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ABSTRACT
An algorithm for parametric elementary integration over dif-
ferential fields constructed by a differentially transcendental
extension is given. It extends current versions of Risch’s al-
gorithm to this setting and is based on some first ideas of
Graham H. Campbell transferring his method to more for-
mal grounds and making it parametric, which allows to com-
pute relations among definite integrals. Apart from differen-
tially transcendental functions, such as the gamma function
or the zeta function, also unspecified functions and certain
families of iterated integrals such as the polylogarithms can
be modeled in such differential fields.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms, Theory

Keywords
Symbolic Integration; Parametric Elementary Integration;
Differentially Transcendental Functions; Differential Fields

1. INTRODUCTION
Among the many approaches to compute integrals in closed

from we take the differential algebra approach using differ-
ential fields. The first complete algorithm for finding ele-
mentary integrals of a class of transcendental functions was
published by Risch [10] and deals with integration of elemen-
tary functions. Later, this was generalized to other types of
integrands, see [2, 9] and references therein. Given an el-
ement of a suitable differential field these algorithms look
for an antiderivative in elementary extensions of that field.
Often such algorithms consider an integrand depending lin-
early on parameters as in the following problem.
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Problem 1 (parametric elementary integration).
Given a differential field (F,D) and f0, . . . , fm ∈ F , com-
pute c1, . . . , cn ∈ Cm+1, where C := Const(F ), and corre-
sponding g1, . . . , gn from some elementary extension of (F,D)
such that

Dgj = (f0, . . . , fm) · cj

for all j and {c1, . . . , cn} is a basis of the C-vector space of
all c ∈ Cm+1 for which (f0, . . . , fm) · c has an elementary
integral over (F,D).

Parametric integration is important for definite integra-
tion as on an interval (a, b) a relation of the form

c0f0(x) + · · ·+ cmfm(x) = g′(x),

where the ci do not depend on x, yields a linear relation for
the corresponding definite integrals

c0

∫ b

a

f0(x) dx+ · · ·+ cm

∫ b

a

fm(x) dx = g(b)− g(a).

For more on definite integration based on this principle see
e.g. [1, 9] and references therein. Note that above formula-
tion of the problem requires finding all choices for the pa-
rameters giving rise to an elementary integral.

Typically the field (F,D) is generated by functions satisfy-
ing first-order differential equations of certain forms, mostly
linear but not exclusively. In strong contrast to this, in this
paper we consider differential fields (F,D) = (K〈t〉, D) gen-
erated from some underlying differential field (K,D) by ad-
joining a generator t such that all derivatives t,Dt,D2t, . . .
are algebraically independent over K, i.e., t is differentially
transcendental over (K,D). As simple example we could
choose (K,D) = (Q(x), d

dx
), then t differentially transcen-

dental over (K,D) can represent, for example, the gamma
function Γ(x), the digamma function ψ(x), or the Riemann
zeta function ζ(x) as those functions do not satisfy any alge-
braic differential equation with rational function coefficients.
For other functions with this property see [8] for example.
A differentially transcendental t may also be regarded as
differential indeterminate or unspecified function, which is
what was informally considered by Campbell [3] for a single
integrand, i.e. in the non-parametric case. We also note that
certain families of iterated integrals, such as the polyloga-
rithms Li2(x),Li3(x), . . . , are such that the generic element
of the family is differentially transcendental. Hence an inte-
gral like ∫

Lin−2(x)Lin(x)

xLin−1(x)2
dx = ln(x)− Lin(x)

Lin−1(x)
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with symbolic n can be obtained in the same framework, for
example.

We carefully analyze the problem in the language of dif-
ferential fields which leads to a new subproblem, see Prob-
lem 11, that we solve. Our algorithm, summarized as Algo-
rithm 3, solves the parametric elementary integration prob-
lem over differential fields (K〈t〉, D), where t is differentially
transcendental over (K,D). Note that an algorithm for this
type of field extensions can also be used to at least heuris-
tically treat any given function to which no other algorithm
applies, even if the function satisfies some algebraic differen-
tial equation with coefficients from K, it just may not find
all solutions in that case.

An analogous problem for summation of unspecified se-
quences was treated by Kauers and Schneider [5, 6].

In Section 2 we recall the definitions used in this paper,
give some properties of the notions used, and introduce a
flexible way of representing elements of the fields dealt with.
Then, in Section 3 we prove a refined version of Liouville’s
theorem, which will be crucial for the algorithm in Section 4.
Section 5 deals with representing families of iterated inte-
grals and a simple sufficient condition is given for algebraic
independence of their members. Finally, Section 6 presents
some examples of various applications of the algorithm.

Parts of the material presented in this paper were already
included in the author’s PhD thesis [9]. All fields are im-
plicitly understood to be of characteristic 0.

2. DEFINITIONS AND BASIC PROPERTIES
We will write coeff(p, xi11 · · ·xinn ), explicitly keeping fac-

tors of the form x0
j in case ij = 0, for the coefficient of

xi11 · · ·xinn of p as a polynomial in x1, . . . , xn. Let a and b
be univariate polynomials, then we write a÷ b and a mod b
for their quotient and remainder (the variable will be clear
from the context). We sometimes write linear combina-
tions as products of vectors (f0, . . . , fm) · c =

∑m
i=0 cifi.

By (v1, . . . ,vn) we denote a matrix given by its column vec-
tors. When extending a differential field (K,D) by adjoining
new elements x1, . . . , xn we need to distinguish between the
field K(x1, . . . , xn) they generate and the differential field
K〈x1, . . . , xn〉 = K(x1, . . . , xn, Dx1, . . . , Dxn, D

2x1, . . . ) gen-
erated by those elements.

2.1 Elementary Extensions
We briefly recall the precise definition of the type of inte-

grals we want to compute.

Definition 2. Let (F,D) be a differential field and let
(E,D) = (F (s1, . . . , sn), D) be a differential field extension.
Then (E,D) is called an elementary extension of (F,D), if
each si is elementary over (Ei−1, D) := (F (s1, . . . , si−1), D),
or more explicitly if each si

1. is a logarithm over (Ei−1, D), i.e. there exists a ∈
Ei−1 such that Dsi = Da

a
, or

2. is an exponential over (Ei−1, D), i.e. there exists a ∈
Ei−1 such that Dsi

si
= Da, or

3. is algebraic over Ei−1.

Definition 3. Let (F,D) be a differential field and f ∈
F . Then we say that f has an elementary integral over
(F,D) if there exist an elementary extension (E,D) of (F,D)
and g ∈ E such that Dg = f .

2.2 Differentially Transcendental Extensions

Definition 4. Let (F,D) be a differential field, (K,D) a
differential subfield, and t ∈ F . If all derivatives t,Dt,D2t, . . .
are algebraically independent over K, then t is differentially
transcendental over (K,D).

We will, however, consider a more general way of repre-
senting the elements of the field K〈t〉 = K(t,Dt,D2t, . . . )
by choosing t0, t1, . . . ∈ K〈t〉 such that

t0 = t (1)

Dtn = antn+1 + bn (2)

with an, bn ∈ K(t0, . . . , tn) for n ∈ N. Then, the follow-
ing lemma shows that automatically an 6= 0 and the equal-
ity K(t,Dt, . . . , Dnt) = K(t0, . . . , tn) are satisfied for all
n ∈ N. So we will mainly consider K〈t〉 as K(t0, t1, . . . ).
For instance, the flexibility in the representation introduced
by (2) allows to represent the polylogarithms Lim(x) for
symbolic m in a convenient way. If (K,D) = (C(x), d

dx
)

and an = 1
x

and bn = 0 in (2), then tn corresponds to
Lim−n(x) and functions involving Lim(x),Lim−1(x), . . . are
directly represented in terms of these functions instead of
Lim(x),Li′m(x), . . . , see also Section 5.

Lemma 5. Let t be differentially transcendental over (K,D)
and let t0, t1, . . . ∈ K〈t〉 such that (1) and (2). Then

1. an 6= 0 for all n ∈ N and

2. for all n ∈ N there are ãn, b̃n ∈ K(t,Dt, . . . , Dnt) such

that tn+1 = ãnD
n+1t+ b̃n and ãn 6= 0.

Proof. We prove both statements in parallel by induc-
tion, for which we artificially include the case n = −1.
For n = −1 we define a−1 := 1, ã−1 := 1, and b̃−1 := 0, then
trivially a−1, ã−1 ∈ K∗ and t0 = ã−1t+ b̃−1 by definition.
For n ∈ N we assume that for all i ∈ {−1, 0, . . . , n−1} there

are ãi, b̃i ∈ K(t,Dt, . . . , Dit) such that ti+1 = ãiD
i+1t + b̃i

and ãi 6= 0. Then, from the assumptions above we obtain
that antn+1 = Dtn − bn = D(ãn−1D

nt + b̃n−1) − bn =

ãn−1D
n+1t+ (Dãn−1)Dnt+Db̃n−1 − bn. If we had an = 0,

then this and ãn−1 6= 0 would imply that Dn+1t equals
(Dãn−1)Dnt+Db̃n−1−bn

−ãn−1
. The latter is in K(t, . . . , Dnt) by in-

duction hypothesis, which would be in contradiction to the
algebraic independence of t, . . . , Dn+1t over K. Hence, an 6=
0 and we set ãn :=

ãn−1

an
and b̃n :=

(Dãn−1)Dnt+Db̃n−1−bn
an

,

which both are in K(t, . . . , Dnt) by the induction hypothe-
sis.

The second statement of the lemma above has some im-
portant immediate consequences, which we emphasize by
stating the following corollary. The proof is trivial and so
we omit it.

Corollary 6. Let t be differentially transcendental over
(K,D) and let t0, t1, . . . ∈ K〈t〉 such that (1) and (2). Then

1. t0, t1, . . . are algebraically independent over K, and

2. K(t,Dt, . . . , Dnt) = K(t0, . . . , tn) for all n ∈ N.

In the following we will formalize the ideas of Camp-
bell [3] in this framework. In this context we define the
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coefficient lifting κD : K[t0, t1, . . . ] → K[t0, t1, . . . ] of D
by κD(

∑
α fαt

α) :=
∑
α(Dfα)tα, where we use multiindex

notation for brevity, and extend it to a derivation κD on
K(t0, t1, . . . ) in the natural way by the quotient rule. It is
easy to see that

Df = κDf +

∞∑
k=0

∂f

∂tk
Dtk. (3)

Note that the sum contains only finitely many nonzero sum-
mands since ∂f

∂tk
= 0 from some point on. Generalizing the

definition of κD above, for each n ∈ N we define the deriva-
tion κD,n on K(t0, t1, . . . ) by

κD,nf := κDf +

n−1∑
k=0

∂f

∂tk
Dtk. (4)

These derivations obviously obey κD,nf+ ∂f
∂tn

Dtn = κD,n+1f

for f ∈ K(t0, t1, . . . ) with κD,0 = κD. For f ∈ K(t0, . . . , tn−1)
we have in particular κD,nf = Df . An important measure
on the elements of K(t0, t1, . . . ) is the highest index of any
of the generators needed to represent the particular element
of the field.

Definition 7. Let t be differentially transcendental over
(K,D), then we define the differential degree of f ∈ K〈t〉
by

ddegt(f) :=

{
min

{
k ∈ N

∣∣ f ∈ K(t, . . . , Dkt)
}

if f 6∈ K
−∞ if f ∈ K.

Note that for t0, t1, . . . ∈ K〈t〉 with (1) and (2) the above
corollary implies

ddegt(f) =

{
min {k ∈ N | f ∈ K(t0, . . . , tk)} if f 6∈ K
−∞ if f ∈ K.

So we can say that ∂f
∂tk

= 0 for k > ddegt(f) in (3). The

differential degree obeys the following properties with re-
spect to the operations of a differential field. For f, g ∈
K(t0, t1, . . . )

∗ we have

ddegt(f + g) ≤ max(ddegt(f), ddegt(g)),

ddegt(fg) ≤ max(ddegt(f), ddegt(g)),

ddegt(1/f) = ddegt(f),

ddegt(Df) = ddegt(f) + 1

with equality in the first two relations if ddegt(f) 6= ddegt(g).
In particular, the last property implies that ConstD(K〈t〉) =
ConstD(K). Furthermore, the following corollary highlights
important properties implied by (2) and (3).

Corollary 8. Let t be differentially transcendental over
(K,D), let t0, t1, . . . ∈ K〈t〉 such that (1) and (2), and let
F := K(t0, t1, . . . ). Then ConstD(F ) = ConstD(K) and for
all f ∈ F and any k ∈ N with k ≥ ddegt(f) there exist
a, b ∈ K(t0, . . . , tk) with a = ak

∂f
∂tk

and

Df = atk+1 + b.

3. LIOUVILLE’S THEOREM
Based on the properties stated in the previous section we

are now ready to prove a refinement of Liouville’s theorem
for this situation. It was not made explicit in [3] which type

of expressions are dealt with exactly. Above we gave one
interpretation in terms of differential fields and the following
results present the corresponding precise details of the ideas
from [3].

Theorem 9. Let t be differentially transcendental over
(K,D) and let t0, t1, . . . ∈ K〈t〉 such that (1) and (2). Let
f ∈ F := K(t0, t1, . . . ) such that f has an elementary inte-
gral over (F,D) and let k := ddegt(f). Then there are v ∈
K(t0, . . . , tk−1), c1, . . . , cn ∈ ConstD(K), and u1, . . . , un ∈
K(c1, . . . , cn, t0, . . . , tk−1)∗ such that

f = Dv +

n∑
i=1

ci
Dui
ui

. (5)

If k ≥ 1, we can also write this as

f = ak−1

(
∂v

∂tk−1
+

n∑
i=1

ci

∂ui
∂tk−1

ui

)
tk + b

for some b ∈ K(t0, . . . , tk−1).

Proof. By Liouville’s theorem (e.g. [2, Thm 5.5.3]) we

know that there are v ∈ F , c1, . . . , cn ∈ ConstD(F ), and
u1, . . . , un ∈ F (c1, . . . , cn)∗ such that (5) and by Corollary 8

we deduce c1, . . . , cn ∈ ConstD(K). Define

m := max(ddegt(v),ddegt(u1), . . . , ddegt(un)).

If m < 0, then f ∈ K and the statement is trivially ful-
filled. So assume m ≥ 0 now and assume without loss of
generality that v, c1, . . . , cn, u1, . . . , un are chosen such that
u1, . . . , un are pairwise relatively prime polynomials from
K(c1, . . . , cn, t0, . . . , tm−1)[tm]. Then, applying Corollary 8
to each summand in (5) implies that

f = am

(
∂v

∂tm
+

n∑
i=1

ci

∂ui
∂tm

ui

)
tm+1 + b

for some b ∈ K(c1, . . . , cn, t0, . . . , tm) and by comparing
the differential degree of both sides we obtain k ≤ m + 1.
Since by Corollary 6 t0, t1, . . . are algebraically indepen-
dent over K they are also algebraically independent over
K(c1, . . . , cn). So we even have b ∈ K(t0, . . . , tm) by com-
paring the coefficient of t0m+1. Next, Lemma 5 implies that
am 6= 0. If we had m > k− 1, then by comparing the coeffi-

cient of tm+1 we could conclude f̃ := ∂v
∂tm

+
n∑
i=1

ci
∂ui
∂tm
ui

= 0.

From this we would obtain max(ddegt(u1), . . . , ddegt(un)) <
m by applying Lemma 5.6.1 from [2] in the differential field
(K(t0, . . . , tm), ∂

∂tm
) and noting that an irreducible polyno-

mial p ∈ K(c1, . . . , cn, t0, . . . , tm−1)[tm] can divide at most
one of u1, . . . , un as they are pairwise relatively prime. There-
fore, the definitions of m and f̃ would imply ddegt(v) = m

and f̃ = ∂v
∂tm

, respectively, which would give f̃ 6= 0 al-

together in contradiction to f̃ = 0. Hence we have m =
k − 1.

In particular, for the special case k ≤ 0 this theorem con-
tains analogs of Corollary 5.11.1 from [2] and Theorem 3.15
from [9], which we make explicit in the following corollary.

Corollary 10. Let t be differentially transcendental over
(K,D), let t0, t1, . . . ∈ K〈t〉 with (1) and (2) and let F :=
K(t0, t1, . . . ). If f ∈ K(t0) has an elementary integral over
(F,D), then f ∈ K. If f ∈ K has an elementary integral
over (F,D), then it has an elementary integral over (K,D).
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4. ALGORITHM
In the following we will assume that the differential field

(K,D) is computable, i.e., that we can effectively compute
the basic arithmetic operations as well as derivation and
zero-testing. Furthermore, with C := ConstD(K) we will
need to compute C-vector space bases of the constant solu-
tions {c ∈ Cn | A · c = 0} of linear systems with coefficients
in K, i.e., ker(A) ∩ Cn for A ∈ Km×n. This task can be
reduced to the solution of linear systems with coefficients
in C by an algorithm of Bronstein [2, Lemma 7.1.2], which
computes B ∈ Cm̃×n such that ker(A) ∩ Cn = ker(B).

4.1 Computing the Logarithmic Part
Theorem 9 suggests that in order to compute elementary

integrals over (K(t0, t1, . . . ), D) we should look at the fol-
lowing new subproblem, which was not part of [3]. The
difficulty of this problem is related to the computation of
the logarithmic part of the integral and will be taken care
of by Algorithm 1. Based on this algorithm it is straightfor-
ward to solve the full subproblem, Algorithm 2 shows how
this can be done.

Problem 11. Given: t differentially transcendental over
(K,D), t0, t1, . . . ∈ K〈t〉 with (1) and (2), k ∈ N+, and
f0, . . . , fm ∈ K(t0, . . . , tk−1).

Find: a basis c1, . . . , cn ∈ Cm+1, where C := ConstD(K),
of the C-vector space of all c ∈ Cm+1 such that there ex-
ist v ∈ K(t0, . . . , tk−1), d1, . . . , dl ∈ C, and u1, . . . , ul ∈
K(d1, . . . , dl, t0, . . . , tk−1)∗ with

(f0, . . . , fm) · c =
∂v

∂tk−1
+

l∑
i=1

di

∂ui
∂tk−1

ui

as well as corresponding vj ∈ K(t0, . . . , tk−1), dj,1, . . . , dj,lj ∈
C, and uj,1, . . . , uj,lj ∈ K(dj,1, . . . , dj,lj , t0, . . . , tk−1)∗ for
each j ∈ {1, . . . , n}.

At first glance this problem may look like it was just para-
metric elementary integration over (K(t0, . . . , tk−1), ∂

∂tk−1
)

and we could solve it easily by well-known algorithms, but
there is a subtle difference. Observe that the above formula-
tion requires linear combinations with coefficients belonging
to C = ConstD(K) instead of Const ∂

∂tk−1

(K(t0, . . . , tk−1)) =

K(t0, . . . , tk−2). Furthermore, instead of allowing residues

di ∈ K(t0, . . . , tk−2) they are restricted to di ∈ ConstD(K)
above. Because of these requirements Problem 11 cannot
be solved directly by standard algorithms. However, it can
be solved algorithmically as follows by adapting the ideas of
Theorem 3.9 from [9] in order to make use of both deriva-
tions D as well as ∂

∂tk−1
. In the proof, we will use the

following formula, implied by Lemma 3.2.2 from [2], where
p ∈ K(t0, . . . , tn)[z] and f is in some differential field exten-
sion of (K(t0, t1, . . . ), D).

D(p(f)) =

degz(p)∑
i=0

(κD,n+1 coeff(p, zi))f i +
∂p

∂z
(f)Df (6)

Theorem 12. Let t be differentially transcendental over
(K,D), let t0, t1, . . . ∈ K〈t〉 such that (1) and (2), and let

C := ConstD(K). Let k ∈ N+, let K̃ := K(t0, . . . , tk−2), let

a0, . . . , am, b ∈ K̃[tk−1] with b 6= 0 and gcd(b, ∂b
∂tk−1

) = 1,

and let z be an indeterminate. Then by Algorithm 1 we can
compute linear independent c1, . . . , cn ∈ Cm+1 such that:

1. If c ∈ Cm+1 is such that there exist v ∈ K̃(tk−1),

d1, . . . , dl ∈ C, and u1, . . . , ul ∈ K̃(d1, . . . , dl, tk−1)∗

with

∂v

∂tk−1
+

l∑
i=1

di

∂ui
∂tk−1

ui
=

(a0, . . . , am) · c
b

,

then c ∈ spanC{c1, . . . , cn}.

2. For all j ∈ {1, . . . , n} there exists r ∈ C[z] such that

(a0, . . . , am) · cj
b

−
∑

r(α)=0

α

∂gα
∂tk−1

gα
∈ K̃[tk−1],

where for all α ∈ C with r(α) = 0 we define gα :=

gcd((a0, . . . , am) · cj − α ∂b
∂tk−1

, b)) ∈ K̃[tk−1].

Algorithm 1 Restrict residues as specified in Theorem 12

1. Let ã0, . . . , ãm, b̃ ∈ K̃[z] such that ãi(tk−1) = ai and

b̃(tk−1) = b

2. Let b̃j := coeff(b̃, zj) for all j ∈ {0, . . . , degz(b̃)}
3. For all i ∈ {0, . . . ,m} compute pi ∈ K̃[z] with

degz(pi) < degz(b̃) such that

ãi ≡ pi
∂b̃

∂z
(mod b̃)

4. For all i ∈ {0, . . . ,m} and l ∈ {0, 1} compute p̃i,l ∈ K̃[z]

with degz(p̃i,l) < degz(b̃) such that

∂pi
∂z
·
degz(b̃)∑
j=0

coeff(κD,k−1b̃j , t
l
k−1)zj ≡ p̃i,l

∂b̃

∂z
(mod b̃)

5. For all i ∈ {0, . . . ,m} compute

qi :=

degz(pi)∑
j=0

(κD,k−1 coeff(pi, z
j))zj − (p̃i,1tk−1 + p̃i,0)

6. Construct a matrix A ∈ K̃2 degz(b̃)×(m+1) by

A :=

(
coeff(qi, t

0
k−1z

j))j,i
coeff(qi, t

1
k−1z

j))j,i

)
,

where j ∈ {0, . . . , deg(b̃)−1} and i ∈ {0, . . . ,m}
7. Compute a C-vector space basis c1, . . . , cn ∈ Cm+1 of

ker(A) ∩ Cm+1

Proof. First, we prove that the steps of Algorithm 1
can indeed be executed. Since gcd(b, ∂b

∂tk−1
) = 1 implies

gcd(b̃, ∂b̃
∂z

) = 1 the pi and p̃i,l defined in Steps 3 and 4 exist
and we apply the half-extended (i.e. computing one Bézout

coefficient but not both) Euclidean algorithm in K̃[z] for
computing them. Step 7 can be reduced to computing a
basis of the nullspace of a matrix with entries in C, either by
exploiting the differential structure provided by D as done
in Lemma 7.1.2 from [2], or by exploiting knowledge of the

generators which generate the field K̃.
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Next, we want prove that q0, . . . , qm ∈ K̃[tk−1][z] satisfy
degz(qi) < degtk−1

(b) and

∀β ∈ K̃, b̃(β) = 0 : qi(β) = D

(
ãi(β)
∂b̃
∂z

(β)

)
(7)

for all i ∈ {0, . . . ,m}. By construction we have degz(qi) <

degz(b̃) = degtk−1
(b). For verifying (7) we take β ∈ K̃ such

that b̃(β) = 0 and obtain

pi(β) =
ãi(β)
∂b̃
∂z

(β)

from the definition of pi. From the definition of p̃i,0 and p̃i,1
by (4) and (6) we also get

p̃i,1(β)tk−1 + p̃i,0(β) =
∂pi
∂z

(β)·
∑degz(b̃)
j=0 (κD,k−1b̃j)β

j

∂b̃
∂z

(β)

=
∂pi
∂z

(β)
D(b̃(β))− ∂b̃

∂z
(β)·Dβ

∂b̃
∂z

(β)
= −∂pi

∂z
(β)·Dβ.

Therefore, using (4) and (6) again we obtain

qi(β) =

degz(pi)∑
j=0

(κD,k−1 coeff(pi, z
j))βj +

∂pi
∂z

(β)·Dβ

= D(pi(β)) = D

(
ãi(β)
∂b̃
∂z

(β)

)
.

Now let c ∈ Cm+1 be fixed and define q := (q0, . . . , qm) · c ∈
K̃[tk−1][z]. Then, by construction degz(q) < degz(b). The

roots of r := restk−1((a0, . . . , am) · c− z ∂b
∂tk−1

, b) ∈ K̃[z] are

those α ∈ K̃ such that there exists a β ∈ K̃ with b̃(β) = 0

and (ã0(β), . . . , ãm(β)) · c − α· ∂b̃
∂z

(β) = 0. Hence if β ∈ K̃
ranges over the roots of b then α = (a0(β),...,am(β))·c

∂b̃
∂z

(β)
ranges

over the roots of r. By (7) this implies

{q(β) | β ∈ K̃, b(β) = 0} = {Dα | α ∈ K̃, r(α) = 0}. (8)

For verifying the first part of the statement of the theorem
assume that there exist v ∈ K̃(tk−1), d1, . . . , dl ∈ C, and

u1, . . . , ul ∈ K̃(d1, . . . , dl, tk−1)∗ with ∂v
∂tk−1

+
∑l
i=1 di

∂ui
∂tk−1

ui
=

(a0,...,am)·c
b

. Let α ∈ K̃ be such that r(α) = 0. By Lemma 3.7

from [9] applied in K̃(d1, . . . , dl)[tk−1] there exists an irre-

ducible s ∈ K̃(d1, . . . , dl)[tk−1] such that the residue sat-

isfies ress(
(a0,...,am)·c

b
) = πs(

(a0,...,am)·c
∂b

∂tk−1

) = α. Here πs

denotes the canonical projection onto the residue field of
the valuation ring which is associated to s via the valua-
tion νs(f) = sup

{
ν ∈ Z

∣∣ gcd(den(fs−ν), s) = 1
}

. Hence

by Lemma 5.6.1 from [2] we obtain α = ress(
(a0,...,am)·c

b
) =∑

i diνs(ui) ∈ C. Therefore, we have that α ∈ C for all

roots of r, i.e., q(β) = 0 for all roots β ∈ K̃ of b̃ by

(8). Since b̃ is squarefree it has degz(b̃) distinct roots in

K̃ and it follows that q = 0. Consequently, by defini-
tion we have A · c = 0, i.e., c ∈ spanC{c1, . . . , cn} as re-
quired. For verifying the second part of the statement we
fix some j ∈ {1, . . . , n} and assume c = cj . Then q =

(1, z, . . . , zdegz(b̃)−1, tk−1, tk−1z, . . . , tk−1z
degz(b̃)−1) ·A ·cj =

0. So by (8) all roots α ∈ K of r lie in C. Therefore
r

lcz(r)
∈ C[z] and it fulfils the statement by Theorem 3.8.1

from [9].

Corollary 13. We can solve Problem 11.

Algorithm 2 Solve Problem 11

Abbreviate K̃ := K(t0, . . . , tk−2)

1. For all i ∈ {0, . . . ,m} compute gi ∈ K̃(tk−1) such that

hi := fi − ∂gi
∂tk−1

∈ K̃(tk−1) has squarefree denominator

(e.g. by Hermite reduction [2])

2. b := lcmtk−1(dentk−1(h0), . . . , dentk−1(hm)) ∈ K̃[tk−1]

3. Apply Algorithm 1 to k and h0b, . . . , hmb, b ∈ K̃[tk−1]
to obtain c1, . . . , cn ∈ Cm+1

4. For all j ∈ {1, . . . , n} compute dj,1, . . . , dj,lj ∈ C,

uj,1, . . . , uj,lj ∈ K̃(dj,1, . . . , dj,lj , tk−1)∗, pj ∈ K̃[tk−1]
such that

(h0, . . . , hm) · cj =
∂pj
∂tk−1

+

l∑
i=1

di

∂ui
∂tk−1

ui

(see [7, 4] for example)
5. For all j ∈ {1, . . . , n} compute vj := (g0, . . . , gm) ·cj+pj

4.2 Main Algorithm
The following theorem is the main result of this paper

showing that we can do parametric elementary integration
over (K(t0, t1, . . . ), D) provided we can do parametric ele-
mentary integration over (K,D). The corresponding algo-
rithm resembles the one stated in [3] and extends it to the
parametric version of the integration problem. Moreover,
by incorporating Algorithm 2, motivated by our Theorem 9,
non-integrability is detected at an earlier stage in some sit-
uations.

Theorem 14. Let t be differentially transcendental over
(K,D), let t0, t1, . . . ∈ K〈t〉 with (1) and (2) and let F :=
K(t0, t1, . . . ) and C := ConstD(F ). Assume we can solve
the parametric elementary integration problem over (K,D).
Then we can solve the parametric elementary integration
problem over (F,D) by Algorithm 3.

Proof. Note that t0, t1, . . . are algebraically independent
over K by Corollary 6 and C = Const(K) by Corollary 8.

First, we prove that the steps of Algorithm 3 can indeed
be executed. Step 3 can be computed by assumption. Steps
5 and 12 can be done by clearing the denominator

b := lcmtk (dentk (f0), . . . , dentk (fm))

and constructing the rows of A by coefficient extraction

(coeff(fib÷ b, tjk))i=0,...,m

for j ∈ {min(k+ 1, 2), . . . ,maxi(degt0(fib))− degt0(b)} and

(coeff(fib mod b, tjk))i=0,...,m

for j ∈ {0, . . . , degt0(b)−1}. Alternatively, we can construct
a matrix A based on partial fraction decomposition instead
of computing b. In Step 12 the entries of a matrix generated
that way are in K̃ and a matrix with entries in K can be
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Algorithm 3 Parametric elementary integration over dif-
ferentially transcendental extensions

Require: t differentially transcendental over (K,D),
t0, t1, . . . ∈ K〈t〉 with (1) and (2), F := K(t0, t1, . . . ),
C := ConstD(F ), and f0, . . . , fm ∈ F

Ensure: c1, . . . , cn ∈ Const(K)m+1 and g1, . . . , gn from
some elementary extension of (F,D) such that:

1. If (f0, . . . , fm)·c ∈ F has an elementary integral over
(F,D) for c ∈ Cm+1, then c ∈ spanC{c1, . . . , cn}.

2. ∀j ∈ {1, . . . , n} : Dgj = (f0, . . . , fm) · cj .

1. k := maxi(ddegt(fi))
2. if k < 0 then
3. Solve the parametric elementary integration problem

over (K,D) with f0, . . . , fm ∈ K
4. else if k = 0 then
5. Compute a matrix A ∈ Kl×(m+1) such that A · c = 0

is equivalent to (f0, . . . , fm) · c ∈ K for all c ∈ Cm+1

6. Compute a C-vector space basis c̄1, . . . , c̄n̄ ∈ Cm+1 of
ker(A) ∩ Cm+1

7. For all j ∈ {1, . . . , n̄} set f̃j := (f0, . . . , fm) · c̄j ∈ K
8. Apply Algorithm 3 recursively to f̃1, . . . , f̃n̄ ∈ K to

obtain some c̃1, . . . , c̃n ∈ Cn̄ and g1, . . . , gn from some
elementary extension of (K,D)

9. Compute (c1, . . . , cn) := (c̄1, . . . , c̄n̄) · (c̃1, . . . , c̃n)
10. else {i.e. k > 0}
11. Abbreviate K̃ := K(t0, . . . , tk−1)

12. Compute a matrix A ∈ Kl×(m+1) such that A · c = 0
is equivalent to (f0, . . . , fm) ·c ∈ K̃[tk] with degtk ≤ 1

for all c ∈ Km+1

13. Compute a C-vector space basis c̄1, . . . , c̄n̄ ∈ Cm+1

of ker(A) ∩ Cm+1

14. Set f̃j,1tk + f̃j,0 := (f0, . . . , fm) · c̄j with f̃j,0, f̃j,1 ∈ K̃
for all j ∈ {1, . . . , n̄}

15. Apply Algorithm 2 to k and
f̃1,1
ak−1

, . . . ,
f̃n̄,1
ak−1

∈ K̃ to

obtain c̃1, . . . , c̃ñ ∈ Cn̄ and corresponding vj , dj,i, uj,i
for j ∈ {1, . . . , ñ}

16. For j ∈ {1, . . . , ñ} set g̃j := vj +
∑lj
i=1 dj,i log(uj,i)

and f̃j := (f̃1,1tk + f̃1,0, . . . , f̃n̄,1tk + f̃n̄,0) · c̃j −Dg̃j
17. Apply Algorithm 3 recursively to f̃1, . . . , f̃ñ ∈ K̃ to

obtain some ĉ1, . . . , ĉn ∈ Cñ and ĝ1, . . . , ĝn from some
elementary extension of (F,D)

18. For j ∈ {1, . . . , n} set gj := (g̃1, . . . , g̃ñ) · ĉj + ĝj and
(c1, . . . , cn) := (c̄1, . . . , c̄n̄) · (c̃1, . . . , c̃ñ) · (ĉ1, . . . , ĉn)

19. end if

constructed from it by extracting appropriate coefficients.
The definition in Step 5 implies f̃j ∈ K in Step 7, similarly

we infer the existence of f̃j,0, f̃j,1 ∈ K̃ in Step 14.

Showing the algorithm terminates requires to show f̃j ∈ K̃
in Step 17. With Dg̃j = Dvj +

∑
i dj,i

Duj,i
uj,i

in Step 16 and

by Corollary 8 we can write f̃j as

(f̃1,1, . . . , f̃n̄,1) · c̃j − ak−1

 ∂vj
∂tk−1

+
∑
i

dj,i

∂uj,i
∂tk−1

uj,i

 tk+hj

for some hj ∈ K̃. Since we have
∂vj
∂tk−1

+
∑
i dj,i

∂uj,i
∂tk−1

uj,i
=

(f̃1,1,...,f̃n̄,1)·c̃j
ak−1

by Step 15, this implies f̃j = hj ∈ K̃.

We prove correctness by induction on k = maxi(ddegt(fi)).
If k < 0, the c1, . . . , cn ∈ Cm+1 and g1, . . . , gn obtained sat-
isfy the two properties by Corollary 10.
k = 0: For showing the first property we fix a c ∈ Cm+1 such
that f := (f0, . . . , fm) ·c ∈ K(t0) has an elementary integral
over (F,D). By Corollary 10 we have f ∈ K and hence by
construction of c̄1, . . . , c̄n̄ there exists a c̃ ∈ Cn̄ such that
c = (c̄1, . . . , c̄n̄) · c̃. Now, by invoking the case k < 0 we get
c̃ ∈ spanC{c̃1, . . . , c̃n} and therefore c ∈ spanC{c1, . . . , cn}.
The second property is verified easily by just plugging in the
definitions of gj and cj .
k > 0: In order to prove the first property we fix a c ∈ Cm+1

such that f := (f0, . . . , fm) · c ∈ K̃(tk) has an elementary

integral over (F,D). By Theorem 9 there are v, b ∈ K̃,

d1, . . . , dN ∈ C, and u1, . . . , uN ∈ K̃(d1, . . . , dN ) such that

f = ak−1

(
∂v

∂tk−1
+

N∑
i=1

di

∂ui
∂tk−1

ui

)
tk + b. Hence by construc-

tion of c̄1, . . . , c̄n̄ and c̃1, . . . , c̃ñ there is a ĉ ∈ Cñ such
that c = (c̄1, . . . , c̄n̄) · (c̃1, . . . , c̃ñ) · ĉ. Now, by f̃j ∈ K̃ we

have f − D((g̃1, . . . , g̃ñ) · ĉ) = (f̃1, . . . , f̃ñ) · ĉ ∈ K̃. So by
construction of ĉ1, . . . , ĉn we obtain c ∈ spanC{c1, . . . , cn}.
The second property is easily verified based on the construc-
tion.

5. FAMILIES OF ITERATED INTEGRALS
Now we will be concerned with representing functions de-

pending on an additional (discrete) variable. Let (F̃ ,D) be

a differential field and let (sk)k=1,2,... be a sequence in F̃ .
For representing sn for symbolic n we adapt the definitions
from difference fields, see [11, Section 2.5], to our setting.
Let (F,D) be a differential field containing the indetermi-
nate n in its constant field. Then elements t0, t1, . . . ∈ F
represent sn, sn−1, . . . for symbolic n, if there exists a dif-
ferential field monomorphism σ : (F,D)→ (F,D) and maps

ϕ1, ϕ2, . . . from F to F̃ with the following properties. One
should think of ϕj as evaluation at n = j.

1. σ(n) = n− 1 and σ(tk) = tk+1 for all k ∈ N.

2. ϕj(n) = j and ϕj(tk) = sj−k for all j, k ∈ N s.t. k < j.

3. For all f, g ∈ F there exists j0 ∈ N+ such that for all
j ≥ j0 we have

ϕj(f + g) = ϕj(f) + ϕj(g), ϕj(fg) = ϕj(f)ϕj(g),

ϕj(Df) = Dϕj(f), and ϕj+1(σ(f)) = ϕj(f).

These conditions imply that f 7→ (ϕ1(f), . . . ) is both a dif-
ferential ring monomorphism and a difference ring monomor-
phism from F into the ring of sequences F̃N/∼. The latter
is defined by considering two sequences equivalent iff they
differ only at finitely many entries and it is equipped with
componentwise addition, multiplication, and derivation as
well as with σ(f1, f2, . . . ) := (0, f1, f2, . . . ). Note that the
above properties in particular imply that ϕj(0) = 0 and
ϕj(1) = 1 from some point on. Since F is a field they imply
further that for all f ∈ F \ {0} there exists j0 such that
ϕj(f)ϕj(

1
f

) = 1 and hence ϕj(f) 6= 0 for all j ≥ j0. In other
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words, any relation among t0, t1, . . . corresponds to a rela-
tion among sn, sn−1, . . . that is valid for all n above some
lower bound and vice versa.

Now, let (K̃,D) be a differential subfield of (F̃ ,D) and
assume in particular that s1, s2, . . . are such that

Ds1 = ã0 (9)

Dsk = ãk−1sk−1 (10)

for k ≥ 2 and some ã0, ã1, . . . ∈ K̃∗. We want to repre-
sent sn for symbolic n by a differentially transcendental t
over (K,D). Therefore we set (F,D) = (K〈t〉, D) and re-

quire ϕj(K) ⊆ K̃. Following the considerations above, it
is also necessary that there is no algebraic relation among
sn, sn−1, . . . over K that is valid for all but possibly finitely
many values of n. This needs to be verified for a partic-
ular sequence (sk)k=1,2,... in some way. One way to do so
is to check the stronger condition that there is no algebraic
relation among s1, s2, . . . over K̃. This is by no means nec-
essary. Nevertheless, in the following we will give a criterion
to check the stronger condition provided the following addi-
tional assumption holds. Assume that for all i ∈ N+ there
exist bi,1, . . . , bi,i ∈ K̃ such that

bi,i = 1 (11)

Dbi,j = −ãjbi,j+1. (12)

This assumption seems rather restrictive, but it covers sev-
eral relevant cases as we will see below. First, it is important
to note that we have

bi,1ã0 = D

(
i∑

j=1

bi,jsj

)
. (13)

Next, we make use of the following theorem from differen-
tial algebra in order to obtain a criterion on the algebraic
independence of s1, s2, . . . over K̃.

Theorem 15. Let (K,D) be a differential field and de-
fine C := Const(K). Let w1, . . . , wn ∈ K such that no
non-trivial C-linear combination of them has an integral in
(K,D). Then any t1, . . . , tn with Dti = wi are algebraically
independent over K and Const(K(t1, . . . , tn)) = Const(K).

Letting wi := bi,1ã0 and relying on (13) we obtain the
following corollary on the sequence (sk)k=1,2,....

Corollary 16. Let (K̃,D) and sk, ãk, bi,j ∈ K̃ be as

above in (9)-(12) and define C̃ := Const(K̃). If no non-

trivial C̃-linear combination of b1,1ã0, b2,1ã0, . . . has an inte-
gral in (K̃,D), then s1, s2, . . . are algebraically independent

over K̃ and Const(K̃(s1, s2, . . . )) = Const(K̃).

Once we verified for a particular choice of s1, s2, . . . that
they are algebraically independent over K̃ we can represent
sn for symbolic n in terms of a differentially transcenden-
tal extension t. If for some k the derivatives t,Dt, . . . , Dkt
(representing sn, Dsn, . . . , D

ksn) were algebraically depen-
dent over K, then as outlined above the evaluation maps
ϕ1, ϕ2, . . . would translate this to an algebraic dependence
of sn, Dsn, . . . , D

ksn, or equivalently of sn, sn−1, . . . , sn−k,
over K̃ for all specific n sufficiently large.

Polylogarithms.
The polylogarithms are defined as Li2(x) = −

∫ x
0

ln(1−t)
t

dt

and Lik+1(x) =
∫ x

0
1
t
Lik(t) dt for k ≥ 2. Let (K̃,D) =

(C̃(x, ln(x), ln(1− x)), d
dx

) and (F̃ ,D) = (K(s1, s2, . . . ), D),

then sk represents Lik+1(x) if we choose ã0 := − ln(1−x)
x

and ãk := 1
x

, k ≥ 1. In addition, it is easily verified that

bi,j := (− ln(x))i−j

(i−j)! satisfy (11) and (12). Now, bk,1ã0 =

(−1)k

(k−1)!
ln(x)k−1 ln(1−x)

x
and no non-trivial C̃-linear combina-

tion of them has an integral in (K,D) as can be verified

based on the fact that there are no g ∈ C̃(x) and c ∈ C̃
such that Dg = 1

1−x + c
x

, for details on how the verifica-

tion proceeds in general we refer to [2]. Hence by Corol-
lary 16 we conclude that Li2(x),Li3(x), . . . are algebraically

independent over K̃. For symbolic n we deduce as above
that Lin(x) is differentially transcendental over (K,D) =
C(n)(x, ln(x), ln(1− x)), d

dx
).

Repeated antidifferentiation.
For some function f(x) we consider the iterated antideriva-

tives
∫
f(x) dx,

∫ ∫
f(x) dx dx, . . . , so let (K̃,D) be a differ-

ential field extension of (C̃(x), d
dx

) such that ã0 ∈ K̃ repre-
sents f(x). Then sk represents the k-fold antiderivative if

we choose ãk := 1 for k ∈ N+. We have that bi,j := (−x)i−j

(i−j)!
satisfy (11) and (12), so for applying Corollary 16 we need

to check whether there exists a nonzero polynomial p ∈ C̃[x]

such that pã0 has an integral in (K̃,D). Depending on ã0

this may or may not be the case.

6. EXAMPLES
In this section we give some applications of the algorithm

with various kinds of integrands. First, we look at some in-
definite integrals. Then, we show how the parametric nature
of the algorithm can be exploited in the context of definite
integrals.

Example 1. We consider the polylogarithms Lin(x) for
symbolic n and want to compute the integral∫

Lin−2(x)Lin(x)

xLin−1(x)2
dx.

For applying our algorithm we use C := Q(n) and (K,D) :=
(C(x), d

dx
). We set ak = 1

x
and bk = 0 in (2), so tk from

(F,D) := (C(x, t0, t1, . . . ), D) corresponds to Lin−k(x) as
detailed in Section 5. The integrand is represented by

f :=
t0t2
xt21

,

which has ddegt(f) = 2 and even is of the form f̃1t2 + f̃0

with f̃1 = t0
xt21
∈ K(t0, t1) and f̃0 = 0. So by applying

Algorithm 3 we just need to solve Problem 11 for xf̃1 and
k = 2 (Step 15). We obtain v = − t0

t1
and f−Dv = 1

x
, which

is easily dealt with in Step 17 resp. Step 3. Altogether, we
obtain the following elementary integral of f over (F,D).

− t0
t1

+ log(x)

Translating back yields∫
Lin−2(x)Lin(x)

xLin−1(x)2
dx = ln(x)− Lin(x)

Lin−1(x)
.
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Note that Mathematica and Maple in their current versions
do not find the integral even for specific n ∈ {3, 4, . . . }.

With the following example we illustrate that the algo-
rithm also works heuristically in cases where the assumption
of t being differentially transcendental over (K,D) does not
reflect the true situation. An integral computed that way
will still be valid provided it does not represent a situation
where division by zero occurs. More explicitly, the denom-
inator of an expression in K(t0, t1, . . . ) should not reduce
to zero after applying the true relations among t0, t1, . . . .
This is completely analogous to specializing an unspecified
function to a specific function.

Example 2. The Weierstraß elliptic function ℘(x) fulfills
the relation ℘′(x)2 = 4℘(x)3 − g2℘(x) − g3 for some con-
stants g2 and g3, but in the following computation we will
ignore this relation and treat ℘(x) and its derivatives as alge-
braically independent. Let the invariants g2 and g3 be fixed.
In addition to ℘(x) we also consider the Weierstraß zeta
and sigma functions ζ(x) and σ(x), where ζ′(x) = −℘(x)
and σ′(x) = ζ(x)σ(x). We will compute a closed form of∫

(x− σ(x))℘(x) + σ(x)ζ(x)2 dx.

To this end, we set C := Q(g2, g3), (K,D) := (C(x), d
dx

),
and F := K(t0, . . . ) where we choose a0 = t0, a1 = −1, and
an = 1 for n ≥ 2 as well as bn = 0 for all n ∈ N in (2).
Hence we have

Dt0 = t0t1 Dt1 = −t2 Dt2 = t3

and ℘(x), ℘′(x), ζ(x), σ(x) are represented by t2, t3, t1, t0, re-
spectively. Then the integrand is represented by

f := (x− t0)t2 + t0t
2
1,

which has ddegt(f) = 2 and even is the form f̃1t2 + f̃0 with

f̃0, f̃1 ∈ K(t0, t1). Following Algorithm 3 we first need to

solve Problem 11 for f̃1
a1

= t0 − x and k = 2, which gives

v = (t0 − x)t1. Proceeding recursively with the remaining
integrand f −Dv = t1, which obviously has ddegt(t1) = 1,
we solve Problem 11 for 1

a0
= 1

t0
and k = 1, giving 1

t0
=

∂
∂t0

log(t0). Since t1 −D log(t0) = 0 in Step 16 we are done
and arrived at

(t0 − x)t1 + log(t0)

for the elementary integral of f over (F,D). When trans-
lated back to∫

(x−σ(x))℘(x)+σ(x)ζ(x)2 dx = (σ(x)−x)ζ(x)+ln(σ(x))

we verify that this remains valid and we successfully com-
puted a closed form of the integral.

With the next example we illustrate the ability of our
algorithm to find such relations of definite integrals.

Example 3. Consider the Laplace transform of an unspec-
ified function f(x). For the function f(x) we merely assume
that it is sufficiently regular, e.g. that f(x) has a derivative
on R+

0 that is continuous and bounded. Using our algorithm
we want to relate the Laplace transform of f ′(x) to that of
f(x). For the differential fields we may choose C := Q(s),

(K,D) := (C(e−sx), d
dx

), as well as F := K(t0, . . . ) with

an = 1 and bn = 0 in (2), so that tn represents f (n)(x).
In order to relate

∫∞
0
e−sxf(x) dx and

∫∞
0
e−sxf ′(x) dx we

set f0 := e−sxt0 and f1 := e−sxt1. Then Algorithm 3 easily
computes the relation

−sf0 + f1 = D(e−sxt0)

in (F,D). Translating back and integrating gives

−s
∫ ∞

0

e−sxf(x) dx+

∫ ∞
0

e−sxf ′(x) dx = e−sxf(x)
∣∣∞
x=0

where the right hand side evaluates to 0− f(0) since f(x) is
assumed not to grow too fast. In other words, we automat-
ically discovered the identity

Lx(f ′(x))(s) = sLx(f(x))(s)− f(0)

satisfied by the Laplace transform.
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