for: *Teachers plan for students discussions *Students are encouraged to participate in discussions *Accountable Talk stems are taught (Posters on wall, frames in students' hands) and expected to be used in discussions
3. Students are offered language support structures such as Accountable Talk frames, sentence frames, response frames, etc. to aid in discussion.	1 2 No support structures in place 		What to look for: *Teachers plan for student discussions *Frames are taught (Posters on wall, frames in students' hands) and expected to be used orally in class

INDICATORS	EVIDENCE OBSERVED OR GATHERED		
1. Mathematical practices are posted and referred to by teachers	1 No evidence of Mathematical practices		What to look for: *Teachers introduce and use mathematical practices in daily lessons *Teachers highlight a MP in that day's lesson. *Students are able to articulate which MP they are using if asked * Mathematical practice posters are evident in the room * Students are USING Manipulatives
2. Students explain results and critique others	1 2 Students do not share results		What to look for: *Teacher plans for student discussion and communication of reasoning and justification *Students talk about numbers in terms

			of units or objects (what do these quantities represent?) *Students use manipulatives or drawings to explain their thinking to others *Students and teachers use the academic language of the discipline *Students restate the thinking of others *Students give feedback and ask questions of others' solutions
3. Students are encouraged to find multiple ways of solving problems and use different tools/methods to solve	2 Only one method is modeled or encouraged		What to look for: *Teachers model more than 1 representation that are conceptually relevant *Students are using manipulatives, drawing and writing *Students are leading discussions and/or using document cameras *Students are encouraged to think past just one solution *Teacher encourages multiple representations and solutions
4. Students are encouraged to collaboratively problem solve	1 No collaboration evident		What to look for: *Teachers focus on word problems and/or real world problems *Students frequently work with partners and/or groups *Structure for student collaboration is evident (ie group members have roles: partner a / b, "sage/scribe", etc.) * Teacher is moving about the room, monitoring conversation and noting misconceptions (via clipboard, ipad, etc.) *Students are creating word problems from "real world" scenarios

School:
Team Members

1. \qquad
2. \qquad
3. \qquad
4. \qquad

STEM BOWL 2014

Ready, Aim, Marshmallows!

Ready, Aim, Marshmallows

Key Question

Which catapult will launch the marshmallow the furthest?

Materials Needed

- Shoe Box
-1- inch rubber bands (2)
- Ruler
- Marker
- Plastic Knife
\bullet Masking Tape (100 cm)
-3 pencils
- Plastic Spoon
- Marshmallows
- Meter Stick

DIRECTIONS

1. Cut out one of the back(narrower) ends of the shoe box with your plastic knife, leaving a 1 inch strip across the bottom
2. Starting from one of the wide ends of the box, mark a point 1 inch from the top and 2.5 inches from the back end that you just cut out in Step 1
3. At the marked point, use your plastic knife to cut a hole and enlarge it to fit the diameter of your pencil
4. Repeat Step 3 again on the other wide side and pass Pencil \#1 through both holes
5. Mark an X on the bottom of the shoe box exactly below the midpoint of the pencil
6. Now make a hole at the X mark so that a pencil can go through it and stand up
7. Take $\mathrm{a} 2^{\text {nd }}$ pencil and use your masking tape to tape the back of the plastic spoon to the pencil
8. Now take a rubber band and pass it through the hole on the bottom as shown in the diagram
9. Now pass pencil \# 3 through the rubber band loop on the base of the box as shown in the diagram. Tape the pencil with your tape to the bottom of the box.
10. Now cross Pencil \#2 with Pencil \#1 using the rubber band as shown in the picture
11. Now use the elastic at the bottom to loop Pencil \# 2 through it. If the elastic is not tight enough you can twist it a few times to make it tighter.
12. Now put the catapult contraption at one end of the table, load the catapult with a marshmallow and pull back the spoon. Record the distance the marshmallow travels. If it shoots off the table calculate the straight distance it has travelled from the table

DATA

Trial	Distance Traveled (cm)	Time taken to hit the table/ground (sec)
1		
2		
3		
	Average distance travelled	Average time taken

If the speed of an object is determined by using the formula given below- determine the marshmallow's speed. Be sure to write the correct unit for the speed?

$$
\text { Speed }=\text { Distance } \div \text { Time }
$$

Reflections

Give a reason why a rubber band is used in this experiment?

What type of energy change is occurring in this experiment?
\qquad
\qquad
\qquad

Does the mass of the marshmallow matter in determining how far it travels?

[^0]: These materials have been prepared with the support of the California State University, the University of California, and the California Academic Partnership Program. Copyright (c) 2010 The Regents of the University of California and The Trustees of the California State University.

