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where, from the results in [4], the coefficients ai/<, and aiiiz are given 
by 

2D multiple notch filter design 

Chien-Cheng Tseng and Soo-Chang Pei 

Indexing terms: Notch filters, Two-dimensional tligitul filters 

The authors propose a decomposition method to reduce the 2D 
multiple notch filter design problem to two pairs of ID filter 
design problems. They develop a simple algebraic method for the 
design of two pairs of 1D TIR filter design. This approach not 
only has closed form transfer function but also satisfies the 
bounded inputioutput (BIBO) stability condition. 

Introduction: Notch filters are an effective means for eliminating 
narrowband or sinusoidal interferences in certain :signal processing 
applications ranging from power line interference cancelation for 
electrocardiograms to mukipk sinusoidal interference removal for 
corrupted images. For the 1D case, several methods for the design 
and performance analysis of IIR and FIR notch filters have been 
developed, see [I - 31 among others. For the 2D case, [4] proposed 
a method that reduces the design of a 2D single notch filter to the 
design of a 2D parallel line filter and a 2D straight line filter. 
However, a technique for designing a 2D multiple notch filter has 
not yet been developed. In this Letter, we address this design 
problem. 

Design technique: The frequency response of an ideal 2D multiple 
notch filter is given by 

0 

1 otherwise 

(q, w2) = (wqk, wGk) and 
(- * I:. - 1 

b -  ,..., N H,l(eJwl ,  e 7 w 2 )  = { d l k >  

(1) 
where (ark, a;,) are the notch frequencies. The aim of this work is 
to find a stable 2D transfer function which satisfies this specifica- 
tion. Our design technique is mainly based o'n the following 
decomposition of the frequency response of an ideal notch filter: 

Fact 1: Given that two l D  filters H)t(zJ and Hfl(zJ  have the 
following frequency responses ( i  = 1, 2): 

-3 w, = w;k 

{ 0 otherwise 
H;,(e3"?) = 3 W, = -wrk ( 3 )  

then the frequency response of an ideal 2D multiple notch filter 
can be written as 

Hd(e3&1, eJw2) = 

(4) 
From Fact 1, we see that the design of a 2D multiple notch fil- 

ter can be decomposed into two types of 1D filter design. The first 
is the design of filter ff/<,(ejuJ) defined in eqn. 2, the other is the 
design of filter H:t(eJwt) defined in eqn. 3 ( i  = 1, 2). We shall 
address the design of these two types of filters. 

(i) Design offilter H:6(zJ: The frequency response of H':,(ejwr) can 
be approximated by the second-order IIR bandpass filter whose 
transfer function is given by 

with ai is the centre frequency of Hih(z,) and BW is the 3 dB 
bandwidth of H;?(zJ. Note that H,i;,(ej""J'c) is exactly equal to 
unity, i.e. Hk6(ejw1IL) has unit gain and zero phase at a, = ~0:~. 
Thus, H;,(C?") will be an excellent approximation of H;",(eJwi) pro- 
vided that BW is sufficiently small. 

(ii) Design of,filter H:z(z,): It can readily be verified that the filter 
H!(z,) can be obtained as H:,(z,) = HCi, (zJHk,(zJ where the fre- 
quency response of Hk,(zJ is given by 

w, = w;k 
~h a z ( $ U , )  ~= w, = -W,"i, (7)  { i:n't care otherwise 

Since H;!(zJ has been designed in the preceding subsection, we 
now only need to design filter H!z(z,) For simplicity, we choose 
Hj,(z,) to be the following first order allpass filter: 

Since iHt)h(e'coi)l is equal to unity for all frequencies, we have 
Hj,(eIW!) = e/ein(wi) where the phase response 0,,(0,) is given by 

b,k sin(w,) 
1 + b,k cos(w2) 

H,I, (U,) = -dz + 2 arctan 

Also, the specification in eqn. 7 implies that 

Substituting eqn. 10 into eqn. 9, we obtain 

sin(+ - 2)  
btk = I + E 

2 4  

Based on the above discussion, a complete procedure for the 
design of a 2D multiple notch filter can be summarised as follows: 
(i) Step 1: Specify notch frequencies (a;k, a,*/,) and bandwidth BW 
f o r k  = 1 ... N. 
(ii) Step 2: Use eqn. 6 to compute filter coefficients ark,, a,k2, and 
construct transfer functiion HiZ(za). 
(iii) Step 3: Use eqn. 11 to calculate coefficients h,,, and construct 
transfer function H:d(z,) 
(iv) Step 4: Form the transfer function of the 2D multiple notch 
filter as 

H ( a 1  z2) = 

) (1 - 
M 

-1 --1 
@g 

Fig. 1 Magnitude response of desipzened 2D multiple notch filter 
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Design exumple: In this example, three notch frequencies and 
bandwidth BWare chosen as (myl, U;,) = (0.2n,0.2~), (myz, U;) = 
(0.3~,0.4n), (ai?, a;,) = (-0.6~,0.6~).  B W =  0 .001~ .  Fig. 1 shows 
the magnitude response of the designed multiple notch filter in lin- 
ear scale. It is clear that the specification is well satisfied. In fact, 
when the bandwidth B W approaches zero, the designed multiple 
notch filter will become an ideal one. 

Conclusiorzs; In this Letter, a 2D multiple notch filter design prob- 
lem has been investigated. First, we reduce the 2D notch filter 
design problem to two pairs of 1D filter design problems. Sec- 
ondly, we provide the closed-foiin solutions for the design of two 
pairs of ID IIR filters. 
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Accurate parallel form filter synthesis 

M. Price, S. Holden and M. Sandler 

Indexing ternzs: Digital filters, Network synthesk 

Standard algorithms for synthesising parallel form digital filters 
are adequate for basic applications. However, recursive filters 
required in acoustics synthesis applications often have very high 
orders, and errors Cram filter synthesis can become intolerable. 
The authors describe a new method for synthesising parallel fomi 
recursive fillers. In the experiment described, the new algorithm 
yielded smaller errors than the standard technique for almost 
every filter tested. 

Introduction: In acoustics synthesis applications, the recursive syn- 
thesis filter transfer function is usually specified in its direct form 
as the rational function, defined in eqn. 1: 

where Q(z) and U(z) are assumed to be known, with degree[Q(z)] 
= N and degree [U(z)] = M. 

However, it is useful to implement the synthesis filter with a 
parallel form: so that each resonance can be independently con- 
trolled [2]. The filter is converted into a parallel form by decom- 
posing the transfer function into a sum of rational functions, as 
defined in eqn. 2: 

(2) 
where 15 the sum of the number of real poles and the number of 
complex pars of poles, and x,* = 0 when x, is real. This is usually 
achieved by computing the partial fraction decomposition, and 
recombining the terms that involvc complex conjugate pairs of 
poles 

The standard numerical algorithm for coniputing a partial frac- 
tion decomposition is known as 'direct determination of principal- 
parts' (DDPP) [l]. Despite its relatively low computational com- 
plexity, we have found that the DDPP method yields large errors 
when synthesising high order filters (N  t 8), such as those required 
in acoustics synthesis applications. 

In this Letter, we define a new parallel form synthesis algo- 
rithm, and compare it with the DDPP method. The comparison i s  
made using Monte-Carlo techniques. 

New parallel form synthesis ulgoritlim: This algorithm i s  a general- 
isation of the 'undetermined coefficients' partial fraction expan- 
sion algorithm [l]. The generalisation enables us to obtain the 
parallel form representation directly, avoiding the use of complex 
arithmetic. 

We begin with H(z), which is to be transformed into the parallel 
form representation of eqn. 2. We assume that M < Nand  hence 
So (z )  = 0. From eqn. 2, we obtain the identity 

d 

where Q,(z) is defined as 

with Q,(z) = (1 - x,z-I)(l - xJ*zl), for j = 1, 2 , ..., p, and where p, 
= degree[Q,(z)]. The pole locations xi and ,,- are assumed to be 
known. 

Equating coefficients of eqn. 3 for powers in z, yields a 2p 
order, non-singular system of simultaneous equations. In matrix 
form, it is 

* . p = u  - - (5) 

UT = [?LO u,1 ' " U ( 2 D ) - ' ]  ( 6 )  

- PT = b i , O  Pz.O . ' .  Pp.O Pl,l P 2 , l  ' '  ' PA11 (7) 

where 

with U ,  = 0 for i > M, 

with P, I = 0 when pl = 1 and f o r j  = 1,  2, _.., p, and 

. '  ' q 3 , O  0 ;  

. . .  01.0 0 2 , o  ' ' ' 0/3,@ 0 0 . . '  
d1,l d2,l ' .  ' @p,1 01.0 pp,o 0 0 ' ' ' 0 

with QJ,, = 0 for i 

therefore obtained by solving eqn. 5 for E. 

N -  p, - 1 and f o r j  = 1, 2, ___, p. 
The coefficients of the subfilter numerator polynomials PJ(z) are 

Murzte-Curlo tests: Monte-Carlo methods were applied to the 
problem of quantifying the average error incurred from a synthesis 
process as follows. 12 sets of 100 all-pole test filters, each set for a 
specific filter order ranging from 8th to 96th order, were gener- 
ated. The filters were generated by randomly placing the required 
number of poles within the unit circle, with a unifonn distribution. 
The test proceeded by computing the parallel form realisation of 
each test filter, using each of the synthesis methods. The errors in 
the resultant realisations were then measured as follows. 

f i l ter DFT H (I) 
1453111 

Fig. 1 Filter Jinwlation for Monte-Carlo tests 

Each synthesised test filter was simulated as illustrated in Fig. 1, 
using double precision floating-point arithmetic. The errors in the 
fi-equency responses of the test filters were then measured, by coni- 
paring with the frequency responses of the cascade form equiva- 
lents, in terms of average spectral deviation, e,. This i s  defined in 
eqn. 9: 
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