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Article history: Lactococcus lactis metabolizes glucose homofermentatively to lactate. However, after
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Accepted 21 January 2010 the redirection of pyruvate towards production of formate, acetate, ethanol and CO,.

A mathematical model of the pyruvate metabolism pathway that enhances ethanol
production was developed from in vivo Nuclear Magnetic Resonance (NMR) time-
Ethanol production series measurements that describe the dynamics of the metabolites in L. lactis. Both
Selectivity maximization Michaelis-Menten and S-system models capture the observed in vivo dynamics of the
Michaelis—Menten glycolysis pathway in L. lactis, while prior models describe only the in vitro dynamics.
S-systems The models provide insight into the maximization of selectivity of ethanol with respect to
acetate and CO, as undesired products in multiple reactions. High concentrations of NADH
and acetyl-CoA and low concentrations of pyruvate and NAD appear to maximize ethanol
selectivity.
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1. Introduction

Extracting biological information from time-series data requires a modeling framework able to capture the dynamics of
the data. As the models are non-linear coupled systems of differential equations, fitting parameters to the models is complex
and presents convergence issues as the systems grow in size. In spite of such issues, the analysis of in vivo time-series data
is very useful in gauging the response of in vivo systems that have not undergone artificial isolation and purification. In
particular, such data accurately reflect the activity of cells and organisms and how they respond to signals and stimuli. Living
organisms must coordinate biological machinery across several levels of organization, from gene expression to dynamic
changes in protein abundance to adaptive changes in metabolic profiles and physiological response. These changes cannot
always be deduced from in vitro measurements of rate constants and other kinetic parameters. For this reason, we develop
models based on in vivo metabolomics data, in the present case for the glycolysis pathway that converts glucose to ethanol.
A surge of interest in biofuels makes the study and optimization of this pathway very desirable. Our specific goal is to predict
conditions under which the pathway will maximize the ratio of ethanol to CO,, thus maximizing the production of ethanol
and possibly limiting the accumulation of CO, during the fermentation process.

L. lactis is a gram positive, non-spore forming, typically homofermentative bacterium in which the major end product
of fermentation is lactate. During anaerobic growth on sugars such as maltose [1] or Galactose [2] or Mannitol [3] the
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glycolytic flux shifts towards the mixed-acid fermentation products formate, acetate and ethanol. Traditionally, the shift
from homolactic to mixed-acid fermentation has been captured by models of the enzymes lactate Dehydrogenase (LDH)
and pyruvate formate-lyase (PFL), which compete for pyruvate under anaerobic conditions. Glycolytic intermediates,
Gylceraldehyde-3-Phosphate (GAP) and Dihydroxyacetone-Phosphate (DHAP) are strong inhibitors of PFL, whereas the
glycolytic intermediate Fructose 1,6 Diphosphate (FDP) is an activator of LDH [4]. When grown on less favorable sugars
such as Galactose, the levels of FDP, GAP and DHAP are lower, resulting in lower PFL inhibition, LDH activation and mixed-
acid product formation [5]. In order to optimize fluxes toward the desired end products, various theoretical frameworks
such as biological system theory [6], metabolic control analysis [7] and metabolic design [8] have been used to analyze
multi-enzyme systems in a quantitative, predictive fashion.

Time-dependent models have traditionally been represented by Michaelis—Menten equations, which have proven useful
for characterizing isolated reaction mechanisms in vitro. Power law formulations [9-11] offer an alternative having a simpli-
fied structure that retains some of the non-linear features of the original system. In the S-system formulation of the Biochem-
ical System Theory, as a consequence of flux aggregation, the resulting steady state equations are linear after a logarithmic
transformation [ 12-14]. Using this specific property, Torres et al. applied a linear optimization procedure to the production
of ethanol by Saccharomyces cervisiae and suggested alternative enzyme profiles that predict higher production rates [13,15].

Michaelis—-Menten representations do not allow linearization of the steady state equation. As a result, there have been
relatively few attempts to optimize metabolic systems based on these representations [16-18]. A direct optimization
approach based on a multi-start stochastic algorithm was previously applied to the optimization of the Michaelis-Menten
and Generalized Mass Action representations of ethanol, glycerol and carbohydrate production by S. cervisiae [19]. It was
noted that when the goal was to maximize ethanol production, six enzymes involved in the ethanol synthesis needed to
be modulated. In contrast, when the aim was to maximize the glycerol and carbohydrate production rate, the modification
of only one enzyme that diverts flux from the main downstream to the final product leads to a significant increase in final
metabolite production [15]. The present work examines the use of optimization, based on Michaelis-Menten and S-Systems
models of in vivo time-series data, to predict conditions under which the ratios of ethanol to acetate and ethanol to CO,
production are maximized in the LDH™ strain of L. lactis.

2. Methods

Parameter estimation and curve fitting are traditionally solved by minimizing a generalized distance between experimen-
tal data and model predictions. The Euclidean distance is the most commonly used, and the inverse problem is often referred
to as a least squares (LS) formulation, or more generally, a non-linear least squares (NLLS) formulation. Many non-linear pro-
gramming algorithms can numerically solve NLLS problems: Gauss-Newton and Levenberg-Marquardt are the most popular
and frequently implemented [20-22]. Evolutionary algorithms and simulated annealing techniques are also used [23]. We
use the approach described in [24] to fit the simultaneous ODE system. We briefly describe this procedure in Section 2.2.

2.1. Biochemical model

Models from Biochemical System Theory [25,26] have been used to approximate time-series data. These power law
models can be regarded as a generalization of linear regression analysis. In this framework, processes are represented as
products of power law functions that are mathematically derived from Taylor’s Theorem applied to variables in logarithmic
space. As a result, the model for each differential X; involves at most n dependent (state) variables and m independent
variables, and it has the following form

n+m

. ﬁ,.
Xi:Vil_[ij7 (1
=1

where y; is the rate constant that describes the turnover rate of the process, and the exponent f; is a kinetic order that
quantifies the effect of variable X; on Xi. An activating effect is indicated by a positive kinetic order, whereas a negative
kinetic order represents inhibition.

The S-system is a useful representation of BST and represents a collection of inward fluxes into a given pool with a single
power-law term and the collection of outward fluxes from the pool with a second power law term. The generic S-system
structure is

n n

5 8 j hi :

Xi:aillxjj_ﬂillxjjv i=1...,n (2)
j=1 j=1

where « and 8 are non-negative rate constants and the exponents g and h are real valued kinetic orders.

Selectivity analysis has been used to maximize the yield of desired product relative to undesired products [27]. Selectivity
is defined as the rate of production of the desired product to that of the undesired product in multiple reactions. For example,
in the competing reactions

A—> D

A— U

Please cite this article in press as: R. Lall, etal, Optimizing ethanol production selectivity, Mathematical and Computer Modelling (2010),
doi:10.1016/j.mcm.2010.01.016




R. Lall et al. / Mathematical and Computer Modelling I (RREN) IRE-ENR 3

one might wish to maximize the formation of the desired product D and minimize the formation of the undesired product
U. The rate of formation of D and U are given from the rate laws as

rp = kp[A]"! (3)
ry = ky[A]*2 (4)
where a1 and «;, are positive kinetic orders. The ratio of these rates is the selectivity parameter
y k
Spy = — = = - [A]1 7, (5)
Ty ky

For the case where the reaction order of the desired product is greater than the reaction order of the undesired product
(a7 > o), the selectivity is maximized by keeping the concentration [A] as high as possible. It is seen from (5) that a higher
concentration of A results in a high ratio of the desired to the undesired product. Conversely, when the reaction order of the
undesired product exceeds that of the desired product (o1 < «3), the selectivity is maximized when [A] is minimized.

2.2. Computational fitting of parameters

In Section 3.1 and Appendix C, we give the functional forms of the Biochemical Systems Theory and Michaelis-Menten
models that were fitted using the procedure outlined in this section. In principle, a system of ODEs like (2) could be fitted
directly to data, but many computational issues arise. The dynamical system can become ill-conditioned or stiff due to
non-optimal choices of parameter values during the minimization procedure. As a consequence, the computation time
for numerically integrating the differential equations may increase to 95% or more of the total CPU time needed by the
optimization algorithm [28]. Secondly, choosing a feasible and structurally stable initial guess for the parameter vector is
sometimes is as difficult as solving the problem itself. Finally, experimental noise increases the likelihood of the existence of
multiple local minima, which is amplified by an increasing size of the system. A possible strategy for reducing the complexity
of the problem is to decouple the ODE system.

Decoupling may be accomplished by estimating slopes of all (n) time courses at many (N) time points, which reduces
the system of n coupled differential equations to n x N algebraic equations [28]. Another means of decoupling the equa-
tions without disrupting the system of n coupled differential equations is by retaining the initial differential form and solv-
ing/fitting one equation at a time, using the data (stepwise linear interpolations) as input functions for the equation [29,24].
In this work, we use the decoupling approach and non-linear least squares (NLLS) fitting procedures described in [24] to fit
parameters to the S-system and of the Michaelis-Menten models based on the time-series data.

The NLLS algorithm involves two steps, as described in detail in [24]. In Step 1 we fit each differential equation of each
model independently (uni-dimensional ODE). Then, in Step 2, we plug the solutions from Step 1 into the simultaneous
systems of ODEs, and fit the whole system of coupled differential equations. The idea is that Step 1 will refine the
initial condition for the fitting of the larger, more complex and coupled non-linear models, facilitating convergence of the
Levenberg-Marquardt or Gauss-Newton search direction scheme. Also, Step 1 avoids ill-conditioning and stiffness issues
that might occur during the numerical solution step. In both Step 1 and Step 2, current values of the parameters are used
to numerically solve the ODE system at each iteration of the minimization algorithm (NLLS). Optimality conditions are
tested after each iteration, and, if not satisfied, a new iteration is performed using the direction of search is defined by
the minimization algorithm (for example, Levenberg-Marquardt or Gauss—Newton). See [24] for a detailed description of
the algorithm.

The model fitting module is implemented in MATLAB. We use the function Isqcurvefit to solve general non-linear least
squares problems (in the present case, using the Levenberg-Marquardt algorithm) and ode45 (an explicit, variable-step,
Runge-Kutta method of fourth order) to numerically solve the differential equations for each of the metabolites ethanol,
pyruvate, acetate and CO,. Our code for applying this method to the system described in this paper is available by request
to the authors.

2.3. Modeling the glycolysis pathway for enhanced ethanol production

L. lactis is a gram positive non-sporulating bacterium that is used widely in the dairy industry for the production of
cheese, buttermilk and yogurt. Here, we develop a model for the LDH™ strain of L. lactis. The deletion of the LDH gene shifts
the glycolytic flux towards ethanol production. The simplified pathway underlying our model analysis is illustrated in Fig. 1.
A previous kinetic model was developed for the conversion of glucose to pyruvate [30]. The focus of our model is on the flux
through pyruvate formate-lyase as this is the step that converts pyruvate to acetyl-CoA, which is the precursor for ethanol.

For the purpose of this model, data are taken from published time-series data. In this experimental study, Nuclear
Magnetic Resonance (NMR) measurements were used to monitor the pool of labeled intermediates and end products with
a time resolution of 2.2 min in non-growing L. lactis cell suspensions that followed a pulse of 13C-labeled glucose. In vivo
NMR experiments were performed using 50 mL mini-bioreactors that were designed to maintain cell suspensions in defined
conditions of gas atmosphere, pH and temperature. [1-13 °C| glucose (40 mM) was supplied to cell suspension and time
courses for substrate consumption, product formation and dynamics of intracellular metabolites were monitored in vivo
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Fig. 1. The glycolyis pathway in L. lactis. The shaded region of the pathway describes the conversion of Phosphoenolpyruvate to ethanol.

under anaerobic conditions. The end products (lactate, pyruvate, ethanol and acetate) were quantified in the NMR-sample
extract by H-NMR. Details of these experimental procedures can be found in Neves et al. [31-33].

Using the procedure described in the previous sections, parameters were derived to model the time course data for
pyruvate, CO,, ethanol, and acetate. Parameters for other metabolites, such as NADH and NAD™, were not calculated,
but the time-series data for all metabolites was used during the fitting procedure. Finally, because a time course of CO,
concentrations had not been experimentally determined, it was calculated based on the other concentrations. In particular,
the amount of CO, released can be calculated based on the concentrations of pyruvate, NAD" and Acetyl-CoA.

3. Results

We present ethanol production selectivity results with respect to two models, one based on the Michaelis-Menten
equations and the other based on a simplified S-System representation. Both models are able to capture the dynamics of the
time-series data, and they lead to similar conclusions regarding the determinants of ethanol versus CO, selectivity.

3.1. Biochemical systems theory model for in vivo glycolysis

The BST equations for the pyruvate metabolism pathway are readily set up in symbolic form, according to well-
documented guidelines [25]. The dynamics of pyruvate is given symbolically as

Xy = oy XE21 — B, X)22 X, X025 (6)

The first term captures the production flux from Phosphyenolpyruvate (PEP), and the degradation term is driven by the
concentration of pyruvate, NAD' and NADH. The formation of the end product CO; is driven by the concentration of pyruvate
and NAD™, that of ethanol is governed by the concentration of NADH and acetyl-CoA, and that of acetate by the concentration
of acetyl-CoA. The dynamics of the production of CO,, ethanol and acetate are given respectively by

X3 = a3 X377 X3 7)
X7 = a7 X X5 (8)
Xg =g XGgSYG (9)
where the following variables denote the metabolite concentrations as a function of time.

Xy = PEP concentration (mM) X5 = NADH concentration (mM)

X, = pyruvate concentration (mM) X = acetyl-CoA concentration (mM)

X3 = CO, concentration (mM) X7 = ethanol concentration (mM)

X4 = NAD™ concentration (mM) Xg = acetate concentration (mM)
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Fig. 2. The images shows the degree of fit between the experimental data and the biochemical systems theory model. Data and fitted curves are shown
for the concentrations of pyruvate, ethanol, acetate, and CO,.
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Fig. 3. The figure shows the degree of fit between the Michaelis-Menten model to the experimental data, where the parameters are as in the rightmost
column of Table 1.

In the model for the glycolysis pathway that is proposed for ethanol production, the metabolites pyruvate, ethanol,
acetate and CO, were fitted to the in vivo time-series data. The appropriateness of the functional form of the power law
was first tested by fitting the equation for each metabolite separately. The rationale was that if a good fit could be obtained
for each individual equation (for X;), the functional form of the equation would be adequate, whereas if the model was unable
to capture the data, the lack of fit could be attributed to the form of the S-System equation. The metabolite concentrations
were approximated very well using this procedure, and the estimates from these individual fits served as good starting
values for a subsequent non-linear optimization of the entire model. The global fits the non-linear regression (using the
Levenberg-Marquardt algorithm in Matlab) found a good solution that was able to capture the global dynamics. The results
of these global fits are shown in Fig. 2, and the parameters we obtained are given in Appendix B.

3.2. Michaelis-Menten model for in vivo glycolysis

Good fits were obtained for describing in vivo data using a Michaelis—-Menten model previously proposed for in vitro
data for glycolysis in L. lactis [5,34]. In this case, not all reactions shown in Fig. 1 were fit to parameters, only those needed
to perform the selectivity analysis described in the next section. The fitting procedure for the Michaelis—-Menten model is
similar to that described for the S-Systems representation, and the fit of the model to the data was comparably good. The
fit for the ethanol concentration is shown in Fig. 3.
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Table 1
In vitro and estimated in vivo parameters for the Michaelis—-Menten model.
Param in vitro in vivo est.
Vinaxgy 3.690 0.071
Keqe, 5.675 1.403
Ky o5 0.194 0.266
Kins 6, 1.404 0.037
7.6 1.785 5.675
King ¢ 0.266 3.370
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Fig.4. The figure shows the selectivity analysis with ethanol as the desired product and acetate as the undesired product. The ethanol selectivity increases
as a function of the concentration of either acetyl-CoA or NADH.

Appendix C gives the functional form of the equations used in the Michaelis-Menten model. These rate equations were
appropriate to fit the observed data. The optimized parameter values were in some cases quite different from those obtained
from literature, but this is not surprising as the published values are based on in vitro enzyme assays. Table 1 compares the
corresponding parameter values with those in the literature. The in vitro parameter values were taken from the JWS Online
Model Database [35], which provide an updated version of the model presented in [5]. All but one of the K, values was higher
for the in vivo model, which is sensible given that reactions are apt to happen more slowly in a real biological environment
as compared with a well-mixed solution. The K, for NAD™ was fairly comparable between the in vitro calculations and the
in vivo model. For the hexokinase reaction within the glycolysis pathway in Lactococcus lactis, a comparisons of the K;;’s for
the in vivo and in vitro models is given in [36].

3.3. Optimizing ethanol/CO, selectivity

We can predict conditions for which ethanol production selectivity is maximized with respect to the undesired products
acetate and CO,. Ethanol selectivity was predicted from the ratio of the rate of production of ethanol with respect to the
rate of production of acetate or CO,. Using (7) for rate of CO, production, (8) for rate of ethanol production, and (9) for
rate of acetate production, the selectivities for ethanol production versus CO, and acetate can be expressed respectively
as

87,6 87,5
o7 X6 X5

SETH/ACT = — g0 — (10)
og XGgS'G
s B o Xgm X527,5 (11)
ETH/CO, = ~—g35 —gia
/€02 o3 X2g3.2 Xf“

where the kinetic parameters g7 ¢, €3 6, 87,5, 3.2 and g3 4 are those obtained from the model fits (see Appendix B for parameter
values). Since g7 6 > g3 > 0and g75 > 0 the Eq. (10) predicts that an increase in the concentration of acetyl-CoA and/or
NADH increases ethanol selectivity. Asg7 ¢ > 0,875 > 0,83, > 0and g3 4 > 0, itis predicted from (11) that an increase in
the concentration of acetyl-CoA and/or NADH increases ethanol selectivity, as does a decrease in concentration of pyruvate
and/or NAD™,

These trends are demonstrated graphically in Figs. 4 and 5, using concentration data for Acetyl-CoA, NADH, pyruvate and
NAD™ obtained from the experimental time course [33] along with the parameters from our fitted models. Based on the
values of the kinetic parameters g7 s, g7.6, 83,6, @7 and «g, ethanol production selectivity relative to Acetate was calculated
using (10) and plotted against concentrations of Acetyl-CoA and NADH in Fig. 4. From this, it is predicted that an increase in
the concentration of Acetyl-CoA or NADH will increase ethanol selectivity, which is consistent with the observations made
above. Similarly, the kinetic parameters g7 ¢, £7.5, 3.2, £3.4, @3 and «7 along with (11) were used to create the data in Fig. 5.
Here, increases in the concentrations of Acetyl-CoA and NADH or decreases in the concentrations of Pyruvate and NAD™ are
predicted to increase ethanol selectivity relative to production of CO,.
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Fig. 5. The figure shows the selectivity analysis with ethanol as the desired product and CO, as the undesired product. The general trends indicate that
ethanol selectivity increases as a function of the concentration of either acetyl-CoA or NADH and decreases as a function of pyruvate or NAD*.
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Fig. 6. The figure shows the selectivity analysis with ethanol as the desired product and acetate as the undesired product, calculated using the
Michaelis-Menten model. The ethanol selectivity increases as a function of the concentration of either acetyl-CoA or NADH.

The ethanol selectivity trends indicated by the Michaelis—Menten model are consistent with those derived from the BST
system, as can be seen in Figs. 6 and 7. For the Michaelis-Menten model, ethanol selectivity was obtained from the ratios of
the fluxes of producing ethanol to acetate (vg,/v; in Reactions 6b and 7 in Appendix C) and plotted against concentrations
of Acetyl-CoA and NADH in Fig. 6. As in Fig. 4, an increase in the concentration of Acetyl-CoA and NADH is predicted to
increase ethanol selectivity relative to Acetate. In Fig. 7, ethanol selectivity relative to CO, was obtained using the ratio of
the fluxes for producing ethanol and CO, (vgp/vs in Reactions 5 and 6b from Appendix C) and plotted against concentrations
of Acetyl-CoA, NADH, Pyruvate and NAD™. The predictions are in agreement with those of Fig. 5, indicating that increases
in the concentrations of Acetyl-CoA and NADH or decreases in the concentrations of Pyruvate and NAD™ increase ethanol
selectivity. The consistency between predictions made using Michaelis-Menten and Biochemical Systems Theory models is
also seen in previous studies of the glycolysis pathway [19].

4. Discussion

Previous models for pyruvate distribution in Lactococcus lactis have been based on Michaelis-Menten kinetics for in
vitro kinetic data [5,11]. The present work uses both Michaelis-Menten and the S-system representation of the Biochemical
System Theory (BST) in conjunction with in vivo time-series data. While size and parameter values of the S-system
depend entirely on the complexity of the investigated phenomenon, the structure of the model is the same. This fact has
led to a powerful repertoire of algebraic and numerical methods for the analysis of S-system models and to interactive
software that executes the methods with high efficiency. The canonical structure of the S-system is more tractable than the
Michaelis-Menten dynamics, where a priori, it is unclear what exact type and rate law would best characterize a particular
reaction.
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Fig. 7. The figure shows the selectivity analysis with ethanol as the desired product and CO, as the undesired product, calculated using the
Michaelis-Menten model. The general trends indicate that ethanol selectivity increases as a function of the concentration of either acetyl-CoA or NADH
and decreases as a function of pyruvate or NAD*.

The estimation of parameters is typically solved through non-linear regression and is hampered by technical obstacles.
Non-linear regressions are far more complex than linear regression, where a fast and unique solution is usually guaranteed.
For example, it is known that gradient-based non-linear searches have a tendency to get stuck in local minima and may
not converge to an optimal solution within the parameter space. Objective functions based on systems of differential
equations require many numerical integrations that can use more than 95% of the entire search time. Search algorithms
often select parameter combinations artificially, making the system stiff and thereby dramatically slowing down the
solution [28].

Non-linear metabolic models for ethanol production were reduced so that methods of linear programming could be
used [13]. These optimizations lead to profiles of enzyme activities that yield higher rates of the desired end products than
original systems. Optimization was conducted with the S-system as the optimization problem was linear which was due
to the fact that the steady-state equations are linear when represented in logarithmic coordinates. However, it was noted
that in the case of linear optimization, the aggregation of fluxes at branch points is an indispensable feature of S-systems
and leads to inaccuracies in the stoichiometry of reactions and subsequently in the optimum solution of the linear problem.
On the other hand, the solution obtained with the non-linear optimization would depend on initial values and settings
(mutation rate, iterations, etc.). The choice of using the linear method over the non-linear method depended on the topology
of the pathway to be modeled. It was observed that in several biochemical models the occurrence of kinetic features such
as bimolecularity associated with coupled cofactors, feedbacks, non-linear kinetics of enzymes constitute a limitation for
some optimization procedures [7] and in most cases force us to use non-linear optimization.

The present work uses the concept of maximization of the selectivity of desired products to that of undesired products
in multiple reactions [27]. Our models suggest that high concentrations of acetyl-CoA and NADH and low concentrations of
NAD and pyruvate maximize ethanol selectivity. As the metabolites pyruvate, acetyl-CoA, NADH and NAD are intracellular
metabolites, it is not feasible to introduce them extracellularly. This suggests the need to study how glucose concentrations
can be optimized to affect concentrations of these metabolites. The experimental data available for this work was at an
initial concentration of 40 mM glucose under anaerobic conditions, and further experiments at varying initial concentrations
of glucose may offer added insights on optimizing ethanol production selectivity. In particular, while the conclusions for
selectivity relative to NADH and NAD™ concentrations are obvious from the metabolites required in Reactions 5 and 6a-b, the
prediction that low pyruvate concentrations enhance ethanol production selectivity is suggestive of the need for additional
experiments. In particular, these results lead to a conjecture that fermentation in low glucose conditions, resulting in low
pyruvate concentrations, will enhance ethanol production selectivity in a way that minimizes the production rate of CO,
relative to the production rate of ethanol.
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Appendix A. Variable definitions

X1 = PEP concentration (mM) X9 = ACAL concentration (mM)
X, = pyruvate concentration (mM) X10 = AC concentration (mM)

X3 = CO, concentration (mM) X11 = ACP concentration (mM)
X, = NAD*concentration (mM) X1, = ADP concentration (mM)
X5 = NADH concentration (mM) X13 = ATP concentration (mM)
X = acetyl-CoA concentration (mM) X14 = CoA concentration (mM)
X7 = ethanol concentration (mM) X16 = FBP concentration (mM)

Xg = acetate concentration (mM)

Appendix B. S-system model

Parameters of the S-system used to model the measured time courses of pyruvate metabolism in L. lactis (LDH™) were
estimated by numerical integration using the ODE solver in MATLAB. The numerical implementation was used to estimate
observed data in Fig. 2.

; 82,1 hyo h24 hos
X2 =y Xl — ,32 X2 X4 XS
; 832 1,834
X._v, = 03 ng Xfé
X; = oy X57.5 X67,6
; £8.6
Xg =g XG

ay = 0.07357218341808
221 = 0.03171344758464
B2 = 0.02295975256347
hy, = 0.43556107753767
hy 4 = 1.12329782487184
hy 5 =0.00221701611913
a3 = 0.56213505169305
832 = 0.75322391540504
834 = 1.16263523354082
a7 = 0.01248858503143
875 = 0.00009141505280
876 = 1.11262023999438
ag = 1.66300224304295
gs.6 = 0.00000000000004.

Appendix C. Michaelis-Menten model

The following equations were used to describe the rates of various reactions in the glycolysis pathway of L. lactis, using the
numbering shown in Fig. 1. In the description of the reactions, number assigned to metabolite concentrations in Appendix A
is shown as a subscript. Each Kj,, value is given two subscripts, the first of which denotes the metabolite number and the
second the equation number. The values for Vi, Keq, K are given subscripts denoting the equation number. Similarly, the
reaction rates, vj, have subscripts indicating the reaction number.

Reaction 3

PEP; 4+ ADP;; <— PYR, + ATP;3 4 FBPy5

X1-X12 _ Vmaxg-X2-X13-X15
Km 3 Kmias (Kegy Kimg 5 Kimy )

1 X1 X2 ) . (1 X12 X13 ) . (1 Xis )
( + Kiny 3 + Ky 5 + Ky 3 + Kiny3 3 + Kinys, 3

Vinaxs = 1.0355
Kn, , = 0.2671

V3 = VrnaX3 :

Kn,, = 1.1921
Kinyy 5 = 0.3487
Ky, , = 2.1467

Kinys 5 = 0.1089.
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Reaction 5
PYR, + NADI + COA4 <— NADHs + ACCOAg

Xo . Xa | _Xua
Kiny s Kngs  Kinygs

Us = Vmaxs .
X: X, X X X 1
(1+K2)"<1+K4 +1<5)'(1+1<14 +K6)' X5
my 5 my 5 ms 5 mi4,5 me,5 1+Ki5 Xy

Vinaxs = 1.6255

Ky, = 2.934
Kny s = 0.0706
K, , = 1.4030
King s = 0.0353

Ky s = 0.9051.

Reaction 6a-b
NADH; + ACCOAg <—> NAD] + COA14 + ACALg
NADH; + ACALyg <> NAD] + ETOH;

X5-Xg __ Vmaxg, X4 X14-Xo
s, a°16 64 (Kﬂlsa Kms, 64 'Kms,sa)

Va = Vmaxsa .
X X X X X
1+ 4 + 5><1+ 6 + 14 )(]+ 9)
( Km4.6£1 K’"S,Sa Km6,6a Km14,611 Km9.6£1

Xs  _Xo _(1_ X4-X7 )
Kms g5 Kmg gp Keqgy, -X5-Xg

U6b=Vmax6b'
(e ) (v )

King 6~ Kmg gp King g~ Kms gp

Vinaxg, = 1.6255
King s, = 0.0706

Kins ¢, = 1.4030
King 6, = 0.0353
Ky, = 0.9051
Vinaxg, = 3.36986
Koy, = 5.674845
Kiny g, = 0.1989
King 6, = 1.4038
Kin, 5, = 1.7854
King ¢, = 0.2656.
Reaction 7

ACPq; + ADP;j; <—> ACyg + ATPq3

X1, _X1i2 ,(]_ X10-X13 )

Kmy17  Kmyps Keg; -X11-X12

v; =V, .
7 maxy (]—I— X10 + X11 ><1+ X12 + X13 )

Km10,7 K’"11.7 Km12,7 Km13,7

Vinax, = 0.5932

Keq, = 4.7477
Kinyo, = 1.771925
Ky, , = 0.00001677
Ky, , = 0.059508

mi2,7

Ky, = 0.16776.
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