AGA 5802: Astrofísica Observacional Jorge Meléndez

Photometry I

Atualização: 3/29/18

Bibliography

\Rightarrow Kitchin - Astrophysical Techniques (5th Ed, 2009), Cap. 3
\Rightarrow Birney - Observational Astronomy (2nd Ed, 2008), Cap. 5 e 10
Howell - Handbook of CCD Astronomy (2nd Ed, 2006), Cap. 5
\Rightarrow Sterken \& Manfrod - Astronomical Photometry (1992)
\Rightarrow Romanishin - Introduction to Astronomical Photometry (2006) FREE
aNotas de Aula, Prof. Antonio Mário Magalhães
„www.das.inpe.br/~claudia.rodrigues/ http://www.astro.caltech.edu/~george/ay122/ http://panisse.lbl.gov/snphot/

Introduction to Astronomical Photometry h using CCDs

Romanishin ${ }^{\circ} O /$

Astronomical Photometry

First, chat with the students about:

- Difference between photometry \& spectroscopy
- What is spectrophotometry?
- Differential \& absolute photometry: advantages
- Magnitude \& Flux
- Absolute Magnitude
- Vega
- What is a photometric system?
- Broad band vs narrow band
- Applications?

Photometry: flux (or intensity) in a broad (or intermediate) band

Spectroscopy: measurements of the relative flux at low, medium or high spectral resolution

Wavelength

Spectrophotometry: Flux distribution (or intensity) at very low spectral resolution

A\&A 509, A28 (2010)

Fig. 1. Comparison of the observed and computed spectral energy distributions of 56 Ari. Theoretical models correspond to $T_{\text {eff }}=12300 \mathrm{~K}$, $\log (g)=3.9$ and $T_{\text {eff }}=12800 \mathrm{~K}, \log (g)=4.0$. The model fluxes have been convolved with an $F W H M=10 \AA$ Gaussian kernel for a better view.
D. Shulyak ${ }^{1}$, O. Kochukhov ${ }^{2}$, G. Valyavin ${ }^{3}$, B.-C. Lee 4, G. Galazutdinov ${ }^{5}$, K.-M. Kim ${ }^{4}$,

Differential Photometry

- Example: measure the brightness of $\operatorname{star} \mathrm{A}$ relative to star P (without knowing necessarily the real magnitude of star P)

Differential photometry

- Rotation period of an asteroid

Absolute photometry

- Measurement of brightness in an standard system
- Is possible to compare with other observers
- We can transform magnitudes to absolute fluxes

Historically ... Hipparchus (190-125 BC)

- Based on apparent brightness at naked eye
- Brightest: class 1
- Faintest: class 6

Magnitudes

 brightest stars at naked eye: $m^{\sim}-1$ to 0 faintest stars: m ~ 5 to 6

Logarithmic scale

Pogson (1856): logaritmic scale

 $m_{1}-m_{2}=-2.5 \log \left(f_{1} / f_{2}\right)$m: apparent magnitude f: brightness (flux)

$$
f_{1} / f_{2}=10^{-0.4\left(m_{1}-m_{2}\right)}
$$

Magnitude Difference

Example: exposure time

$$
f_{1} / f_{2}=10^{-0.4\left(m_{1}-m_{2}\right)}
$$

As discussed in class, the exposure time is inversely proportional to the flux (fainter objects requires longer exposure time) \rightarrow
$\mathrm{t}_{2} / \mathrm{t}_{1}=10^{-0.4\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right)}=10^{+0.4\left(m_{2}-m_{1}\right)}$
$\mathrm{t}_{2} / \mathrm{t}_{1}=2.512^{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)}$

Example: exposure time

If a star of magnitude $m=x$ needs an exposure of 100 s , what time would be needed for a star with $m=x+1$?

$$
\begin{aligned}
& t_{2} / t_{1}=2.512^{\left(m_{2}-m_{1}\right)} \\
& t_{1}=10 \mathrm{~s} \quad m_{1}=x \quad m_{2}=x+1 \rightarrow m_{2}-m_{1}=1 \\
& t_{2} / t_{1}=2.512^{1.0}=2.512 \\
& t_{2}=2.512 \times 100 \mathrm{~s}=251 \mathrm{~s}
\end{aligned}
$$

Absolute Magnitude: M

The apparent magnitude m does not tell us about the intrinsic brightness of the star

Absolute Magnitude M: apparent magnitude that an object would have at a distance of 10pc

$$
\begin{array}{ll}
m-M=5 \log d-5 & d: \text { parsecs } \\
M=m+5 \log p+5 & p: "(\operatorname{arcsec})
\end{array}
$$

Example: Absolute Magnitude of solar twin 18 Sco
 http://simbad.u-strasbg.fr/simbad/sim-fid

Basic data :

* 18 Sco -- Variable Star
query around with radius

Other object types:
*
(*, BD, CSI, GC, GCRV, GEN\#, GJ, HD , HIC , HIP, HR, L [B10]) , PM* (Ci,LFT,LHS,LTT,NLTT, PM) , ** (TD1)
ICRS coord. (ep=J2000) :
$161537.26946-082209.9870$ (Optical)
FK5 coord. (ep=J2000 eq=2000) :
$161537.269-082209.99$ (Optical) [4
FK4 coord. (ep=B1950 eq=1950) :
Gal coord. (ep=J2000): 004.6952 +29.1570 (Optical) [4.482 .90
Proper motions mas/yr [error ellipse]: $230.77-495.53$ [0.51 0.33 0] A 2007A\&A...
Radial velocity / Redshift / cz: V(km/s) 10.6 [2] / z(~) 0.000035 [0.00000
Parallaxes mas: 71.94 [0.37] A 2007A\&A...474..653V
Spectral type: m.a.s. $=10^{-3} \boldsymbol{\prime}$ G2Va c 2011ARep...55...31S
Fluxes (5) :

Absolute Magnitude of 18 Sco

Absolute Magnitude M: the apparent magnitude that an object would have at a distance of 10 pc

$$
\begin{gathered}
M=m+5-5 \log d \quad[d: \text { parsecs }] \\
M=m+5+5 \log p[p: p a r a l l a x i n \quad \prime] \\
\quad \mathrm{m}_{\mathrm{V}}=5,5 ; p=71,94 \times 10^{-3} \prime \prime \\
\mathrm{M}_{\mathrm{V}}=5,5+5+5 \log \left(71,94 \times 10^{-3}\right) \\
=10,5+5 \times(-1.14) \quad \begin{array}{l}
\text { For comparison, the } \\
=4,8 \\
\text { Sun has } \mathrm{M}_{\mathrm{V}}=4.83
\end{array}
\end{gathered}
$$

Stars shine in different colors
Betelgeuse: $T_{\text {eff }} \sim 3400-\mathrm{K}$

Rigel:
$T_{\text {eff }} \sim 10100 \mathrm{~K}$

$$
\mathrm{B}_{\lambda}(\mathrm{T})=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{(h c / \lambda k T)}-1}
$$

Our eye sees only part of the SED

Photometric Systems and their applications

Girardi et al. 2002 A\&A 391, 195

Na retina há 2 tipos de células responsáveis pelo sentido da visão

Our eye defined the first photometric system

Rhodopsin absorption curve.

Retinal receptor cells.
$\int^{\infty} f(\lambda) s(\lambda) d \lambda$

$$
F=\frac{0}{\int_{0}^{\infty} s(\lambda) d \lambda}
$$

Instrumental system

Observed flux F:

Sensibility $s(\lambda)$ of rod cell

Rhodopsin absorption curve.

- $f(\lambda)$: flux of the object outside Earth's atmosphere
- $s(\lambda)$: transmission curve (sensibility curve [filter transmission]; detector; Earth's atmosphere; ...)

Hundreds of

Michael S. Bessell

Research School of Astronomy and Astrophysics, The Australian National University,
Weston, ACT 2611,Australia; email: bessell@mso.anu.edu.au

- Born in 1942 in Tasmania
- Found CD-380245
- Recognised for his work on photometry
- His filter systems have become standard at most observatories throughout the world
- http://nla.gov.au/nla.oh-vn3566297

Broad band photometric systems: UBV

Solar spectrum \& UBV system

774 R. A. Bell, G. Paltoglou and M. J. Tripicco
(1994, MNRAS 268, 771)

Color index (or "color")

Diference between magnitudes in two bands. In the UBV system, the magnitudes m_{v}, m_{B}, m_{V} are written U, B, V

The color indexes are:
$B-V$ index: $B-V$
U-B index: U-B

Color index

B-V: Temperature
$\mathrm{B}_{\lambda}(\mathrm{T})=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{(h c / \lambda k T)}-1}$ U-B: chemical composition

Nancy Roman, 1954, AJ, 59, 307

Figure 3. The orbit of the sun and portions of the orbits of (a) HD 1603 I , (b) $\mathrm{BD}+17^{\circ} 4708$, and (c) $\mathrm{BD}+2^{\circ} 3375$. For the latter three, a mean absolute magnitude of +5.0 is assumed. The scale of the diagram is given by the radii of the sun's orbit, 8.3 kpc , and of the dot at the galactic center, 200 pc . Arrows indicate the direction in which the stars move in the orbits. Notice that the stars which travel through more than one type of force field do not have closed orbits.

Figure 1. Two-color plot. Filled circles indicate the stars listed in Table I; small open circles are main sequence stars with $B-V$ colors between +0.20 and +0.75 ; large open circles represent reddened O and B stars in the same range of color.

UV excess vs. metal deficiency

abundances of the following elements: $\mathrm{Na}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Ca}, \mathrm{Sc}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Fe}$, and Ni. Manganese and barium have been omitted from the mean because manganese often shows an appreciable deficiency as compared with the other elements and barium is represented by only two lines and may show significant deviations from the mean. Some stars that have been analyzed by others are included in Table 1.

In Figure 1 we plot $[\mathrm{M} / \mathrm{H}]$ against the ultraviolet excess. It can be seen that the correlation is good enough that the metal abundance of a main-sequence star whose color lies between $B-V=0.45$ and 0.65 can be inferred from three-color photometry about as

Fig. 1.-The metal deficiency plotted against ultraviolet excess for late \mathbf{F} and early G dwarfs
well as by spectrophotometric analysis. For example, Arp (1959) has reported the ultraviolet excess of main-sequence stars ($B-V=+0.6$) in three globular clusters. For the clusters M5, M13, and M2 he quotes ultraviolet excesses of $0.21,0.22$, and 0.33 mag ., respectively. Reference to Figure 1 shows that M5 and M13 are deficient in metals by a factor of about 20, while M2 must be deficient by about 200 .

This material will be fully presented and more completely discussed at a later time.

Formation of our galaxy

 EVIDENCE FROM THE MOTIONS OF OLD STARS THAT THE GALAXY COLLAPSED ELS, 1962, ApJ,O. J. Eggen, D. Lynden-Bell.* and A. R. Sandage 136, 748 Mount V
Carnegie Institution of

$(8-n) 8$

Color-

 magnitude diagramUBV
Johnson \& Morgan 1953, ApJ 117, 313

Fin. 5.-A standard main sequence for the color system $B-V$ and the absolute-magnitude system M_{v}. The stars ploted include main-sequence objocts; (a), which have trigonometric paralkazes >0. 100 ; (b) the Pleiades, corrected for a mean interstellar reddening (one highly reddened A star omitted); (c) Praesepe; (d) NGC 2362 corrected for a mean interstellar reddening. In addition, five white

CMD observational \& theoretical

Observational

Theoretical

Hertzsprung-Russell Diagram

http://outreach.atnf.csiro.au/education/senior/astrophysics/stellarevolution_hrintro.html

Zero point of UBVRI system : Vega

Vega's magnitude in U-band: $\mathrm{U}=0.0$
Vega's magnitude in B-band: $B=0.0$
Vega's magnitude in V-band: $R=0.0$
Vega's magnitude in R -band: $\mathrm{V}=0.0$
Vega's magnitude in I-band: $I=0.0$

Actually other AO stars are used but Vega is always very close to 0.00

Photometric systems are defined in such a way that $\mathrm{m}=0$ for Vega (or close to 0)

SDSS Filters and Reference Spectrum

Absolute fluxes (meaning fluxes in physical units; so

 there are not related to absolute magnitudes!). Below the fluxes for $m=0$ in several, systemsTable A2. Effective wavelengths (for an A0 star), absolute fluxes (corresponding to zero magnitude) and zeropoint magnitudes for the UBVRI JHKL Cousins-Glass-Johnson system

Astron. Astrophys. 333, 231-250 (1998)
Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for \mathbf{O} - \mathbf{M} stars ${ }^{\star}$

Absolute fluxes

$m_{1}-m_{2}=-2,5 \log \left(f_{1} / f_{2}\right)$
For $m_{2}=0$ use fluxes f_{λ} from last table:

$$
\begin{aligned}
& f_{1}=f_{\lambda} 10^{m_{1} /(-2,5)} \\
& f=f_{\lambda} 10^{-0,4 m}
\end{aligned}
$$

Example, for Vega $\mathrm{V}=0 \rightarrow$ the flux received on Earth:
$f_{V}=363,1 \times 10^{-11} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$

The use of genetic algorithms to model protoplanetary dises

Mon. Not. R. Astron. Soc. 382, 1707-1718 (2007)
Annibal Hetem, $\mathrm{Jr}^{1 \star}$ and Jane Gregorio-Hetem ${ }^{\star}$
${ }^{1}$ Fundação Santo André FAFIL, Av. Príncipe de Galles, 821, Santo André, SP Brazil
${ }^{2}$ Universidade de São Paulo IAG-USP, Rua do Matão, 1226, São Paulo, SP Brazil

Globular cluster ages

M92

VandenBerg (2000)

Other photometric systems

Bessell 2005, ARA\&A

Other photometric systems

The terrestrial atmospheric transmission of a model is shown

Bessell

 2005, ARA\&A

Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for \mathbf{O} - \mathbf{M} stars ${ }^{\star}$

m.s. Bessell ${ }^{1}$, F. Castelli' ${ }^{2}$, and B. Plez $3^{3,4} \quad$ Astron. Astrophys. 333, 231-250 (1998)

Temperature calibrations

Table A3. Observed and model magnitudes and colors for the Sun and a mean solar analog

	V	U-B	B-V	V-R	V-I	V-K	J-K	H-K	Ref
Sun	-26.76								Stebbins \& Kron 1957
Sun_ref	-26.75	0.128	0.649	0.370	0.726	1.511	0.372	0.039	Colina et al. 1996
Analog		0.185	0.652	0.355	0.692	1.50	0.38	0.045	Cayrel de Strobel 1996; Table 6
Model	-26.77	0.135	0.679	0.367	0.725	1.524	0.373	0.041	SUN-OVER
Model	-26.77	0.145	0.667	0.361	0.715	1.524	0.376	0.032	SUN-NOVER

F, G, K dwarf stars

Astronomy Astrophysics

An absolutely calibrated $T_{\text {eff }}$ scale from the infrared flux method Dwarfs and subgiants ${ }^{\star}$

Fig. 14. Upper panels: empirical colour-temperature-metallicity calibrations in the metallicity bins $-0.5<[\mathrm{Fe} / \mathrm{H}] \leq 0.5$ (filled diamonds), $-1.5<[\mathrm{Fe} / \mathrm{H}] \leq-0.5$ (upward triangles), $-2.5<[\mathrm{Fe} / \mathrm{H}] \leq-1.5$ (downward triangles) and $[\mathrm{Fe} / \mathrm{H}] \leq-2.5$ (open circles). Open squares are for the hyper metal-poor stars HE0233-0343 and HE1327-2326. Lower panels: residual of the fit as function of metallicity. For the two hyper-metal-poor stars, the residual is with respect to the fit at $[\mathrm{Fe} / \mathrm{H}]=-3.5$.

Effective temperature of M dwarfs

Mon. Not. R. Astron. Soc. 389, 585-607 (2008)

M dwarfs: effective temperatures, radii and metallicities

Luca Casagrande, ${ }^{1 \star}$ Chris Flynn ${ }^{1}$ and Michael Bessell ${ }^{2}$

9. Colour- $T_{\text {eff }}$ plots in different bands for our M dwarfs. Overplotted are the prediction from the Phoenix models (solid and dashed lines) for two nt metallicities which roughly bracket our sample of stars. Also shown for comparison the prediction from the Castelli \& Kurucz (2003) models for retallicity (dotted line). Squares in the $T_{\text {eff }}$ versus $V-I_{\mathrm{C}}$ plot are from the temperature scale of Reid \& Hawley (2005).

Photometric systems of intermediate bands

(b-y): temperature band $\quad u \quad v \quad b \quad y \quad H_{\beta n} \quad H_{\beta w} \quad \mathbf{c}_{1}=(\mathbf{u}-\mathbf{v})-(\mathbf{v}-\mathbf{b})$: Balmer disc. $\lambda_{\text {peak }}(\AA) 350041104670547048594890 \mathbf{m}_{\mathbf{1}}=(\mathrm{v}-\mathrm{b})-(\mathrm{b}-\mathrm{y})$: metallicity $\begin{array}{lllllll}1 / 2 \Delta \lambda & (\AA) & 300 & 190 & 180 & 230 & 30\end{array} 145$ Edvardsson, B.

Fig. 1. The $u v b y-H \beta$ transmission functions of the standard systems plotted as a function of wavelength. As a comparison, the flux (per Ångström unit) of a model with $T_{\text {eff }}=6000 \mathrm{~K}, \log g=4.0$ and $[\mathrm{Me} / \mathrm{H}]=0.0$ is plotted on an arbitrary flux scale.

ASTROPHYSICA NORVEGICA
1966, Ap. Norveiga 9, 333
ON THE CHEMICAL COMPOSITION AND KINEMATICS of disc high-velocity stars of the main sequence*
by Bengt Strömgren
Hyades
indicates the difference in metal-hydrogen ratio of the star in question in comparison
 relative to that of the Hyades stars.
For the main-sequence F8-G2 stars investigated by Wallerstein [6] there is a close 1 correlation between $\Delta \mathrm{m}_{1}$ and the Fe / H ratio. Following Wallerstein we define

$$
\left[\frac{\mathrm{Fe}}{\mathrm{H}}\right]=\log \left(\frac{\text { abundance of } \mathrm{Fe}}{\text { abundance of } \mathrm{H}}\right)_{\text {star }}-\log \left(\frac{\text { abundance of } \mathrm{Fe}}{\text { abundance of } \mathrm{H}}\right)_{\mathrm{sun}}
$$

It has been found (cf. [20]) that the Wallerstein $[\mathrm{Fe} / \mathrm{H}]$ values for main-sequence stars around spectral class G0 are well represented by a linear relation

$$
\left[\frac{\mathrm{Fe}}{\mathrm{H}}\right]=0.3-12 \cdot \Delta \mathrm{~m}_{1}
$$

and that $[\mathrm{Fe} / \mathrm{H}]$ can be predicted from $\Delta \mathrm{m}_{1}$ with an accuracy of about 0.1 ($\mathrm{\rho}$. e.) for the category of stars in question.
H. Bond (1970, ApJS 22, 117): [Fe/H] = 0.16-13.6 $\Delta \mathrm{m}_{1}$

$[\mathrm{Fe} / \mathrm{H}]_{\text {uvby }}$: Schuster \& Nissen 1984

 Schuster \& Nissen 1984 (A\&A 221, 65):116 stars, $-2.6<[\mathrm{Fe} / \mathrm{H}]<+0.4$
$0.37<(b-y)<0.59,0.03<m_{1}<0.57,0.10<c_{1}<0.47$
$[\mathrm{Fe} / \mathrm{H}]=-2.0965+22.45 \mathrm{~m}_{1}-53.8 \mathrm{~m}_{1}{ }^{2}-62.04 \mathrm{~m}_{1}(\mathrm{~b}-\mathrm{y})+$
$145.5 m_{1}{ }^{2}(b-y)+\left[85.1 m_{1}-13.8 c_{1}-137.2 m_{1}{ }^{2}\right] c_{1}(s=0.16 \mathrm{dex})$
[Fe/H] ${ }_{\text {uvby }}$: Ramírez \& Meléndez 2005a

1. For $0.19 \leq(b-y)<0.35$, with $\sigma=0.17$ dex,
$[\mathrm{Fe} / \mathrm{H}]=-4.29-66.0 m_{1}+444.2 m_{1}(b-y)-782.4 m_{1}(b-y)^{2}$

$$
\begin{equation*}
+\left(0.966-37.8 m_{1}-1.707 c_{1}\right) \log \eta \tag{6}
\end{equation*}
$$

where $\eta=m_{1}-\left[0.40-3.0(b-y)+5.6(b-y)^{2}\right]$.
2. For $0.35 \leq(b-y)<0.50$, with $\sigma=0.13$ dex,

$$
\begin{aligned}
{[\mathrm{Fe} / \mathrm{H}]=} & -3.864+48.6 m_{1}-108.5 m_{1}^{2} \\
& -85.2 m_{1}(b-y)+190.6 m_{1}^{2}(b-y) \\
& +\left[15.7 m_{1}-11.1 c_{1}+17.7(b-y)\right] c_{1} .
\end{aligned}
$$

3. For $0.50 \leq(b-y)_{0} \leq 0.80$, with $\sigma=0.15 \mathrm{dex}$, $[\mathrm{Fe} / \mathrm{H}]=-2.63+26.0 m_{1}-41.3 m_{1}^{2}-45.4 m_{1}(b-y)$

$$
\begin{equation*}
+74.0 m_{1}^{2}(b-y)+17.0 m_{1} c_{1} \tag{8}
\end{equation*}
$$

H. J. Rocha-Pinto and W. J. Maciel
Instituto Astronômico e Geofisico, Av. Miguel Stefano 4200, 04301-904 São Paulo, Brazil

165 citations (29/3/2018)
 : dwarfs 455

IIgure 2. Metallicity distribution of 287 dwarf stars with spectral types a the range G0 - G9 (continuous line), and 231 dwarfs of spectral ypes G2-G9 (squares).

Figure 3. Abundances as a function of the spectral type (dots), and mean values for each type (squares). Stars of types G8 and G9 are merged in the same bin.
bias in the metallicity distribution, as was shown by SommerLarsen (1991). Since older stars generally have lower metallicities and larger scale heights relative to the galactic plane, we expect their relative number to be artificially reduced by the limitation of our sample within 25 pc of the Sun. To solve this problem, we have adopted the correction procedure introduced by Sommer-Larsen (1991), who defined a weight

Discovering planets with photometry

The Astrophysical Journal, 529:L41-L44, 2000 January 20

© 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A TRANSITING " 51 PEG-LIKE" PLANET ${ }^{1}$

Gregory W. Henry, ${ }^{2}$ Geoffrey W. Marcy, ${ }^{3}$ R. Paul Butler, ${ }^{4}$ and Steven S. Vogt ${ }^{5}$ Received 1999 November 18; accepted 1999 December 3; published 1999 December 16

FIg. 3.-Photometric observations of HD 209458 from the night of 1999 lovember 7 UT showing ingress of the planetary transit. The measured transit uepth is 0.017 ± 0.002 mag or $1.58 \% \pm 0.18 \%$. The error bar shows the time of inferior conjunction and its uncertainty predicted from the radial velocities in this Letter.

Finding exoplanets: Transits

 HD 209458

The Astrophysical Journal, 529:L45-L48, 2000 January 20

Detection of Planetary Transits Across a Sun-like Star

 David Charbonneau , $, 2,2$ Timothy M. Brown , ${ }_{2}^{2}$ David W. Latham,,$_{-}^{1}$ and Michel Mayor ${ }_{-}^{3}$
Finding exoplanets: Transits HD 209458

Figure 1.1 Eclipse of HD 209458 by its low-mass, presumed planetary, companion. The light curve has been combined from four separate recordings in April and May 2000 using the Imaging Spectrograph of the Hubble Space Telescope integrating over a yellow-orange region of the spectrum. Individual points are accurate to an estimated 1 part in 10000 . (From T. M. Brown et al., 2001.)

Transits at OPD/LNA Detecting known exoplanets

WASP104

Light curves by Léo dos Santos (IAG/USP), 60cm (IAG) telescope

WASP19

Transit Signature of a Multiple-Planet System

Planets can be distinguished by:

- Different periods
- Different depths
- Different durations

Interface electronics

Nortb

 Amence
Narrow band filters

Restricted to a very narrow spectral range (sometimes just 1 line), but also the nearby continuum is measured

Spectrum of Orion Nebula

Example

Andromeda in narrow filters in $\mathrm{H} \alpha$ and continuum

Example

Andromeda in $\mathrm{H} \alpha$ filter (continuum subtracted)

