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Preface

In this book, several topics of Control theory are presented as a means to solving
the synchronization and secure communication problems. Some analytic, algebraic,
geometric, and asymptotic concepts are assembled as design tools for a wide variety
of chaotic systems. Concepts from differential geometry and differential algebra
reveal important structural properties of chaotic systems. The control community
has attacked the synchronization concept as an observation problem. In this book,
however, we have conceived synchronization theory as a tracking control problem
under the master–slave configuration.

The presentation is organized as follows. The basic differential-algebraic and
differential-geometric concepts are presented in Chaps. 1–3 in a novel way as design
tools. In addition, some experimental results are presented. Most of the more recent
results appear in Chaps. 4–14. The first three chapters present the basic concepts of
differential algebra and differential geometry. Chapter 1 is introductory. It presents
several concepts and examples in nonlinear control theory and synchronization.
In Chap. 2, we deal with the synchronization problem using a proportional reduced-
order observer. Chapter 3 is concerned with a sliding-mode observer, which is
proposed for the synchronization problem. Chapter 4 shows the experimental
synchronization of a Colpitts oscillator in real time. Chapter 5 is devoted to the syn-
chronization and parameter estimations of an uncertain Rikitake system. Chapter 6
treats an aspect of chaotic communications and synchronization via a sliding-mode
observer. Chap. 7 introduces synchronization and antisynchronization problems in
chaotic systems by means of an observer. Chapter 8 expands our investigation to
the synchronization of chaotic oscillators with Liouvillian properties and offers
some experimental results. Chapter 9 extends the property called the algebraic
observability condition (AOC) to the property known as fractional algebraic observ-
ability (FAO) to treat the synchronization problem of fractional-order systems.
In Chapter 10, we expand our results to generalized synchronization by means of
a differential primitive element, which is a linear combination of the known states
and the inputs of the system. Chapter 11 studies generalized synchronization for a
class of nondifferentially flat and Liouvillian chaotic system. Chapter 12 extends
our results to generalized multisynchronization through a family of dynamical
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feedbacks. Chapter 13 introduces fractional generalized synchronization via dynam-
ical feedback. The book concludes with Chapter 14, which treats synchronization
theory for a certain class of incommensurate fractional-order systems in which
a new incommensurate fractional algebraic observability property has been intro-
duced.

The book is written for an audience of graduate students, control engineers,
and applied mathematicians interested in synchronization of chaotic systems that
are by nature commensurate or incommensurate and in secure communications.
It is self-contained and accessible to those with a basic knowledge of integer-
and fractional-order differential equations for synchronization theory. For clarity,
most of the concepts are introduced and explained by means of examples. Design
applications are illustrated on several physical models of practical interest. The
book can be used for a first-level graduate course on synchronization theory or as
collateral reading for an advanced or specialized course on synchronization theory.
Chapters 4–14 can be incorporated into a more advanced course on dynamical
nonlinear feedback design.

The authors have attempted to write in such a way that this book can be read
not only by mathematicians and physicists, but also by students in engineering
(control, systems, electrical, mechanical, aerospace, chemical) who need more
background than is provided in the basic mathematics courses and Chap. 1 of this
book. We hope that the material presented here will also be useful in the study of
secure communications and incommensurate systems.

Finally, the authors wish to express their gratitude to the referees for their careful
and helpful review of the manuscript.

México, Mexico Rafael Martínez-Guerra
México, Mexico Claudia Alejandra Pérez-Pinacho
México, Mexico Gian Carlo Gómez-Cortés
August, 2014
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Chapter 1
Control Theory and Synchronization

Abstract This chapter focuses on the main concepts necessary to a proper under-
standing of the topics developed in this book. In reading this chapter, the emphasis
should be on definitions, and in addition, some examples will be given in order
to clarify the concepts of control theory and synchronization. The most important
issues are topics on differential algebra, differential geometry, and their applications.

1.1 The Differential-Algebraic Point of View

Differential algebra was introduced by the American mathematician Joseph F. Ritt
[24] during the first half of the twentieth century. This theory was introduced
as a generalization of systems of algebraic equations, i.e., systems of differential
equations that can be described by algebraic equations dependent on unknowns and
their derivatives. The appearance and application of concepts of differential algebra
to analyze dynamical systems, particularly in control theory, is due to Michel Fliess
[9]. The differential-algebraic point of view is an alternative to techniques based on
differential geometry.

Since differential algebra is based on modern algebra, we begin giving definitions
of such concepts as differential field and differential field extension. Afterward, we
shall introduce concepts of control theory in terms of differential algebra.

Definition 1.1 A differential field K is a set with the properties of a field that is
additionally endowed with a single derivation that obeys the usual rules

8 a; b 2 K d

dt
.a C b/ D PaC Pb

8 a; b 2 K d

dt
.a � b/ D Pa � b C a � Pb:

Definition 1.2 A differential field extensionK=k is given by the differential fields
K and k such that:

(i) k is a subfield of K .
(ii) The usual rules of derivation of k are the rules of derivation ofK restricted to k.
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2 1 Control Theory and Synchronization

Fig. 1.1 A field extension

The following examples are trivial differential field extensions (Fig. 1.1):

Example 1.1 R is a field extension of Q. C is a field extension of R.

Definition 1.3 An element ˛ 2 K is said to be differentially algebraic
over k if it satisfies a differential-algebraic equation defined by a polynomial
P.˛; P̨ ; : : : ; ˛.n// D 0 over k in ˛ and its time derivatives.

Definition 1.4 An element ˛ 2 K is said to be differentially transcendental over k
if it is not differentially algebraic over k.

Example 1.2 Given k D Q, then a D et 2 L is differentially algebraic over Q
because it satisfies Px � x D 0. In this case, a differentially transcendental element
is given by a D e	t .

The theorem of the differential primitive element [17, 24] states that there exists
a single differential primitive element ı 2 K such that K D khıi, i.e., K is
differentially generated by k and ı. From the differential primitive element theorem,
we establish the following definition.

Definition 1.5 A dynamics is defined as a finitely generated differential algebraic
extensionK=khui of the differential field khui, where khui denotes the differential
field generated by k and a finite set of differential quantities u D .u1; u2; : : : ; um/.

Example 1.3 Let us consider the following differential equation:

Pu2y C 4Ru D 0:

In this case, y is algebraic overKhui, and therefore, it can be seen as a dynamics
of the formKhu; yi=Khui, where K D R.

Definition 1.6 (Algebraic Observability Condition (AOC)) A state variable xi 2
R is said to be algebraically observable if it is algebraic over Rhu; yi, that is, if
x satisfies a differential algebraic polynomial in terms of fu; yg (where Rhu; yi
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denotes the differential field generated by the field R), the input u, the measurable
output y, the time derivatives of u and y, and some of their time derivatives, i.e.,

Pi.xi ; u; Pu; : : : ; y; Py; : : :/ D 0; (1.1)

with coefficients in Rhu; yi.

Example 1.4 Consider the following nonlinear system:

Px1 D �x1x2;
Px2 D �x22 C x1 C u: (1.2)

y D x2

It can easily be seen from Definition 1.6 that x1 and x2 are algebraically observable,
because they satisfy

P.x1; u; y; Py/ D x1 � Py � y2 C u D 0;

P.x2; y/ D x2 � y D 0;

which are differential algebraic polynomials with coefficients over Rhu; yi.

In control theory, we commonly talk about canonical forms for linear and
nonlinear systems. Differential-algebraic tools give us methods to obtain controller
and observability canonical forms. In this work, we will use the generalized
observability canonical form [9], but we introduce it by means of the following
definition.

Definition 1.7 A system is Picard–Vessiot (PV) if the khui-vectorial space gener-
ated by derivatives of the set fy.ˇ/; ˇ � 0g has finite dimension.

Consider a system represented by NH. Ny; Ny.1/; : : : ; Ny.n�1/; Ny.n/; u; u.1/; : : : ; u.
//D 0.
It can be solved locally as follows:

Ny.n/ D �L . Ny; : : : ; Ny.n�1/; u; u.1/; : : : ; u.
�1//C u.
/:

Recall that �i D Ny.i�1/, 1 � i � n. A local form is obtained, which can be seen as
a generalized observability canonical form (GOCF),

P�1 D �2;

P�2 D �3;

::: (1.3)

P�n�1 D �n;

P�n D �L .�1; : : : ; �n; u; u
.1/; : : : ; u.
�1//C u.
/;

Ny D �1:
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Next example clarifies the above definition. We consider a Rössler system [6].
The output is chosen as y D x2. This system has the following dynamics:

Px1 D �x2 � x3;
Px2 D x1;

Px3 D a.x2 � x22/� bx3;

y D x2;

(1.4)

where a D 0:386 and b D 0:2. Recalling that y.i�1/ D Ny.i�1/ D �i , we see that the
following local form is achieved:

P�1 D �2;

P�2 D �3;

P�3 D ��2 � a.�1 � �21 /C b.��3 � �1/
y D �1:

(1.5)

The change of coordinates that allows us to achieve a local form is as follows:

�1 D x2;

�2 D x1;

�3 D �x2 � x3:

(1.6)

Rössler’s system is plotted in its original coordinates (1.4) and its local form (1.5)
in Figs. 1.2 and 1.3.
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Fig. 1.2 Rössler system in original coordinates
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Fig. 1.3 Rössler system in local form

To end this section, we present an application of dynamical feedback control that
can be constructed by means of differential-algebraic tools. The details regarding
the development of this kind of control will be presented in subsequent chapters.

Given Rössler and Chua systems, we want to follow the trajectories of the Rössler
system via the Chua system. This is a classical tracking control problem. Later, we
will see that the synchronization problem can be seen as a tracking control problem,
but for now, it is enough to present a single of dynamical feedback control to solve
the tracking problem.

First, we consider the local form (1.5) of the Rössler system, and by choosing
Nyc D xs3 C u1 as a primitive element for the Chua system, we achieve a local
transformation defined as follows:

2

4
zc1
zc2
zc3

3

5 D
2

4
xc3 C u1
Pxc3 C u2
Rxc3 C u3

3

5 D
2

4
xc3 C u1

�bcxc2 C u2
�bc.xc1 � xc2 C xc3 /C u3

3

5 ; (1.7)

where u1 D uc , u2 D Puc , and u3 D Ruc are control signals. The Chua system with the
control is given by the augmented controlled system

Pzc1 D zc2 ;

Pzc2 D zc3 ;

Pzc3 D �.xc/C Nuc;
Pu1 D u2;

Pu2 D u3;

Pu3 D Nuc;

(1.8)
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where �c.xc/ D �bm. Pxc1 � Pxc2 C Pxc3 /. We now have only to define Nuc in such a
way that the trajectories of the Chua system follow those of the Rössler system,
i.e., .zc1 ; zc2 ; zc3 / ! .zr1 ; zr2 ; zr3 / as t ! 1. To choose an appropriate control
that satisfies the control objective, we first define the synchronization error in local
coordinates as ez D zr � zc . Then the error dynamics is given by

Pe1 D e2;

Pe2 D e3;

Pe3 D �r.xr / � �c.xc/� Nuc.xr ; xc; yc/;
(1.9)

and the control signal is chosen as

Nuc.xr ; xc; yc/ D Pu3 D �r.xr /� �c.xc/C �ez; (1.10)

where � D Œ�1; �2; �3� is the vector of gains. With the selected control input, the
closed-loop dynamics is given by Pez D Aez, where A 2 R

3�3:

A D
2

4
0 1 0

0 0 1

��1 ��2 ��3

3

5 : (1.11)

We choose .�1; �2; �3/ such that A is a Hurwitz matrix. We then conclude that
kezk ! 0 as t ! 1.

Finally, some simulations were made to show the tracking in local coordinates.
Figure 1.4 shows that the tracking control problem was solved, while Fig. 1.5 shows
the tracking errors.

The set of definitions given in this section will be used frequently in this book,
and some auxiliary definitions will be given in subsequent chapters.
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Fig. 1.4 Convergence of the Chua system trajectories to those of the Rössler system
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1.2 Differential-Geometric Point of View

Nonlinear geometric control theory has been studied since the 1980s [2, 13, 15,
21, 26]. It deals with concepts such as controllability and geometric properties of
state spaces or subspaces and how those properties are preserved under coordinate
changes, e.g., controlled invariant subspaces. Later, the linear geometric theory was
extended to nonlinear systems [13]. However, the mathematical tools employed
in nonlinear geometric theory are based mainly on differential geometry. In this
section, we give a brief overview of nonlinear geometric control theory in order to
introduce the necessary background to follow in Chaps. 3 and 6. Basically, we will
use geometric control theory to develop sliding-mode observers.

Consider the vector-valued functions f W Rn ! R
n and g W Rn ! R

n, where
f; g are vector fields in C1. The Lie bracket is defined by

Œf; g� , @f

@x
g � @g

@x
f;

where
@f

@x
and

@g

@x
are the Jacobian matrices of f and g. Using an alternative

notation, it is possible to represent the Lie bracket as

Œf; g� D .ad1f; g/:

It is also defined as

.adkf; g/ D Œf; .adk�1f; g/�; 1 � k � n;
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where by definition,

.ad 0f; g/ D g:

Let us now consider a C1 function h W Rn ! R. Let h�; �i denote the standard
dot product on R

n. Let dh denote the gradient of h .dh D rT h/ with respect to x.
Then the Lie derivative of h with respect to f is defined by

Lf h D Lf .h/ D hdh; f i D rT h � f:

The following notation will be employed:

L0f h D h;

L1f h D Lf h;

:::

Lkf h D Lf

�
Lk�1
f h

�
:

The Lie derivative of dh with respect to the vector field f is defined by

Lf .dh/ D
�
@.dh/T

@x
f

�T

C .dh/
@f

@x
:

One may easily verify that these Lie derivatives obey the following so-called Leibniz
formula:

LŒf;g�h D hdh; Œf; g�i D LgLf h � Lf Lgh:

Furthermore, the following relation is valid:

dLf h D Lf .dh/ :

We consider a nonlinear system described as follows:

� P� D f .�/C g.�/u;
y D h.�/;

(1.12)

where � 2 R
n is the state of the plant, y 2 R is a measurable output, and f; g; h are

smooth functions. If the system has uniform relative degree n, i.e.,

Lgh.�/ D � � � D LgL
n�2
f h.�/ D 0; LgL

n�1
f h.�/ ¤ 0;
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then there exists a mapping

� D T .�/ (1.13)

that can transform the system (1.12) into the following observer canonical form:

P�i D �iC1; i D 1 � � �n � 1;
P�n D ˚.�; u/;
y D �1;

(1.14)

where ˚.�; u/ is a continuous nonlinear function.
Consider again the system (1.4), but now we look for a local transformation by

means of geometric control techniques. If we put the system (1.4) in the form (1.14),
we obtain f .x/ D .�x2 � x3; x1; a.x2 � x22/ � bx3/T , g.x/ D .0; 0;�ax22/, and
h.x/ D x2. Then we achieve the following change of coordinates:

�1 D h.x/ D x2;

�2 D Lf h.x/ D x1; (1.15)

�3 D L2f h.x/ D �x2 � x3:

Finally, in the new coordinates, the system (1.4) appears as

P�1 D �2;

P�2 D �3;

P�3 D ��2 � a.�1 � �21/C b.��3 � �1/;
y� D �1;

(1.16)

which is in the same form as appeared in Sect. 1.1, but now it was obtained via
geometric techniques. As we said at the beginning, we will use this procedure in
Chaps. 3 and 6 to construct sliding-mode observers.

In the previous section, we used dynamical feedback control to solve the tracking
control problem between Chua and Rössler systems. To end this section, we present
an application of static feedback control to stabilize the system (1.4), which can be
written as Eq. (1.12) so that we obtain

2

4
Px1
Px2
Px3

3

5 D
2

4
�x2 � x3

x1
ax2 � bx3

3

5C
2

4
0

0

�ax22

3

5 u: (1.17)
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From (1.16), we have the Rössler system in new coordinates:

P�1 D �2;

P�2 D �3;

P�3 D ��2 � a�1 C b.��3 � �1/C a�21u:

(1.18)

Then the static feedback control that stabilizes (1.18) is given by

u D 1

a�21
.b�3 C �2 C .1C a C b/�1/: (1.19)

Changing the control from the new coordinates to the original coordinates, we
achieve the following equation, which stabilizes (1.17):

u D 1

ax22
.�bx3 C x1 C .a C 1/x2/: (1.20)

Note that it is possible to proceed in two ways: We can stabilize the system via
Eq. (1.19) in the new coordinates and then change to original coordinates, or we
can first change to original coordinates and then stabilize the system by means of
Eq. (1.20) (Figs. 1.6 and 1.7).
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Fig. 1.6 Stabilization of the Rössler system in the original coordinates
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Fig. 1.7 Stabilization of the Rössler system in the new coordinates

1.3 Synchronization of Chaotic Systems

Consider now a type of nonlinear system whose steady-state behavior is more
complicated and cannot be described simply as an equilibrium, periodic oscillation,
or almost-periodic oscillation. This motion is usually referred to as chaos, and
systems that exhibit this behavior are called chaotic systems. Some of these chaotic
motions exhibit randomness, despite the deterministic nature of the system [15].

1.3.1 Attractors

A system whose behavior tends to evolve toward a set of numerical properties, this
set is said an attractor. That is, when the trajectories of a system get close enough to
the attractor, those values will remain close even if subjected to a slight perturbation.

Regular attractors act as limit cycles, in that the trajectories circle around a
limiting trajectory that they asymptotically approach but never reach.

Strange attractors have two properties that describe their behavior: the trajecto-
ries on the attractor remain confined to a bounded region of phase space, and they
separate exponentially fast from their neighbors. This raises the following question:
how can trajectories diverge endlessly and yet stay bounded? The next example will
answer this question intuitively.
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Consider a nonuniform mass (set of initial conditions). A strange attractor
typically arises when the flow contracts the mass in some directions (reflecting
the dissipation in the system) and stretches it in others (leading to a sensitive
dependence on initial conditions). The mass cannot stretch forever, and the distorted
mass must therefore be folded back on itself to remain within the bounded region
[27].

Strange attractors were thus called because they are often fractal sets. Nowadays,
the dynamical property of sensitive dependence on initial conditions is considered
more important than the geometric property of fractality.

As a example of a strange attractor, we can think of Chua’s circuit. Chua
introduced the concept of a “double scroll” as a way to describe the “anatomy”
of the attractor of his circuit. The structure of Chua’s attractor is described as two
sheetlike objects curled together into a spiral form with infinitely many rotations
while maintaining some space between the two scrolls that gradually decreases, thus
causing them to meet eventually at some limit point. Thus Chua’s attractor provides
a definition of a double-scroll attractor [16].

1.3.2 Synchronization

Synchronization of chaos occurs in a process wherein two (or many) chaotic systems
(either equivalent or inequivalent) have a common behavior due to coupling or
forcing (periodic or noisy) of some property of their motion. The idea underlying
the phenomenon of synchronization of chaos is that two chaotic systems may evolve
on different attractors, but when coupled, they initially start on different attractors
and then somehow eventually follow a common trajectory. Such synchronization
between two systems is achieved when the trajectories of the systems are equal,
which is the case when one of the two systems changes its trajectory to follow that of
the other system or when both systems follow a new common trajectory [1, 10, 11].

A very important aspect in chaos theory is the synchronization of chaotic sys-
tems. After Pecora and Carroll [22] demonstrated that two apparently random and
unpredictable chaotic behaviors can merge into a single trajectory, new expectations
arose for chaos theory regarding the control of electrical and mechanical systems, as
in the understanding and prediction in geophysical systems such as the atmosphere
and ocean.

The phenomenon of synchronization of chaotic systems was at first thought
impossible, because the solutions of such systems with nearby initial conditions
diverge rapidly and moreover, are uncorrelated. However, in the work of Pecora and
Carroll, it was shown that synchronization is possible.

One motivation for synchronization is the ability to send messages using chaotic
secure communication systems. Such synchronized systems usually consist of two
parts: a generator of chaotic signals (master) and a receiver (slave). A well-known
example is the frequency synchronization of oscillating or rotating bodies. This pro-
cess is known as natural synchronization. In other cases, to achieve synchronization,
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it is necessary to introduce special actions or impose some restrictions. We then
speak of forced or controlled synchronization.

Since chaotic systems are extremely sensitive to initial conditions, one might
conclude that synchronization is infeasible, since in real systems, it is impossible to
reproduce identical initial conditions for two similar systems. However, since 1990,
with the experimental verification obtained by Pecora and Carroll, it became clear
such that a situation was indeed feasible. Usually, synchronization of two or more
chaotic systems is determined by the analysis of the error synchronization dynamics
[19].

1.3.3 Some Examples of Synchronization

As a simple example, consider two identical Lorenz chaotic systems:

Px1 D ��.x2 � x1/;

Px2 D �x1 � x2 � x1x3; (1.21)

Px3 D x1x2 � ˇx3;

and

Py1 D ��.y2 � y1/;

Py2 D �y1 � y2 � y1y3; (1.22)

Py3 D y1y2 � ˇy3;

coupled as follows (see Fig. 1.8): Suppose a driving Lorenz system transmits a signal
to a second Lorenz system (response system), and let that signal be the x-component
of the first system. Wherever there is an x-component in the second system, we
replace it with the signal from the first system:

Py1 D ��.y2 � x1/;
Py2 D �x1 � y2 � x1y3; (1.23)

Py3 D x1y2 � ˇy3:

Fig. 1.8 Synchronization
scheme
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Fig. 1.9 No synchronization

This construction is called complete replacement. Note that we have replaced y1 by
x1 in the above dynamics. This procedure gives the following augmented system,
where the dynamics of Py1 are omitted:

Px1 D ��.x2 � x1/;
Px2 D �x1 � x2 � x1x3;

Px3 D x1x2 � ˇx3;

Py2 D �y1 � y2 � y1y3; (1.24)

Py3 D y1y2 � ˇy3:

We can view x1 as a driving signal for the second system. From arbitrary initial
conditions, we will see that y2 converges to x2, and y3 converges to x3, as the system
evolves. As time increases, the two equalities x2 D y2 and x3 D y3 arise, which
means that both systems remain equal to each other as the system evolves. This
situation is referred to as identical synchronization.

Figure 1.9 shows a phase plot with two different attractors for the states x2,
x3, y2, y3 for the two identical Lorenz systems described in Eqs. (1.21) and
(1.22). The trajectories of both systems unfold on different attractors, because
the initial conditions are different (sensitivity to initial conditions), and there is
no coupling between them, so they evolve differently. In Fig. 1.9, the systems
are not synchronized. When the two Lorenz systems are coupled as described by
Eq. (1.24), the two systems with different initial conditions will eventually become
synchronized, as shown in Fig. 1.10.
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1.3.4 Types of Synchronization

The coupling types are as follows:

1. Unidirectional coupling, whereby a system is subdivided into two subsystems,
one of which leads while the other follows. The response of the slave system
is forced to follow the dynamics of the driver system. In other words, the
coupling does not alter the behavior of one of the two systems, so the resulting
configuration becomes a unidirectional link. This type of configuration is known
as “master–slave.” An example of this configuration occurs in application to
secure communications.

2. Bidirectional coupling, whereby both subsystems are coupled with another in
some way so that their trajectories are mutually influenced by each other’s
behavior. A typical example occurs in lasers with feedback [25].

The most important type of synchronizations are as follows [23]:

• Complete synchronization.
• Generalized synchronization.
• Phase synchronization.
• Lag synchronization.

1.4 Complete Synchronization

We have said that two identical chaotic system are in a state of complete syn-
chronization if the states of both systems coincide and vary chaotically in time.
This is achieved by coupling both systems with the differences of the states in
the corresponding dynamics. When this occurs, the coupling tends to make the
corresponding state values equal. As a consequence, if the state values are equal,
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then neither system will feel the coupling of the other. When there is a set of initial
conditions such that the systems eventually evolve identically in time, the systems
are said to be completely synchronized. Other names are given in the literature, such
as conventional synchronization and identical synchronization.

As an example, consider the simplest case of chaos synchronization, whereby
the coupling between the systems is unidirectional. However, in realistic situations,
oscillators will often be coupled reciprocally when the dynamics of each system
affects the oscillations in the other system through coupling. Consider the two
mutually coupled Rössler systems

Px1 D �!1y1 � z1 C C.x2 � x1/;
Py1 D !1x1 C ˛y1; (1.25)

Pz1 D ˇ C z1.x1 � �/;

Px2 D �!2y2 � z2 C C.x1 � x2/;
Py2 D !2x2 C ˛y2; (1.26)

Pz2 D ˇ C z2.x2 � �/:

Here x1; x2; y1; y2; z1; z2 are the states of the first and the second oscillators; ˛,
ˇ, and � are the parameters governing the individual dynamics of the systems; C
defines the strength of coupling between the oscillators; and !1; !2 determine the
main frequencies of oscillations in the respective subsystems. Note that the systems
are coupled only in the dynamics corresponding to the states x1 and x2, but this
action of coupling ˙.x2 � x1/ is sufficient to synchronize both systems. We choose
the parameter values of ˛, ˇ, and � such that at C D 0, both systems demonstrate
chaotic oscillations, namely ˛ D 0:165, ˇ D 0:2, � D 10.

1.5 Phase Synchronization

A periodic oscillator can be simply characterized by its maximum amplitude A and
its frequency !. The phase for every time t is simply !t . Synchronization of the
phase of a periodically driven chaotic system means that in some way, the phase of
the oscillator becomes modified to follow the phase of a force. The general way to
see this is the following. Assume the dynamics

Px D f .x/C p.t/;

where f .x/ contains the dynamics of the chaotic oscillator, and p.t/ is a periodic
oscillator. The idea is that the complete system remains chaotic, but its dynamics
become modified in such a way that the phase of the chaotic attractor meets that
of the applied force (periodic oscillator). It is worth mentioning that the concept of
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the phase of a chaotic oscillator is not as simple as that of the phase of a periodic
oscillator.

The concept of phase of oscillations is easy to understand if one considers
harmonic oscillations p.t/ D A cos.˝t C '0/. These oscillations are characterized

by the amplitude A and have period T D 2	

˝
. The argument �.t/ D ˝t C '0 is

called the phase.

1.6 Lag Synchronization

It has been shown that when nonidentical chaotic oscillators are weakly coupled,
the phases can be locked while the amplitudes remain highly uncorrelated [23].
But what happens when the coupling strength becomes larger? One would expect
that with stronger coupling, a relationship between amplitudes might be established.
Indeed, it has been demonstrated that there exists a regime of lag synchronization
whereby the states of two oscillators are nearly identical, but one system lags in
time behind the other. For intermediate coupling strengths, an interesting state can
be observed: the states of two interacting systems nearly coincide if one is shifted
in time x1.t/ � x2.t � �/. Finally, with a further increase of coupling, the time shift
decreases, and the regime tends to complete synchronization.

1.7 Generalized Synchronization

When an essential difference between the coupled systems exists, there is then
no hope of having a trivial manifold in the phase space attracting the system
trajectories, and therefore it is unclear whether nonidentical chaotic systems can
synchronize. Two central issues are “milestones” of the subject. The first is that one
should generalize the concept of synchronization to include nonidentity between the
coupled systems. The second is that one should design some tests to detect it. This
phenomenon is called generalized synchronization.

Generalized synchronization (GS) can be interpreted as the suppression of the
dynamics of the driven system by the driving one, so that the “slave” system
follows its “master.” We discuss the GS of nonlinear systems that are completely
triangularizable. For this class of systems, we use a dynamic feedback control that
stabilizes the synchronization error dynamics.

In order to define the generalized synchronization (GS) of a coupled system, the
GS problem is stated as follows: Consider two nonlinear system in a master–slave
configuration whereby the master system is given by

Pxm D Fm.xm; um/;

Pym D hm.xm/; (1.27)
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and the slave by

Pxs D Fs.xs; us.xs; ym//;

Pys D hs.xs/; (1.28)

where xs D .x1s ; : : : ; xns / 2 R
ns , xm D .x1m ; : : : ; xnm/ 2 R

nm , hs W R
ns ! R,

hm W Rnm ! R, um D .u1m ; : : : ; umm/ 2 R
mm , us W Rns 	 R ! R, ym ; ys 2 R, Fs ,

Fm, hs , hm are assumed to be polynomial in their arguments.
This is a more general case, because systems (1.27) and (1.28) are not necessarily

affine nonlinear systems. Indeed, the dynamics of the slave system does not need to
be expressed as a linear part and a nonlinear part as in [22], where the nonlinear
vector function is required to satisfy a Lipschitz condition.

Definition 1.8 (Generalized Synchronization) Slave and master systems are said
to be in a state of GS if there exist a differential primitive element that generates a
transformationHms W Rns ! R

nm with Hms D ˚�1
m ı˚s and an algebraic manifold

M D f.xs; xm/jxm D Hms.xs/g along with a compact set B � R
nm 	 R

ns with
M � B such that their trajectories with initial conditions in B approach M as
t ! 1.

The definition of GS leads us to the following criterion: limt!1jjHms.xs/ �
xmjj D 0. It should be noted that identical or complete synchronization is a
particular case of GS, that is, the transformationHms is the identity.

In this chapter, we consider the master–slave configuration. Its main character-
istic is that the link is unidirectional, i.e., the signal is transmitted from the master
system to the slave system. Because of this, some authors use terminology from the
theory of transceivers.

The synchronization of chaotic systems is a regime whereby after a time of
transmission, two coupled chaotic systems exhibit identical chaotic oscillations. The
synchronization can be solved from the point of view of control theory, by designing
a slave system using a state observer that is able to estimate the variables of the
master system.

We now briefly introduce the chaotic systems that will appear in this book.

1.8 Some Classical Chaotic Systems

1.8.1 Lorenz System

The set of differential equations called a Lorenz system derives from the work of the
meteorologist/mathematician Edward N. Lorenz in his study of thermal variations
in an air cell. The dynamics of a Lorenz system is represented as follows [5, 19]:
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Fig. 1.11 Lorenz system

The system of differential equations Lorenz used was

Px1 D ��.x2 � x1/;

Px2 D x1 � x2 � x1x3; (1.29)

Px3 D x1x2 � ˇx3;

where � , , and ˇ are positive parameters that denote physical characteristics of air
flow. The variable x1 corresponds to the amplitude of convective currents in the air
cell, x2 to the temperature difference between rising and falling currents, and x3 to
the deviation of the temperature from the normal temperature in the cell. A Lorenz
system exhibits sensitivity to initial conditions and the presence of limit cycles that
repeatedly double their period as  is varied in one direction until the orbits begin
to behave chaotically. The plot of the trajectories of the Lorenz chaotic attractor
resembles a butterfly or figure-eight. This is shown in Fig. 1.11.

1.8.2 Rössler System

The Rössler’s attractor was designed by Otto Rössler [12] in 1976. His equations
were later found useful in modeling equilibria in chemical reactions. This attractor
has only one manifold. Figure 1.12 shows a Rössler chaotic system.

Px1 D �.x2 C x3/;

Pyx2 D x1 C ax2; (1.30)

Pzx3 D b C x3.x1 � c/;

where a D b D 0:2 and c D 0:5.
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1.8.3 Chua System

Chua’s system was the first chaotic system observed in the laboratory [16, 20],
confirmed by computer simulations, and rigorously mathematically proven. This
system was created as an electric circuit with the following dynamical equations:

Px1 D ˛.x2 � h.x1//;

Px2 D x1 � x2 C x3; (1.31)

Px3 D �ˇx2;
where h is a piecewise-linear function. In Fig. 1.13, we can observe the behavior of
Chua’s system

h.x/ D
8
<

:

m1.x C 1/�m0; x < �1;
m0x ; �1 � x � 1;

m1.x � 1/Cm0; x > 1;

(1.32)
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and ˛ and ˇ are bifurcation parameters. Note that Chua’s equations contain only one
scalar nonlinearity, which in this sense makes this system simpler than the Lorenz
attractor, since the Lorenz equations contain three nonlinear terms consisting of
products of two variables.

1.8.4 Colpitts System

The Colpitts oscillator [18], named after its inventor Edwin Colpitts, is another type
of LC oscillator design. The basic configuration of the Colpitts oscillator uses a
capacitor voltage divider as its feedback source. The two capacitors, C1 and C2, are
placed across a common inductor L, as shown, so that C1, C2, and L form a tuned
tank circuit. The advantage of this type of tank-circuit configuration is that with less
self and mutual inductance in the tank circuit, frequency stability is improved along
with the simpler design:

Px1 D x2 � F.x3/;
Px2 D u C x1 � bx2 � x3; (1.33)

Px3 D .x2 � d/
"

;

where u D v

v� is the input of the system, a D
q

L
C1

r
, b D Rq

L
C1

, d D
q

L
C1
I0

v�
, " D C2

C1
,

and the nonlinear equation is given by

F.x3/ D
� �a.x3 C 1/; x3 � �1
0 ; x3 � �1: (1.34)

The circuit parameters are L D 100�H, C1 D C2 D 47 nF, R D 45�, I0 D
5mA. We can observe the Colppits system in Fig. 1.14.
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1.8.5 Rikitake System

The Rikitake system is a three-dimensional vector field obtained experimentally
from a two-disk dynamo apparatus, which models the Earth’s geomagnetic field
and is used to explain the known irregular switch in its polarity. The system has a
three-dimensional Lorenz-type chaotic attractor around its two singular points [14].
However, this attractor is not bounded by any ellipsoidal surface as in the Lorenz
attractor:

Px1 D ��x1 C x2x3;

Px2 D ��x2 C .x3 � a/x1; (1.35)

Px3 D 1 � x1x2;

where a and � are parameters that we will assume to be nonnegative. The Rikitake
chaotic system is a simple three-dimensional quadratic autonomous chaotic system,
which can generate complex two-scroll chaotic attractors simultaneously. We can
observe the Rikitake system in Fig. 1.15.

1.8.6 Duffing System

Duffing’s oscillator was introduced in 1918 by G. Duffing. In practice, one
would like to understand the route to chaos in systems described by partial
differential equations, such as flow in a randomly stirred fluid. This is, however,
very complicated and difficult to treat either analytically or numerically. Here we
consider an intermediate situation whereby the dynamics is described by a single
ordinary differential equation, called the Duffing equation [8]. The Duffing equation
describes the motion of a classical particle in a double-well potential.
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The most general forced form of the Duffing equation is

Rx C ı Px C .ˇx3 ˙ !20x/ D 
 cos.!t C �/; (1.36)

where ı controls the size of the damping, 
 controls the amplitude of the periodic
driving force, ! controls the frequency of the periodic driving force. For ˇ > 0, the
equation represents a “hard spring,” and for ˇ < 0, it represents a “soft spring.” If
we take ˇ D 1, !0 D 1, reset the clock so that � D 0, and introduce a minus sign,
it can be written as a system of first-order ordinary differential equations as

Px1 D x2;

Px2 D x1 � x31 � ıx2 C 
 cos.!t/: (1.37)

Figure 1.16 shows the trajectories of a Duffing chaotic system.

1.8.7 Van der Pol System

The Van der Pol oscillator is a nonconservative oscillator with nonlinear damping.
Energy is dissipated at high amplitudes and generated at low amplitudes. As a result,
there exist oscillations around a state at which energy generation and dissipation
balance. It has been used in the study and design of many models, including such
biological phenomena as the heartbeat and neurons, acoustic models, and radiation
of mobile phones, and as a model of an electrical oscillator [4].
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The Van der Pol oscillator is described by the autonomous system

Px1 D x2 � �
�
x31
3

� x1
�

;

Px2 D �x1: (1.38)

That is, it is not volume-preserving except when � D 0. If � D 0, the equation
becomes Rx C Px D 0, the simple harmonic oscillator, which is conservative.

Figure 1.17 shows the behavior of the Van der Pol system.

1.9 Fractional-Order Systems

Fractional calculus is a mathematical topic whose history goes back more than 300
years. Its application to physics and engineering, however, has been reported on only
in recent years. It has been found that such in interdisciplinary fields, many systems
can be described by fractional differential equations. For instance, fractional deriva-
tives have been widely used in the mathematical modeling of viscoelastic materials.
Some electromagnetic problems are described using fractional integrodifferential
operators. The anomalous diffusion phenomena in inhomogeneous media can
be explained by a noninteger-derivative-based equation of diffusion. Study of
fractional-order systems has attracted increasing attention in recent years, and it
has been found that some such systems can demonstrate chaotic behavior.

The fractional calculus can be considered a generalization of the conventional
calculus. That is, fractional calculus is a generalization of integration and differenti-
ation to noninteger orders, which can be expressed by means of the fundamental
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operator aD
r
t , where a and t are the limits of the operation, and r 2 R. It is

important to mention that the meaning of the operator depends on whether r is
positive or negative, which correspond respectively to the operations of derivation
and integration [3]:

aD
r
t D

8
ˆ̂
<

ˆ̂
:

dr

dtr
r > 0;

1 r D 0;
R t
a
.d�/�r r < 0:

(1.39)

1.9.1 Fractional-Order Operator Block in Simulink

For numerical simulation of fractional-order systems, we used a toolbox in Matlab/
Simulink called Ninteger. It uses an approximation in the frequency domain
(rational transfer function) of a fractional-order derivative:

C.s/ D ksq; q 2 R:

The method for polynomial approximation is done using Matlab’s CRONE
toolbox, which uses a recursive distribution of N poles and N zeros:

C.s/ D k0
NY

nD1

1C s=!zn

1C s=!pn
;

where k0 is a gain setting such that if k D 1, then j C.s/ jD 0 dB in 1 rad/s. The
poles and zeros are found in the range Œ!l I!h� and are given for a positive value
of q:

˛ D .!h=!l /
q
N ; � D .!h=!l/

1�q
N ;

!z1 D !
p
�; !zn D !p;n�1�; n D 2; : : : ; N;

!pn D !z;n�1˛; n D 1; : : : ; N:

For a negative q, the roles of the zeros and poles are exchanged.
The Ninteger operation in the Matlab toolbox can be seen in Fig. 1.18.
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Fig. 1.18 Basic function of
block Ninteger

1.10 Why Fractional Order?

The question then is this: can we give a deterministic natural assumption in some
known cases to justify the use of fractional systems? The answer to this question is
yes. Let us consider the following population dynamics, which is a classical model
for competition between two species with population densities x and y:

dx

dt
D x.k1 � 1x � ˛1y/; (1.40)

dy

dt
D y.k2 � 2y � ˛2x/; (1.41)

where k1, k2, 1, 2, ˛1 y ˛2 are positives constants.
In this model, we assume the following two hypotheses:

1. Two towns x and y each grow in proportion to their size, which in standard

notation is given by
dx

dt
D k1x.t/,

dy

dt
D k2y.t/, or equivalently, x.t/ D C1e

k1t ,

y.t/ D C2e
k2t . Then the evolution of the populations over time follows a

classical exponential law.
2. When one population grows beyond a certain point, then the other decreases,

and conversely, which justifies the nonlinear terms of type x. Furthermore, the
average of the two populations is limited by nature, so that those populations
cannot grow indefinitely large, which explains the nonlinear terms of type x2

and y2.
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When one understands these assumptions, it is clear that growth can be of an
exponential nature but not necessarily classical. For example, the populations x
and y could grow as a generalized exponential: x.t/ D C1E˛.k1t

˛/, y.t/ D
C2Eˇ.k2t

ˇ/, where C1, C2, k1, and k2 are real constants, and 0 < ˛, ˇ � 1. There
are other classic exponential generalizations that may be used in real models.

Thus, we could replace the first instance of the hypothesis by x.t/ D
C1E˛.k1t

˛/, y.t/ D C2E˛.k2t
˛/, which is equivalent to introducing a Caputo

fractional derivative: .aD˛
t x/.t/ D k1x.t/, .aD˛

t y/.t/ D k2y.t/.
We thus arrive at the following generalized fractional mode:

aD
˛
t x D x.k1 � 1x � ˛1y/; (1.42)

aD
˛
t y D y.k1 � 1y � ˛1x/; (1.43)

where k1, k2, 1, 2, ˛1, and ˛2 are positive real constants.
It is possible to find examples in which the regular model is not accurate enough

and the fractional model might provide a better approximation. Examples include
the uncontrolled growth of cancer cells and the slow growth of human populations
in unfavorable environments such a war and epidemic.

1.11 Fractional Circuit

In this section, we show a physical circuit for a fractional chaotic Rössler system.
Its dynamics is defined as follows:

x
.˛/
1R D �.x2R C x3R/;

x
.˛/
2R D x1R C aRx2R; (1.44)

x
.˛/
3R D 0:2C x3R.x1R � 10/;

where ar D 0:63 and ˛ D 0:90.
We can see in Fig. 1.19 the trajectories of the Rössler system.

Fig. 1.20 represents Eq. (1.44),
1

s.˛/
was made on the fractional Rössler as a

representative example of the circuit implementation of a fractional.

Using the method of A. Charef [7], we can obtain an approximation of
1

s.0:9/
with

an error of about 2 dB:

H.s/ D 2:2675.s C 1:292/.s C 215:4/

.s C 0:01292/.sC 2:154/.s C 359:4/
: (1.45)

TheF block in the feedback of the integrator in Fig. 1.20 represents the fractional
integrator (1.45) shown in Fig. 1.21.
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Fig. 1.19 Simulation of Rössler fractional system in Simulink: (a) x1R � x2R, (b) x1R � x3R, (c)
x2R � x3R

Fig. 1.20 Rössler’s fractional circuit system
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Fig. 1.21 Circuit of a

fractional integrator
1

s0:9

Fig. 1.22 Rössler fractional
circuit

The circuit is designed to show a Rössler fractional-order system, where AD633
is a multiplier with a coefficient output of 0:1, and the LM741 circuit is an
operational amplifier. We can obtain the equations of a fractional Rössler system
in the Laplace domain as follows:

x1.s/

F.s/
D R3

C0R4

�

� R10

R9R1
x2.s/ � R17

R16R2
x3.s/

�

; (1.46)

x2.s/

F.s/
D R7

C0R8

�
x1.s/

R5
C x2.s/

R6

�

; (1.47)

x3.s/

F.s/
D R14

C0R15

�
0:2

R11
x2.s/� R17

R16R12
x3.s/C kx3.s/x1.s/

R13

�

; (1.48)

where k is the output constant of the AD633 multiplier (Fig. 1.22). The simulation
was performed on the Workbench / Multisim 11.0. As can be seen, the physical
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Fig. 1.23 Phase plane (a) x1R � x2R, (b) x1R � x3R and (c) x2R � x3R

trajectories in Fig. 1.23 are similar to those obtained by numerical simulations in
Fig. 1.19.
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Chapter 2
A Model-Free-Based Proportional
Reduced-Order Observer Design
for the Synchronization of Lorenz Systems

Abstract In this chapter, we deal with the synchronization problem of a Lorenz
system using a proportional reduced-order observer design in the algebraic and
differential settings. We prove the asymptotic stability of the resulting error system,
and by means of algebraic manipulations, we obtain estimates of the current states
(master system). In this chapter, the construction of a proportional reduced-order
observer is the main ingredient in our approach. Finally, we present simulations to
illustrate the effectiveness of the suggested approach.

2.1 Introduction

In recent years, synchronization of chaotic systems has received a great deal of
attention among scientists in many fields [1–5]. As is well known, the study of the
synchronization problem for nonlinear systems has been very important from the
nonlinear sciences point of view, in particular the applications to biology, medicine,
cryptography, secure data transmission, and so on. In general, synchronization
research has been focused onto two areas. The first is related to the employment
of state observers, whereby the main application lies in the synchronization of
nonlinear oscillators. On the other hand, the use of control laws makes it possible
to achieve synchronization between nonlinear oscillators with different structures
and orders [6]. Of particular interest is the connection between the observers for
nonlinear systems and synchronization, which is also known as a master–slave
configuration. Thus, the chaos synchronization problem can be posed as a one-
observer design in which the coupling signal is viewed as the output, and the
slave system as the (reduced-order) observer. In other words, basically, the chaos
synchronization problem can be formulated as follows. Given a chaotic system that
is considered the master (or driving) system, and another identical system, given as
the slave (or response) system, the aim is to force the response of the slave system to
synchronize with the master system [1, 2]. The idea is to use the output of the master
system to control the slave system so that the states of the slave system follow the
states of the master system asymptotically.

In this procedure, the construction of a full-order observer is unnecessary; that is,
we construct a reduced-order observer (so-called model-free based observer) using

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
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the algebraic observability condition (AOC) applied to the estimation problem.
The methodology proposed consists in the following. Define first a function as an
additional state of the original system; this function is given in terms of the states.
The dynamics of this new state is not known. The original system is then converted
to an extended system in which the dynamics of the additional state is not known
and supposed to be bounded. The original problem is then an observation problem,
where the aim is to observe this additional state of the system. Since the dynamics
of this new state is not known, a reduced-order observer for the unknown part of the
system is proposed. In particular for its simplicity, a model-free-based proportional
reduced-order observer is presented. Finally, we illustrate the effectiveness of the
suggested approach with a Lorenz system.

The main contribution in this chapter is to present a technique for the synchro-
nization problem. We propose a proportional reduced-order observer structure to
synchronize with a Lorenz system. As far as we know, this class of observers has
not been used in the literature. We introduce the algebraic observability concept
in the differential-algebraic setting to construct a reduced-order observer for the
synchronization problem. The methodology proposed is very simple and flexible.
In our procedure, the new proposed reduced-order observer employs neither the
well-known Kalman filter nor the Luenberger observer. Both require a copy of the
system and a proportional correction given by the measurement of the error (the
difference between the actual observed signal and its estimate). This reduced-order
proportional observer does not require an accurate model of the system, since its
structure just contains a proportional correction of the measurement of the error
and a so-called derivator of adjustable gain. It should be noted that the reduced-
order observer proposed is an alternative technique to the “observers” structure
given in the literature. In addition, some algebraic manipulations are required with
this technique. We note that some authors propose estimators without observer’s
gain, but we think it more natural to define an observer with a gain that attenuates
the observation error (the difference between the actual observed signal and its
estimate), and this observer must be able to be tuned through the observer’s gain.

Our intention in choosing as an example the Lorenz system is to clarify
the proposed methodology. However, it is worth mentioning that this method is
applicable not only to the Lorenz system. It can be applied to a class of systems
that satisfy the state representation described in Sect. 2.2. Additionally, it is clear
that this class of systems should satisfy Definition 2.1 and some hypotheses given in
Sects. 2.2.1 and 2.2.2. Among this class of systems we can mention some examples
such as the Duffing system, Chen’s chaotic system, Chua’s chaotic circuit, Rössler’s
chaotic system, and the Colpitts chaotic circuit.

The remainder of this chapter is organized as follows: In Sect. 2.2, we describe
the Lorenz system and introduce a basic definition on algebraic observability in a
differential-algebraic framework. A reduced-order observer structure to synchronize
with a Lorenz system is given as well. Section 2.3 presents some numerical results
applied to the Lorenz system. Finally, in Sect. 2.4, we will close the chapter with
some concluding remarks.



2.2 Synchronization of Lorenz System 35

2.2 Synchronization of Lorenz System

Consider the Lorenz chaotic system described by the following set of differential
equations:

Px1 D �.x2 � x1/;

Px2 D x1 � x2 � x1x3;

Px3 D x1x2 � ˇx3;

y D x1:

(2.1)

With the positive parameters � , , ˇ > 0, the system (2.1) exhibits chaotic
behavior. In the classical synchronization scheme, we assume that the system (2.1)
runs at the transmitter end and the state x1 (output system) is sent to the receiver
via the communication channel as the synchronization signal [1]. Furthermore, it is
assumed that the receiver has exact knowledge of the parameters � , , ˇ > 0 (i.e.,
there is no parametric uncertainty). The receiver’s task is to construct a dynamical
system to estimate or reconstruct the unknown signals x2 and x3 using the available
signal x1 and the known parameters. The basic practical question whether it is
possible to construct the signals x2 and x3. In what follows, we give an answer
to this question by introducing a basic definition related to the construction of the
states.

2.2.1 Algebraic Observability Condition

Before proposing the reduced-order observer, a definition concerning on AOC is
given. Consider the nonlinear system described by the following dynamic equations:

Px.t/ D f .x/;

y.t/ D h.x/;
(2.2)

where f 2 R
n is continuously differentiable and satisfies f .0/ D 0, x D

.x1; : : : ; xn/
T 2 R

n is a state vector, and y 2 R is a smooth nonsingular output.

Definition 2.1 The system (2.2) is said to be algebraically observable if the valued
vector

x.t/ D �.y; Py; Ry; : : : ; y.�//.t/: (2.3)

is defined on R
�C1 ! R

n for a positive integer � (� is a polynomial with unknown
y; Py; Ry; : : : ; y.�//. The above condition will be called the algebraic observability
condition (AOC).
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In subsequent chapters, we shall generalize this condition to cases such as
fractional and Liouvillian systems. The unknown state of the system can be included
in a new variable �.x/. Then the augmented system (nonlinear systems immersion
[7, 8]) can be considered instead of the original one, because we want to work on
the dynamics �, which is unknown. The immersion can be realized as follows:

Px.t/ D f .x; �.x//;

P�.x/ D �.x/;

y D h.x/;

(2.4)

where�.x/ is a function of the states. The problem now is to construct the variable
�.x/ and, once it is known, determine the value of the desired state.

Remark 2.1 In practice, identification of the variable depends on the variable choice
to be estimated.

We obviously need to impose certain conditions on �.x/ and �.x/. We propose
a procedure to solve the problem stated above. We will assume that the following
hypotheses are satisfied:

H1: �.x/ satisfies AOC property.
H2: the auxiliary variable 
 is a C1 real-valued function.
H3: �.x/ is bounded, i.e., 9 M 2 R

C such that k�.x/k � M;8x 2 ˝ � R
n.

The following equation represents the dynamics of the unknown state:

P�.x/ D �.x/: (2.5)

Remark 2.2 In our case, �.x/ can be chosen as x2 or x3.

The hypothesis H1 is satisfied, since the Lorenz system satisfies the AOC, that is,

Px1 D �.x2 � x1/ ) x2 D �.y; Py/ D .1=�/.�y C Py/; (2.6)

where � D 1, � > 0, and y D x1. In the same manner, for x3, we have

x3 D �.1=x1/.x2 C Px2/C : (2.7)

It is worth noting that x3 loses the algebraic observability property when x1 D 0.
In other words, we do not have the synchronization signal x1. We suppose, therefore,
that x1 ¤ 0. Then

x3 D �.y; Py; Ry/ D .� Ry� Py.�C1//=�yC�1; � D 2; � > 0; y D x1: (2.8)

Remark 2.3 From (2.6) and (2.7), it is clear that x2 and x3 satisfy the AOC, and
thus x2 and x3 are algebraically observable. Since the time derivatives Py and Ry are
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not available, we will design, with the help of some auxiliary variables (
 satisfying
H2), a reduced-order observer.

We propose a proportional reduced-order observer in order to estimate the
variable �.x/ and determine the value of the desired state.

2.2.2 Observer Synthesis

We are now in a position to establish the following lemma, which describes the
construction of a proportional reduced-order observer for the system (2.5), which is
algebraically observable (see Definition 2.1).

Lemma 2.1 The system

PO� D k.� � O�/ (2.9)

is an asymptotic model-free-based proportional reduced-order observer for sys-
tem (2.5), where O� denotes the estimate of �, k 2 RC determines the desired
convergence rate of the observer if the following hypothesis is satisfied (in general,
k can be chosen as a time-varying function, for instance in a Hardy field [9]):

H4: limt!t0 e
� R

kdt D 0 with t0 sufficiently large and limt!t0 sup.M=jkj// D 0.

Proof Let us define the estimation error as follows:

e.t/ D �.x/ � O�.x/: (2.10)

This yields the nonlinear dynamics of the estimation error given by

Pe.t/C ke.t/ D �.x/: (2.11)

Solving the above equation, we have

e.t/ D e� R
kdt

�

e0 C
Z t

0

e
R

kdt�.s/ds

�

; (2.12)

where e0 is an initial condition. Then with the assumptions H1–H4 and using the
triangle and Cauchy–Schwarz inequalities from expression (2.12), we obtain

0 � je.t/j � e� R
kdtje0j C e� R

kdt
Z t

0

je
R

kdt�.s/jds: (2.13)

Thus, as t ! t0 with t0 sufficiently large,

0 � lim
t!t0

sup je0j � je0j lim
t!t0

sup Œe� R
kdt�C lim

t!t0
sup

Œ
R t
0

je
R

kdt�.s/jds�

jeR kdtj : (2.14)
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From H1 and H4, we obtain

0 � lim
t!t0

sup je0j � lim
t!t0

sup
ŒM

R t
0

je
R

kdtjds�

jeR kdtj : (2.15)

This means that we can apply L’Hôpital’s rule for the case
1
1 as follows:

0 � lim
t!t0

sup je0j � lim
t!t0

sup
ŒM

R t
0

je
R

kdtjds�

jeR kdtj D lim
t!t0

sup
M

jkj : (2.16)

From H4, we obtain

0 � lim
t!t0

sup je.t/j � lim
t!t0

sup
M

jkj D 0: (2.17)

Then

lim
t!t0

je.t/j D 0: (2.18)

Therefore, the reduced-order observer given by (2.9) exhibits asymptotic behavior.
ut

Corollary 2.1 The dynamical system (2.9) along with

P
 D �.
; x/; 
0 D 
.0/ (2.19)

constitutes a proportional asymptotic reduced-order observer for the system (2.5),
where 
 is a change of variable that depends on the estimated and state variables.

Remark 2.4 In practice, since 
 is a variable that depends on x and �, its complexity
depends on the form selected for �.

Remark 2.5 It should be noted that an integral action can be added in the propor-
tional asymptotic reduced-order observer to achieve robustness in the observation
process.

Using Lemma 2.1, we have the following proportional reduced-order observer:

POx2 D kx2.x2 � Ox2/; kx2 > 0; (2.20)

where Ox2 denotes the estimate of x2, and kx2 2 RC determines the desired
convergence rate of the observer.

Replacing (2.6) in (2.20) leads to

POx2 D kx2

� Py
�

C y

�

� kx2 Ox2; � > 0: (2.21)
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Since the time derivative Py is not available, observer (2.21) cannot be imple-
mented. In order to overcome this problem, let us consider the following auxiliary
variable 
x2 :


x2 D �kx2
�
y C Ox2; � > 0: (2.22)

Then

Ox2 D 
x2 C kx2
�
y; � > 0: (2.23)

The time derivative of (2.23) is

POx2 D P
x2 C kx2

�
Py; � > 0: (2.24)

Then from (2.21), (2.23), and (2.24), it can be easily shown that the time derivative
P
x2 is given by

P
x2 D �kx2
x2 C
�

1 � kx2
�
kx2

�

y; 
x2.0/ D 
x20 ; �; kx2 > 0: (2.25)

Then the reduced-order observer is given by Eqs. (2.23) and (2.25).

Remark 2.6 It is clear that the solution of the dynamics of the auxiliary variable is
exponentially stable.

On the other hand, using the above technique, we estimate the variable x3.
From (2.1) and (2.6), we obtain

Px3 D y

� Py C �y

�

�

� ˇx3: (2.26)

Or in other words,

x3 D �1
ˇ

�

Px3 � y
� Py C �y

�

��

: (2.27)

Then the following observer is suggested:

POx3 D kx3.x3 � Ox3/; kx3 > 0: (2.28)

Replacing (2.27) in (2.28), we obtain

POx3 D kx3

��1
ˇ

�

Px3 � y

� Py C �y

�

��

� Ox3
�

: (2.29)
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It should be noted that Px3 is unknown and can be approximated by its estimate
POx3, which is valid only in a region where k Px3 � POx3k < �; � > 0. This yields the
following relationship:

POx3 D kx3

��1
ˇ

�
POx3 � y

� Py C �y

�

��

� Ox3
�

: (2.30)

Or in other words,

POx3
�

1C kx3

ˇ

�

� kx3

ˇ�
y Py D kx3

�
1

ˇ
y2 � Ox3

�

: (2.31)

By making some algebraic manipulations, we obtain

POx3 � kx3
.ˇ C kx3/�

y Py D kx3ˇ

ˇ C kx3

��
1

ˇ
� kx3
2.ˇ C kx3/�

�

y2

�
�

Ox3 � kx3
2.ˇ C kx3/�

y2
� �

: (2.32)

Then from (2.32) and the following change of variable follows


x3 D Ox3 � kx3
2.ˇ C kx3/�

y2; (2.33)

P
x3 D kx3ˇ

ˇ C kx3

��
1

ˇ
� kx3
2.ˇ C kx3/�

�

y2 � 
x3

�

: (2.34)

That is, the reduced-order observer to calculate Ox3 is given by the following
relationship:

Ox3 D 
x3 C kx3
2.ˇ C kx3/�

y2Iˇ; kx3 ; � > 0; (2.35)

P
x3 D kx3ˇ

ˇ C kx3

��
1

ˇ
� kx3
2.ˇ C kx3/�

�

y2 � 
x3

�

I 
x3.0/ D 
x3;0 : (2.36)

Remark 2.7 The proposed model-free-based proportional reduced-order observer
employs neither the well-known Kalman filter nor the Luenberger observer. Both
require a copy of the system and a proportional correction given by the measurement
of the error (the difference between the actual observed signal and its estimate).
This reduced-order proportional observer does not require an accurate model of the
system, since its structure just contains a proportional correction of the measurement
of the error and a so-called derivator of adjustable gain.

In what follows, we illustrate the performance of the reduced-order proportional
observer by means of numerical simulations.
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2.3 Numerical Results

In order to verify the effectiveness of the proposed methodology, we show the
convergence of the estimates to the current signals. We have considered the initial
conditions to the master system x1 D 1, x2 D 0, x3 D �5, and the initial conditions
to the slave system Ox2 D �5, Ox3 D 8. The parameters of the system are � D 10,
 D 28, ˇ D 8=3; the initial conditions of the auxiliary functions of the reduced-
order observer are 
x2 D �20, 
x3 D 8; and finally, the gain parameters in the
proportional reduced-order observer are fixed as kx2 D 150, kx3 D 250. The
convergence of the estimates to the true signals is shown in Fig. 2.1, and the error
synchronization is shown in Fig. 2.2.

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

Time (sec.)

x 3 
es

tim
at

e v
s 

x 3 
re

al

x
3estimate

x
3real

0 2 4 6 8 10

−10

0

10

20

30

Time (sec.)

x 2 
es

tim
at

e v
s 

x 2 
re

al
x

2estimate
x

2real

Fig. 2.1 Convergence of the estimates by means of a model-free-based proportional reduced-order
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2.4 Concluding Remarks

In this chapter, we have presented a model-free-based proportional reduced-order
observer to address the synchronization problem of the Lorenz system. A model-free
observer has the advantage of not requiring a copy of the system. In the next chapter,
a model-free sliding-mode observer is developed. In order to achieve robustness
against perturbations to the system and noisy measurements, we have proven the
asymptotic stability of the resulting error system, and by means of simple algebraic
manipulations, we construct the estimates of the slave system, which asymptotically
converge to the current states of the master system. Finally, we have presented a
simulation to illustrate the effectiveness of the suggested approach.
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Chapter 3
A Model-Free Sliding Observer
to the Synchronization Problem
Using Geometric Techniques

Abstract In this chapter, a sliding-mode observer is proposed for the synchroniza-
tion problem. This observer presents a simple structure that contains a pure sliding-
mode term that turns out to be robust against output noises as well as sustained
disturbances, while the slave system is a pure sliding-mode observer. Comparisons
with two other model-based observers, the Thau observer and Bestle–Zeitz observer,
are proposed. In this chapter, we use differential-geometric techniques. The perfor-
mance of these observers is shown by the examples of the Lorenz system and Chua’s
circuit.

3.1 Introduction

The main approaches related to the construction of asymptotic observers for
nonlinear processes use differential-geometric methods. The idea is to find a
state transformation to represent the system as a linear equation plus a nonlinear
term, which is a function of the system output. However, finding a nonlinear
transformation that places a system of order n into so-called observer canonical form
requires the integration of n coupled partial differential equations. Furthermore, this
approach needs accurate knowledge of the nonlinear dynamics of the system. Here,
in this chapter, we will present two observers based on geometric techniques: the
Thau observer [12] and Bestle–Zeitz observer [2]. Additionally, a sliding-mode
observer (SMO) is proposed for the synchronization problem, which presents a
simple structure that contains a sliding-mode term that turns out to be robust against
output noise as well as sustained disturbances, i.e., the slave system is a pure sliding-
mode observer. This observer does not require an accurate model of the system,
since its structure just contains a proportional correction of the sign function of
the measurement of the synchronization error. The main advantage of the observer
is that the sliding contribution of measurement error provides robustness against
perturbations to the system and noisy measurements with a high-gain-like condition.

Early works dealing with SMOs that consider measurement noise were by
Utkin and Drakunov [3]. They discussed the state estimation using sliding-mode
techniques. Anulova [1] treated an analysis of systems with a sliding mode in
the presence of noise. Slotine et al. [11] successfully designed the sliding-mode
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approach to construct observers that are highly robust with respect to noise in the
input of the system. But it turns out that the corresponding stability analysis cannot
be directly applied in situations with output noise (or mixed uncertainty). So it is
still a challenge to suggest a workable technique to analyze the stability of identifi-
cation error generated by sliding-mode-type (discontinuous nonlinearity) observers
[4–10, 13–15].

In this chapter, we propose a model-free observer, an SMO for the synchro-
nization problem, and compare our observer with the other two model-based
observers. The intention of choosing as two examples the Lorenz system and Chua’s
circuit (see Chap. 1) is to clarify the proposed methodology. However, it is worth
mentioning that this technique can be applied to many chaotic synchronization
problems.

The remainder of this chapter is organized as follows: in Sect. 3.2, we give some
definitions in a differential-geometric setting. In Sect. 3.3, we introduce the SMO
structure to solve the synchronization problem and compare it with the other two
observers. Section 3.4 presents some numerical results. Finally, in Sect. 3.5, we will
close the chapter with some concluding remarks.

3.2 Observer Canonical Form of a Nonlinear System

We consider a nonlinear system described as follows:

� P� D f .�/C g.�/u;
y D h.�/;

(3.1)

where � 2 R
n is the state of the plant, y 2 R is a measurable output, and f; g; h are

smooth functions. If the system has uniform relative degree n, i.e.,

Lgh.�/ D � � � D LgL
n�2
f h.�/ D 0; LgL

n�1
f h.�/ ¤ 0;

then there exists a mapping

� D T .�/ (3.2)

that can transform the system (3.1) into the following observer canonical form
(see Chap. 1):

P�i D �iC1; i D 1 � � �n � 1;
P�n D ˚.�; u/;
y D �1;

(3.3)

where ˚.�; u/ is a continuous nonlinear function. Here we consider the output
y D �1 C ı, with ı an additive bounded noise.
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3.3 Sliding-Mode Observer to the Synchronization Problem

Synchronization of chaotic systems can be classified into two types, called mutual
synchronization and master–slave synchronization according to the coupling con-
figuration. The former is a system with bidirectional coupling, and the latter has
unidirectional coupling (see Chap. 1). In this chapter, we consider the master–slave
configuration. It is also known as drive–response (see Fig. 1.8).

First consider a system described as follows:

˙ W
� Px D f .x/;

y D h.x/;
(3.4)

where x 2 R
n and y 2 R. Then consider any kind of observer for the system (3.4)

with state Ox. The system (3.4) will be the master, and the observer will be the slave.

Definition 3.1 The slave system synchronizes with the master system if

k x.t/ � Ox.t/ k�!
t!1 0

for almost all (with respect to Lebesgue measure) combinations of initial states of
the master and slave systems.

The SMO, to design the slave system, has the following form:

8
<

:

PO�i D O�iC1 Cmi�
�i sign.y � Oy/; i D 1 � � �n � 1

PO�n D mn�
�nsign.y � Oy/

Oy D O�1;
(3.5)

where 1 > � > 0, and the constantsmi are chosen such that the polynomialmn

nC

mn�1
n�1 C � � � C m1 D 0 has all its roots in the left half-plane. The function
sign.y � Oy/ is defined as follows:

sign.y � Oy/ D
8
<

:

1 if .y � Oy/ > 0;
�1 if .y � Oy/ < 0;
0 if .y � Oy/ D 0:

First, we consider a simple case in two dimensions. The slave is

:

O�1 D O�2 Cm��1sign.y � Oy/; m > 0
:

O�2 D m2��2sign.y � Oy/; (3.6)

where O�1, O�2 are the states in the slave system, and Oy is the estimate of the output y,
andm1 D m, m2 D m2, and � are small positive parameters.



46 3 A Model-Free Sliding Observer to the Synchronization Problem. . .

Since the output of the master system is y D �1 C ı, let us define the
synchronization error as

e1 D �1 � O�1
e2 D 1

m
.�2 � O�2/ : (3.7)

The recovered noise at the slave is

Oı D y � Oy D e1 C ı:

From (3.6) and (3.7), the synchronization dynamical error can be represented as

Pe D A�e �Ksign.Ce C ı/C�f;

with

A� D
��� m

0 ��
�

; K D m��1
�

1

m��1
�

;

� > 0; �f D
�

�e1
˚
m

C �e2

�

; C D 	
1 0



(3.8)

where � is a regularizing parameter and �f is an uncertainty term (or unmodeled
dynamic term).

The following assumptions are used for our theoretical results:

A1. There exist nonnegative constants L0f; L1f such that for every vector e, the
following generalized quasi-Lipschitz conditions holds:

k�f k � L0f C 	
L1f C �

�A�
�
�

 kek : (3.9)

A2. Information noise is assumed to be bounded as kık2� D ıT� ı � ıC < 1,
where� is a symmetric positive definite matrix.

A3. There exists a positive definite matrix Q0 D QT
0 > 0 such that the following

matrix Riccati equations hold:

PA� C AT�P C PRP CQ D 0; (3.10)

where

R D ��1
f C 2

�
��f

�
�L1f I; 0 < �f D �T

f ;

Q D Q0 C 2
	
L1f C �

�A�
�
�

2
I; I D identity matrix

(3.11)

has a positive definite solution P D PT > 0. Since P > 0, there exists k > 0
such that K D kP�1C T .
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Remark 3.1 Notice that the dynamic ˚.�1; �2/ in (3.3) is Lipschitz with respect
to �1 and �2, so assumption A1 is satisfied for chaotic systems. The measurement
is corrupted by a noise ı that is bounded, which is assumption A2. To calculate the
solution to the Riccati equation (3.10), the following parameters have been selected:

�f D �f I; L1f D �; R D
�
��1
f C 2�f �

�
I;

Q0 D q0I; Q D 	
q0 C 8�2



I:

With �f D 20, � D 0:0001, q0 D �2, we obtain

P D 10�3
�
3:16099 �0:22096

�0:22096 3:16099

�

> 0;

which satisfies assumption A3.

The main result in this chapter is the following theorem.

Theorem 3.1 The sliding-mode observer (3.6) can realize synchronization, and it
converges to the following residual set:

D" D fe j kekP � N�.k/g ; (3.12)

where P is a solution of the Riccati equations (3.10),

N�.k/ D

0

B
@

.k/
q	
k˛p


2 C .k/˛Q C k˛p

1

C
A

2

; (3.13)

where

.k/ D 2
�
��f

�
�L20f C 4k

�q
n��1

f

�
ıC

k˛p D k
	
�min

	
P�1=2C TCP�1=2



˛Q D �min
	
P�1=2QTQP�1=2
 > 0;

where n is the dimension of the chaotic system.

Proof We select the Lyapunov function candidate V.e/ as

V.e/ D kek2P D eT P e; 0 < P D PT ; (3.14)

and using the matrix inequality

XT Y C Y TX � XT�f X C Y T��1
f Y; (3.15)
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valid for every X; Y 2 R
n�m, 0 < �f D �T

f , it follows that

PV .e/ D 2eT P Pe D 2eT P
	
A�e �Ksign.Ce C ı/C�f




� 2eTPA�e � 2keT C T sign.Ce C ı/C 2eT P�f

� eT
�

PA� C AT�P
�
e � 2keT C T sign.Ce C ı/

CeT P��1Pe C�T f�f �f

� eT
�

PA� C AT�P C PRP CQ
�
e � eTQe

C
�
L20f C 	

L1f C �
�A�

�
�

2 kek2

�
2
�
��f

�
�

�2keT C T sign.Ce C ı/

D eT
�

PA� C AT�P C PRP CQ
�
e

�eTQe C 2
�
��f

�
�L20f � 2k .Ce/T sign.Ce C ı/

(3.16)

using

xT sign Œx C z� �
nX

iD1
jxi j � 2

p
n kzik :

Then

PV .e/ � �eT Qe C 2
�
��f

�
�L20f � 2k

 
nX

iD1
j.Ce/i j � 2pn kık

!

� �eT Qe � 2k
nX

iD1
j.Ce/i j C .k/;

where

.k/ D 2
�
��f

�
�L20f C 4k

�p
n��1

�
ıC:

Thus

PV .e/ � � kekQ � 2k˛P kekP C .k/; (3.17)

where

 
nX

iD1
j.Ce/i j

!2

�
nX

iD1
.j.Ce/i j/2 D kCek2 (3.18)

D �
�CP�1=2P�1=2e

�
�2 � ˛pe

T Qe
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with

˛P D �min
	
P�1=2C TCP�1=2
 � 0; (3.19)

so that from (3.17), we obtain

PV .e/ D �˛QV.e/� #
p
V.e/C ˇ; (3.20)

where

˛Q D �min
	
P�1=2QTQP�1=2
 > 0; (3.21)

# D 2k˛p; ˇ D .k/:

If the assumptions A1–A3 are fulfilled, then

�

1 � N�
V

�

C
! 0; (3.22)

where the function Œ��C is defined as

Œz�C D
�

z if z � 0

0 if z < 0:
(3.23)

The proof of this result is given in the appendix. The theorem actually states
that the weighted estimation error V.e/ D eT P e converges to the zone N�.k/
asymptotically. That is, it is ultimately bounded:

N�.k/ � eT Pe � eT1 Pe1:

ut
Remark 3.2 Because

N�.k/ D

0

B
B
B
B
B
B
@

2k�f kL20f
k

C 4
�q

n��1
f

�
ıC

v
u
u
t˛2p C

"
2k�f kL20f

k2
C 4

�q
n��1

f

�
ıC

k

#

˛Q C ˛p

1

C
C
C
C
C
C
A

2

; (3.24)

and since P is bounded, we can select � arbitrarily small (the gain of the
slave (3.8) becomes larger) in order to make k very large (since K D kP�1C T D
m��1

�
1

m��1

�
), so the first term of (3.24) goes to zero. Here ��1

f in A3 is any

positive matrix, which we can choose small enough that the second term of (3.24)
goes to zero.
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Remark 3.3 Although we have restricted ours attention to the case of second-
order chaotic systems, the observer construction and convergence analysis can be
extended to the n-dimensional case. The master system is

P�j D �jC1 j D 1; : : : ; n � 1

P�n D H.�/

y D �1

and the sliding-mode observer-based slave is constructed as

:

O�j D O�jC1 Cmj�
�j sign.y � Oy/ j D 1; : : : ; n � 1

:

O�n D mn�
�nsign.y � Oy/; (3.25)

where the constants mj are chosen such that the polynomial mn

n Cmn�1
n�1 C

� � � Cm1 D 0 has all its roots in the open left complex half-plane. As in the second-
order case, it can be proved that the synchronization error converges to any accuracy
by selecting sufficiently small values of the observer’s gain.

3.4 Model-Based Observers to the Synchronization Problem

Now we compare our model-free observer with other model-based observers for the
synchronization problem. The role of Lie derivatives in nonlinear state observation
problems will be considered.

3.4.1 Bestle–Zeitz Observer for the Synchronization Problem

We consider the class of time-invariant nonlinear systems described by (3.4). It will
be assumed that f is a C1 vector field in R

n and h is a C1 function. It is desirable
to find a bijective C1 nonlinear transformation T W Rn ! R

n, where

x D T .z/ (3.26)

such that system (3.4) may be transformed into the canonical form defined by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Pz D

2

6
6
6
4

0 : : : 0

1
: : :

:::

1 0

3

7
7
7
5

z �

2

6
6
6
4

f �
0 .z/
f �
1 .z/
:::

f �
n�1.z/

3

7
7
7
5

, f �.z/

y D �
0 : : : 0 1


z

: (3.27)
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Taking the derivative of (3.26) with respect to time yields

Px D @T

@z
f �.z/; (3.28)

where

@T

@z
D
�
@T

@z1
� � � @T

@zn

�

:

Making some algebraic manipulations and using the Lie derivative notation, it is
possible to obtain the following:

@T

@zk
D
�

adk�1f;
@T

@z1

�

.k D 1; : : : ; n/:

Thus it is now possible to express all the columns of
@T

@z
in terms of a single starting

vector
@T

@z1
[2]:

@T

@z
D
h�

ad 0f; @T
@z1

� �
ad1f; @T

@z1

�
: : :

�
adn�1f; @T

@z1

�i
: (3.29)

Now the following equation must be employed to obtain an expression for the

starting vector
@T

@z1
:

y D h.x/ D zn: (3.30)

Taking the partial derivative of (3.30) with respect to z yields

@h.x/

@x

@T

@z
D �

0 : : : 0 1

: (3.31)

Note that the first component of (3.31) may be written as

@h

@x

@T

@z1
D
�

dh;
@T

@z1

�

D L0f .dh/
@T

@z1
D 0: (3.32)
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Similarly, Leibniz’s formula may be used to simplify the second element of (3.31).
By repeated application of Leibniz’s formula and use of (3.29), the following matrix
involving the starting vector may be obtained:

2

6
6
6
6
4

L0f .dh/.x/

L1f .dh/.x/
:::

Ln�1
f .dh/.x/

3

7
7
7
7
5

@T

@z1
D

2

6
6
6
4

0
:::

0

1

3

7
7
7
5
:

The matrix

O.x/ D

2

6
6
6
6
4

L0f .dh/.x/

L1f .dh/.x/
:::

Ln�1
f .dh/.x/

3

7
7
7
7
5

is called the observability matrix of the system defined by (3.4). Thus the starting

vector
@T

@z1
is equal to the last column of O�1.

The observer in the new coordinate system is given by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

POz D

2

6
6
6
4

0 : : : 0

1

: : :
:::

1 0

3

7
7
7
5

Oz �

2

6
6
6
4

f �
0 .z/
f �
1 .z/
:::

f �
n�1.z/

3

7
7
7
5

�K. Oy � y/

Oy D �
0 : : : 0 1

 Oz

; (3.33)

where Oy and K D �
k0 : : : kn�1

T
. Define the error as

ez D Oz � z:

Hence the error satisfies the homogeneous differential equation

Pez D

2

6
6
6
4

0 : : : 0 �k0
1 �k1
: : :

:::

1 0 �kn�1

3

7
7
7
5
ez: (3.34)
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The characteristic polynomial of (3.34) is given by

p.s/ D k0 C k1s C � � � C kn�1sn�1 C sn: (3.35)

Thus we may easily assign the spectrum of (3.35) via an appropriate selection ofK .

3.4.2 Thau Observer for Synchronization

Consider the nonlinear system described by

� Px D Ax C f .x/C Bu;
y D Cx;

(3.36)

where f .�/ W Rn ! R
n is continuous; A 2 R

n�n, B 2 R
n�m, and C 2 R

p�n. The
nonlinear function f .�/ may contain linear terms in x. It is assumed that the pair
.A; C / is completely observable. Therefore, it is possible to find K 2 R

n�p such
that the eigenvalues of A0 D A � KC are in the open left half-plane. Let Ox denote
the estimate of the true state. Then Ox satisfies the equation

� POx D A0 Ox C f . Ox/C Ky C Bu
Oy D C Ox: (3.37)

Let e be defined by

e D Ox � x:

Thus e satisfies the differential equation

Pe D A0e C f . Ox/� f .x/ D A0e C f .x C e/ � f .x/: (3.38)

Since the spectrum of A0 is contained in the left half-plane, there exists for every
positive definite Q 2 R

n�n a unique positive definite P 2 R
n�n such that

AT0 P C PA D �2Q:

Next consider the Lyapunov-function candidate

V.e/ D eTPe:

The derivative of V.e/ evaluated along the solution of the error differential
equation (3.38) is given by

PV .e/ D PeT Pe C eT D 2eTQe C 2eT P Œf .x C e/ � f .x/�:
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It is necessary to impose an additional constraint to ensure that the function f .�/
is locally Lipschitz about the origin, that is, that there exists a positive constant L
such that

kf .x1/ � f .x2/k � Lkx1 � x2k

for all x1, x2 in some open region R containing the origin. Therefore, if e is
contained in R, then the following inequalities hold:

PV .e/ � �2eTQe C 2LkPekkek � .�2a C 2LkP k/kek;

where a is the minimum eigenvalue of Q, and kP k is the maximum eigenvalue
of P . Hence if

a

kP k > L; (3.39)

then e D 0 is an asymptotically stable equilibrium point of (3.38)

Remark 3.4 Model-based observers (Thau observer and Bestle–Zeitz observer)
require complete information about the master system. A Bestle–Zeitz observer
needs a complex transformation; the synchronization error can converge to zero.
The gain of a Thau observer is not difficult to obtain. The synchronization error
converges to a bounded zone. The model-free observer proposed in this chapter
does not require any information about the master system. It is robust to bounded
noise, but there is more chattering than with the model-based observers. We will
demonstrate these results in the following examples.

3.5 Two Synchronization Problems

3.5.1 Lorenz System

The Lorenz system is a nonlinear system with the following dynamics:

˙L W

8
ˆ̂
<

ˆ̂
:

Px1 D �.x2 � x1/;

Px2 D x1 C x2 � x1x3;

Px3 D x1x2 � ˇx3;

y D x1;

(3.40)

and it is well known that with � D 10,  D 28, and ˇ D 8
3
, the Lorenz system

exhibits chaos.
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3.5.1.1 Sliding-Mode Observer to the Synchronization
of the Lorenz System

The sliding-mode observer (SMO) cannot be applied directly to the Lorenz system.
Thus when we apply the transformation (3.2), the Lorenz system is represented in
the following observer canonical form:

Ṅ
LC W

8
ˆ̂
<

ˆ̂
:

Pz1 D z2
Pz2 D z3
Pz3 D f .z/
y D z1;

where f .z/ D �f.z2 � z1/Cf1.z/C z1f2.z/� z2f2.z/� z1Œz1f1.z/� f̌2.z/�� z3g
and f1.z/ D z2Cz1

�
; f2.z/ D  � 1 � z2.�C1/Cz3

z1
.

Now the SMO can be applied to the Lorenz system, and its dynamics can be
described as follows:

8
ˆ̂
<

ˆ̂
:

POz1 D Oz2 C k1sign.y � Oy/
POz2 D Oz3 C k2sign.y � Oy/
POz3 D k3sign.y � Oy/
Oy D Oz1:

(3.41)

We choose k1 D 100, k2 D 70, k3 D 100. The synchronization results are shown in
Figs. 3.1 and 3.2. The synchronization states in Fig. 3.2 show that the SMO can
be successfully applied to the synchronization problem, although there is some
chattering in the synchronization error (Fig. 3.1).

Fig. 3.1 Synchronization error of Lorenz system via SMO (sliding-mode observer)
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Fig. 3.2 Synchronization states of Lorenz system via SMO

3.5.1.2 Bestle–Zeitz Observer to Synchronization of Lorenz System

By applying the method described above, we have obtained the Jacobian of the
desired transformation for the Lorenz system:

@T

@z
D

2

6
4

0 0 1

0 1
�

� 1
�

� x1
�

ˇ

�x1
C x2�x1

x12

�

� 1
�x1

ˇ

�x1
C x2�x1

x12
�.x/

3

7
5 ;

where

�.x/ D x1

�
� ˇ

�
ˇ

�x1
C x2 � x1

x12

�

C  x1 � x2 � x1x3

x12

C
�

� ˇ

� x12
� 2

x2 � x1

x13
� x1

�2
�

� .x2 � x1/ :

We now have only to integrate, with T .0/ D 0, to obtain the desired transforma-
tion. Then, applying this transformation to the coordinate system yields the observer
canonical form of the Lorenz system:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Pz D
2

4
0 0 0

1 0 0

0 1 0

3

5 z �
2

4
f �
0 .z/
f �
1 .z/
f �
2 .z/

3

5

y D �
0 0 1


z

;



3.5 Two Synchronization Problems 57

where

f �
0 .z/

D �
�

1=2
z2 .t/

z3 .t/
� 1=2� ˇ � 1=2 �

�

z1 .t/

C 1=4
ˇ .z2 .t//

2

z3 .t/
� 3=4 ˇ2z2 .t/ � .1=2 ˇ � 2 �/ .z3 .t//

3

� .�ˇ � C 1=4 ˇ �2C 1=4 ˇ2� � 1=2 ˇ3 C 3=2 ˇ � C 1=4 ˇC 1=4 ˇ2/z3 .t/

f �
1 .z/ D .1=2C 1=2 �/ z2 .t/C .z3 .t//

3

� 	
�  � 1=2 ˇ � C 1=2� 1=2 ˇC 1=2 �2



z3 .t/

f �
2 .z/ D1=2 z2 .t/ � .�1=2� 1=2 ˇ � 1=2 �/ z3 .t/ :

Thus the Bestle–Zeitz observer is given by

8
ˆ̂
<

ˆ̂
:

POz D
2

4
0 0 0

1 0 0

0 1 0

3

5 Oz �
2

4
f �
0 .Oz/
f �
1 .Oz/
f �
2 .Oz/

3

5 �K. Oy � y/

Oy D �
0 0 1

 Oz
:

We chooseK D �
30 30 30

T
, and the synchronization results are shown in Fig. 3.3.

The synchronization error in Fig. 3.3 is very small, but it is from a model-based
observer, namely the Bestle–Zeitz observer. It requires complete information about
the Lorenz system.

Fig. 3.3 Synchronization error of Lorenz system via Bestle–Zeitz observer
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3.5.1.3 Thau Observer to Synchronization of Lorenz System

First, it is necessary to rewrite the system equations in the form required by the
method described above. Thus, the Lorenz system can be expressed as in (3.36)
using the following values:

A D
0

@
�� � 1

 �1 0

0 0 �ˇ

1

A ; f .x/ D
0

@
�x3

�x1x3
x1x2

1

A

B D
0

@
0

0

0

1

A C D 	
1 0 0



:

Thus the system is written as follows:

8
ˆ̂
<

ˆ̂
:

Px D
2

4
�� � 1

 �1 0

0 0 �ˇ

3

5 x C
2

4
�x3

�x1x3
x1x2

3

5

y D �
1 0 0


x

:

Therefore, the observer becomes
8
ˆ̂
<

ˆ̂
:

POx D
2

4
�� � 1

 �1 0

0 0 �ˇ

3

5 Ox C
2

4
� Ox3

� Ox1 Ox3
Ox1 Ox2

3

5 �K. Oy � y/

Oy D �
1 0 0

 Ox
:

We selectK D �
13 13 13

T
. The synchronization results are shown in Fig. 3.4. The

synchronization error in Fig. 3.4 is greater than that for the Bestle–Zeitz observer

Fig. 3.4 Synchronization error of Lorenz system via Thau observer
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in Fig. 3.3. Although it is from a model-based observer, the Thau observer requires
less information than the Bestle–Zeitz observer.

3.5.2 Chua’s Circuit

Some chaotic systems do not have the normal form (3.3), and we cannot apply a
sliding-mode observer directly to the slave. Such an system is Chua’s circuit

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

C1
�
�1 D G .�2 � �1/ � g.�1/C u

C2
�
�2 D G .�1 � �2/C �3

L
�
�3 D ��2

y D �3

; (3.42)

where g.�1/ D m0�1 C 1
2
.m1 �m0/

�ˇ
ˇ�1 C Bp

ˇ
ˇC ˇ

ˇ�1 � Bp
ˇ
ˇ

, �1, �2, and �3 denote

the voltages across C1, C2, and L. It is known that with C1 D 1
9
, C2 D 1, L D 1

7
,

G D 0:7, m0 D �0:5, m1 D �1:5, Bp D 1, the circuit displays a double scroll.
If we make the transformation � D T .�/ as

�1 D �3;

�2 D �L�2;
�3 D LG

C2
.�2 � �1/� L

C2
�3;

(3.43)

then Chua’s circuit assumes the normal form

�
�1 D �2;�
�2 D �3;�
�3 D f .�1; �2; �3/C gu
y D �1;

(3.44)

where f .�1; �2; �3/ D � G
C2
�3 � 1

C2L
�1 � G2

C1C2

h
�2�2 � 1

GL�1 � C2
G
�3 � 1

C1
g .��1�

1
GL�1 � C2

G
�3



, g D G
C1C2

. Now the sliding-mode observer-based slave (3.25) can
be applied. Chua’s circuit (3.42) can be transformed into (3.44) from (3.43). So we
design the sliding-mode slave as (3.41).

We choose k1 D 300, k2 D 100, k3 D 2. The synchronization results of SMO
are shown in Fig. 3.5. We can see that the synchronization error of Chua’s circuit is
a little larger than that of the Lorenz system. But synchronization is achieved.
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Fig. 3.5 Synchronization error of Chua’s circuit via SMO

Fig. 3.6 Synchronization error of Chua’s circuit via Bestle–Zeitz observer

We choose K D �
13 13 13

T
. The synchronization results via a Bestle–Zeitz

observer are shown in Fig. 3.6. We choose K D �
3 3 3

T
. The synchronization

results via the Thau observer are shown in Figs. 3.7 and 3.8. We can see that in both
systems, the best performance is given by the model-based Bestle–Zeitz observer,
but even the model-based Thau observer shows better performance than the model-
free SMO, i.e., both Bestle–Zeitz and Thau require complete information about the
system, but the SMO does not.
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Fig. 3.7 Synchronization error of Chua’s circuit via Thau observer

Fig. 3.8 Synchronization states of Chua’s circuit via Thau observer

3.6 Concluding Remarks

In this chapter, we have proposed an SMO for the synchronization problem. This
new observer presents a simple structure that contains a sliding-mode term that
turns out to be robust against output noise as well as sustained disturbances. The
slave system is a pure sliding-mode observer. The performance of the observer
was shown using numerical simulation. The next chapter develops experimental
synchronization by means of observers.
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Chapter 4
Experimental Synchronization by Means
of Observers

Abstract In this chapter, we deal with the experimental synchronization of the
Colpitts oscillator in real time. Our approach is based on observer design theory in a
master–slave configuration. Thus, the chaos synchronization problem can be posed
as an observer design procedure, where the coupling signal is viewed as measurable
output, and the slave system is regarded as an observer. A polynomial observer is
used for synchronizing the Colpitts oscillator employing linear matrix inequalities.
Moreover, comparison with a reduced-order observer and a high-gain observer is
given to assess the performance of the proposed observer.

4.1 Introduction

In recent years, the synchronization of chaotic systems problem has received a
great deal of attention among scientists in many fields [1, 5, 6, 26, 35]. Among
the publications dedicated to chaos synchronization, many different approaches
can be found. We cite the papers [1, 2, 15, 25, 31, 32], which propose the use of
state observers to synchronize chaotic systems; feedback controllers are proposed
in [7, 24, 34], while [14, 33] use a nonlinear backstepping control. The papers
[11, 12] consider synchronization time-delayed systems; in [9, 18], directional
and bidirectional linear coupling is considered; [3, 4] use nonlinear control, while
[2, 7, 9, 11, 12, 14, 24, 33, 34] use active control and [22, 34] use adaptive control.
Of particular interest is the connection between the observers for nonlinear systems
and chaos synchronization, which is also known as the master–slave configuration
[6, 8].

Thus, the chaos synchronization problem can be regarded as an observer design
procedure, where the coupling signal is viewed as output and the slave system as
an observer [1, 23, 35]. In this configuration, the two coupled systems are identical,
and therefore identical synchronization occurs, which means that the difference of
the master and slave state vectors converges to zero for t ! 1.

In this chapter, a synchronization scheme is proposed for a class of Lipschitz
nonlinear systems. Many problems in engineering and other applications are
globally Lipschitz, such as the sinusoidal terms in robotics. Nonlinearities that are
square or cubic in nature are not globally Lipschitz. However, they are locally so.

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
Chaotic Systems, Understanding Complex Systems,
DOI 10.1007/978-3-319-15284-4_4
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Moreover, when such functions occur in physical systems, they frequently have
a saturation in their growth rate, making them globally Lipschitz functions [16].
In this chapter, we have considered trajectories that are defined in the same invariant
set, i.e., we consider an invariant set that contains the globally Lipschitz functions.
Based on this fact, we state that trajectories remain in an invariant set. Thus, the
class of systems covered in this chapter is fairly general.

The main contribution of this chapter consists in the solution of the syn-
chronization problem via an exponential polynomial observer. In [10, 16, 19],
existence conditions for the full-order observers for Lipschitz nonlinear systems
are established. Also, the main purpose in this chapter is to extend those results
by showing that the conditions given in [4, 8, 22] also guarantee the existence of
a full-order observer with a high-order correction term. The reason is very simple:
as is well known, an extended Luenberger observer [16, 19] can be seen as a first-
order Taylor series around the observed state. Therefore, to improve the estimation,
a high-order term is now included in the observer structure. The intention in
choosing the examples of the Rössler and Rikitake systems is to clarify the proposed
methodology. However, it is worth mentioning that this technique can be applied to
almost any chaotic synchronization problem.

4.2 Exponential Polynomial Observer

4.2.1 Problem Statement

Consider the following nonlinear system:

Px D f .x; u/;

y D Cx; (4.1)

where x 2 R
n is the vector of state variable; u 2 R

m0

is the input vector m0 � n;
f .�/ W R

n 	 R
m0 �! R

n is locally Lipschitz on x and uniformly bounded on u;
y 2 R is the output of the system.

To show the relationship between observers for nonlinear systems and synchro-
nization, we give the following definition.

Definition 4.1 The dynamical system with state vector Ox 2 R
n,

POx D Nf . Ox; y; u/;
Oy D C Ox ; Ox0 D Ox.t0/; (4.2)

is in a state of exponential synchronization with system (4.1) if there exist positive
constants Nk and N� such that

jjx � Oxjj � Nk exp.�N�t/:



4.2 Exponential Polynomial Observer 65

In the master–slave synchronization scheme, x is viewed as the state variable
of the master system, and Ox is considered the state variable of the slave system.
Hence, the master–slave system synchronization problem between systems (4.1)
and (4.2) can be solved by designing an observer for (4.1). In order to solve the
synchronization problem as an observation problem, we introduce the algebraic
observability condition (see Chap. 1).

The system (4.1) can be expressed in the following form:

Px D Ax C �.x; u/; (4.3)

y D Cx x0 D x.t0/;

where �.x; u/ is a nonlinear vector that satisfies the Lipschitz condition

jj�.x; u/� �. Ox; u/ � 'jjx � Oxjj; (4.4)

where ' is the Lipschitz constant.
The observer for system (4.3) has the form

POx D A Ox C �. Ox; u/C
mX

iD1
Ki .y � C Ox/2i�1; (4.5)

where Ox 2 R
n, and Ki 2 R

n for 1 � i � m.
Let us consider the following assumptions:

Assumption 4.1 For NA WD A � K1C , there exists a unique symmetric positive
definite matrixP 2 R

n�n that satisfies the following linear matrix inequality (LMI):

�� NAT P � P NA � I 'P

'P I

�

> 0;

where ' is the Lipschitz constant.

Assumption 4.2 Let us defineMi WD PKiC . Then

�min.Mi CMT
i / � 0; for 2 � i � m:

Remark 4.1 Using Schur complement (see[27]), the LMI in Assumption 4.1 can be
represented as an algebraic Riccati equation,

NAT P C P NAC '2PP C I < 0;

or for some � > 0,

NAT P C P NAC '2PP C I C �I D 0: (4.6)
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Remark 4.2 Assumption 4.2 is used to improve the rate of convergence of the
estimation error by injecting additional terms (from 2 to m) that depend on odd
powers of the output error.

In order to prove the observer convergence, we analyze the observation error,
which is defined as e D x � Ox. From (4.3) and (4.5), the dynamics of the observer
is given by

Pe D NAe C F �
mX

iD2
Ki.Ce/2i�1;

where NA WD A �K1C and F WD �.x; u/� �. Ox; u/.
Now we present a lemma that will be useful in convergence analysis.

Lemma 4.1 ([28]) Given the system (4.3) and its observer (4.5), with the error
given by e WD x � Ox, if P D PT > 0, then

2eT P Œ�.x; u/ � �. Ox; u/� � '2eT PPe C eT e:

ut
The following proposition proves the observer convergence.

Proposition 4.1 Let the system (4.3) be algebraically observable and suppose
that Assumptions 4.1 and 4.2 hold. The nonlinear system (4.5) is an exponential
polynomial observer of the system (4.3); that is, there exist constants k > 0 and
� > 0 such that

jje.t/jj � kjje.0/jj exp.��t/;

where k D
r
ˇ

˛
, � D �

2ˇ
, ˛ D �min.P /, and ˇ D �max.P /.

Proof we use the following Lyapunov function candidate V D eTPe:

PV D PeTPe C eT P Pe D eT Œ NAT P C P NA�e C 2eTPF � 2eT P

mX

iD2
Ki.Ce/2i�1:

Using Lemma 4.1, we obtain

PV � eT Œ NAP C P NAC '2PP C I �e � 2eT P

mX

iD2
Ki .Ce/2i�1:

Performing some algebraic manipulations on the last term of the above inequality
and taking into account that Ce 2 R, we obtain

PV � eT Œ NAT P C P NAC '2PP C I �e � 2
mX

iD2
.Ce/2i�2eT PKiCe:
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For simplicity, we define Mi D PKiC , 2 � i � m. Then we have

PV � eT Œ NATP C P NAC '2PP C I �e � f.Ce/2ŒeTM2e C .eTM2e/
T �

C .Ce/4ŒeTM3e C .eTM3e/
T �C � � � C .Ce/2m�2ŒeTMme C .eTMme/

T �g:
(4.7)

The above expression can be rewritten in the simplified form

PV � eT Œ NAT P C P NAC '2PP C I �e �
mX

iD2
.Ce/2i�2eT .Mi CMT

i /e:

From Assumption 4.2, the second term on the right-hand side of the above
inequality will always be nonnegative. Therefore,

PV � eT Œ NAT P C P NAC '2PP C I �e: (4.8)

By Assumption 4.1 (and Remark 4.1), we have

PV � ��jjejj2: (4.9)

We use the Lyapunov functionV D jjejj2P . Then by the Rayleigh–Ritz inequality,
we have that

˛jjejj2 � jjejj2P � ˇjjejj2; (4.10)

where ˛ WD �min.P / and ˇ WD �max.P / 2 R
C (because P is positive definite).

Using (4.10), we obtain the following upper bound for (4.9):

PV � � �
ˇ

jjejj2P : (4.11)

Taking the time derivative of V D jjejj2P and replacing it in inequality (4.11), we
obtain

d

dt
jjejjP � � �

2ˇ
jjejjP :

Finally, the result follows with

jje.t/jj � kjje.0/jj exp.��t/; (4.12)

where k D
r
ˇ

˛
and � D �

2ˇ
�
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4.3 Asymptotic Reduced-Order Observer

Now let us consider the nonlinear system described by (4.1). The unknown states of
the system can be included in a new variable �.t/, and the following new augmented
system is considered:

Px.t/ D f .x; u; �/;

P�.t/ D 4.x; u/; (4.13)

y.t/ D h.x/;

where 4.x; u/ is a bounded uncertain function. The problem is to reconstruct
the variable �.t/. This problem is overcome by using a reduced-order observer.
Before proposing the corresponding observer for reconstructing the variable �.t/,
we introduce some hypotheses:

Assumption 4.3 �.t/ satisfies the AOC (see Chap. 1).

Assumption 4.4 
 is a C1 real-valued function.

Assumption 4.5 4 is bounded, i.e., j 4 j � M < 1.

Assumption 4.6 For t0 sufficiently large, there exists K > 0 such that

limt!t0 sup
M

K
D 0.

The design of a proportional reduced-order observer for system (4.1) is given by
the next lemma.

Lemma 4.2 If Assumptions 4.3–4.6 are satisfied, then the system

PO� D K.�� O�/ (4.14)

is an asymptotic reduced-order observer of free-model type for system (4.1), where
O� denotes the estimate of �, and K 2 R

C determines the desired convergence rate
of the observer. �

Remark 4.3 To reconstruct �.t/ using an auxiliary state O�.t/, we sometimes need
to use the output time derivatives, but these may be unavailable. To overcome this
problem, a completely artificial auxiliary function 
 is defined in such away that it
cancels out all unmeasurable terms. This action defines a differential equation for

 . This equation is solved, and then 
 is substituted into the differential equation of
the estimated state, and finally, the estimate of � is obtained.

We give the following immediate corollary.

Corollary 4.1 The dynamic system (4.14) along with

P
 D  .x; u; 
/; with  0 D  .0/ and 
 2 C1
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constitutes a proportional asymptotic reduced-order observer for system (4.1),
where 
 is a change of variable that depends on the estimated state O� and the state
variables. ut

4.4 High-Gain Observer

We present a well-known estimation structure (high-gain observer) as a comparison
with our proposed schemes.

Consider the class of nonlinear systems given by (4.1). In this case, to estimate
the state-space vector x, we can suggest a nonlinear high-gain observer as follows:

POx D f . Ox; u/CK.y � C Ox/;
Ox 2 R

n; Ox0 D Ox.t0/; (4.15)

where the observer high-gain matrix is given by

K D S�1
� C T ; S� D

�
1

�iCj�1 Sij

�

ijD1;:::;n
;

and the positive parameter � determines the desired convergence velocity. Moreover,
S� > 0, S� D ST� , should be a positive solution of the algebraic equation

S�

 

E C �

2
I

!

C
 

ET C �

2
I

!

S� D CTC;

E D
�
0 In�1;n�1
0 0

�

: (4.16)

As is shown in [10], under certain technical assumptions (Lipschitz conditions
in an invariant set for the nonlinear functions under consideration), this nonlinear
observer has an arbitrary exponential decay for any initial conditions.

4.5 Synchronization by Means of Observers

4.5.1 Experimental Results

These proposals are applied to a Colpitts oscillator [6, 17]. The Colpitts oscillator
has been widely considered for the synchronization problem; see, for instance,
[6, 13].
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Fig. 4.1 Colpitts oscillator. (a) Circuit configuration. (b) Model of the bipolar junction transistor
(BJT)

In this chapter, we consider the classical configuration of the Colpitts oscillator
[20]. The circuit contains a bipolar junction transistor 2N2222A as the gain element
(Fig. 4.1b) and a resonant network consisting of an inductor and two capacitors
(Fig. 4.1a).

The Colpitts circuit is described by a system of three nonlinear differential
equations as follows:

L PIL D �VC1 � VC2 � RIL C VCC;

C2 PVC2 D IL � I0;

C1 PVC1 D �f .VC2/C IL; (4.17)

where f .�/ is the driving-point characteristic of the nonlinear resistor. This can be
expressed in the form IE D f .VC2/ D f .VBE/. In particular, we have f .VC2/ D
ISexp .�VC2=VT /.

We introduce the dimensionless state variables .x1; x2; x3/, and we choose the
operation point of (4.19) to be the origin of the new coordinate system. In particular,
we normalize voltages, currents, and time with respect to Vref D VT , Iref D I0,
and tref D 1=!0, respectively, where !0 D 1=

p
LC1C2= .C1 C C2/ is the resonant

frequency of the unloadedL�C tank circuit. Then the state equation for the Colpitts
oscillator can be rewritten as

Px1 D �cx3 � cx2 � dx1;

Px2 D bx1;

Px3 D �a exp.�x2/C ax1 C a; (4.18)

where a D b
C2

C1
, b D I0

!0C2VT
, C D VT

!0LI0
, d D R

L!0
.
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According to the definition given in Chap. 1, it is evident that system (4.18) is
algebraically observable with respect to the output y D x2, since the unknown states
x1 and x3 can be rewritten as

x1 D Px2
b

D Py
b
; (4.19)

x3 D �1
c

�
1

b
Ry C d

b
Py C cy

�

: (4.20)

Hence the Colpitts oscillator is algebraically observable with respect to the selected
output y D x2.

4.5.2 Synchronization of the Colpitts Oscillator Employing
an Exponential Polynomial Observer

For the implementation of the observer, we first rewrite (4.18) in the form (4.3):

Px D
2

4
�d �c �c
b 0 0

a 0 0

3

5x C
2

4
0

0

�a exp.� Ox2/C a

3

5 (4.21)

y D �
0 1 0


x: (4.22)

Applying Proposition 4.1, we have

POx D
2

4
�d �c �c
b 0 0

a 0 0

3

5 Ox C
2

4
0

0

�a exp.� Ox2/C a

3

5C
mX

iD1

2

4
k1;i
k2;i
k3;i

3

5
	�
0 1 0


e

2i�1

:

Hence the state observer is rewritten as

POx1 D �c Ox3 � c Ox2 � d Ox1 C k3;1e1;2 C k3;2.e1;2/
3 C � � � C k3;m.e1;2/

2m�1;
POx2 D b Ox1 C k2;1e1;2 C k2;2.e1;2/

3 C � � � C k2;m.e1;2/
2m�1; (4.23)

POx3 D a Ox1 � a exp.� Ox2/C aC k1;1e1;2 C k1;2.e1;2/
3 C � � � C k1;m.e1;2/

2m�1:

We verified the real-time performance of the exponential observer using the
WINCON platform. To achieve synchronization in real time, we implemented in
WINCON the scheme (4.23) in the master–slave configuration. Figure 4.2 shows the
real implementation of the Colpitts circuit. The circuit parameters are L D 100 �H;
C1 D C2 D 47 nF, R D 45˝ , I0 D 54mA. Using the circuit parameters, we obtain
a D b D 6:2723, c D 0:0797, and d D 0:6898.
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Fig. 4.2 Implementation of
the Colpitts circuit (master
system)

The nonlinear term �.x/ in (4.21) satisfies the Lipschitz condition and is
considered as follows:

�.x/ D
2

4
0

0

�a exp.�x2/C a:

3

5

It is necessary to calculate the Lipschitz constant ' introduced in (4.4) over the
bounded set

˝ D ˚
x 2 R

3j jx2j < M2; jx3j < M3

�
: (4.24)

Considering the Jacobian of �.x/ to be

�
@�.x/

@x

�

D
2

4
0 0 0

0 0 0

0 a exp.�x2/ 0

3

5 ; (4.25)

we conclude that1

k @�.x/
@x

k1� 3max f0; a exp.�x2/g ; a 2 R
C: (4.26)

From (4.24), it is obvious that the following conditions hold for all points in the
bounded set ˝:

a exp.�x2/ < a exp.M2/ D max fa exp.�x2/g a 2 R
C: (4.27)

Hence

k @�.x/
@x

k1� 3a exp.M2/: (4.28)

1Let us consider the matrix A D �
ai;j


1�1;j�n

, then (see [27])

k A k1WD n max
1�i;j�n

jai;j j
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With (4.28), a Lipschitz constant that satisfies the Lipschitz condition (4.4) is
defined as follows:

' D 3a exp.M2/:

In this case, M1 D 3, M2 D 0:1, M3 D 6, and a D 6:2723, ) ' D 20:7959.
Following the observer (4.23), for m D 2, and solving the LMI given by

Assumption 4.1, the observer gains K1 and K2 and a positive definite matrix P
are as follows:

K1 D
2

4
10:2130

16:1211

10:1500

3

5 ; K2 D
2

4
3

2

3

3

5 ; P D
2

4
38:8560 �36:7794 19:4606

�36:7794 37:9331 �20; 7898
19:4606 �20:788 16:4869

3

5 > 0;

with eigenvalues �1.P / D 1:3151, �2.P / D 5:2514, and �3.P / D 86:7095.
The performance index (quadratic synchronization error) of the corresponding
synchronization process is calculated as

J.t/ D 1

t C 0:001

Z t

0

je.t/j2Q0
; Q0 D I:

Figure 4.3a–c shows the obtained results using the exponential polynomial
observer (4.23). It is clear that the synchronization achieved is fairly acceptable

Fig. 4.3 Real-time synchronization of Colpitts oscillator employing observer: (a) variables x1
and Ox1, (b) synchronization of variables x2 and Ox2, (c) synchronization of variables x3 and Ox3 , and
(d) performance index
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even with noisy measurements. The Colpitts circuit starts at x.0/ D �
0 0 0

T
, and

the arbitrary initial conditions for the observer are Ox.0/ D �
2:1 �0:1 1:506T .

Figure 4.3d shows the performance index of the synchronization, which indicates
exponential behavior.

4.6 Synchronization with a High-Gain Observer

The matrix S� > 0, S� D ST� , that satisfies the algebraic Riccati equation (4.16) for
a third-order system .n D 3/ is given by

S� D

2

6
6
6
6
4

1

�
� 1

�2
1

�3

� 1

�2
� 1

�3
1

�4
1

�3
� 1

�4
1

�5

3

7
7
7
7
5
; (4.29)

and its corresponding inverse matrix is

S�1
� D

2

4
3� 3�2 �3

3�2 5�3 2�4

�3 2�4 �5

3

5 : (4.30)

Then the high-gain observer for Colpitts system (4.30) is as follows:

POx1 D �c Ox3 � c Ox2 � d Ox1 C 5

b
�3.y � Ox2/;

POx2 D b Ox1 C 3�2.y � Ox2/; (4.31)

POx3 D a Ox1 � a exp.� Ox2/C aC
�

3�2 � 5d

bc

�

�3 � 2

bc
�4

!

.y � Ox2/;

Figure 4.5 depicts the synchronization between Colpitts oscillator given by (4.18)
and its high-gain observer denoted by (4.31). In order to obtain exponential
convergence, we have used � D 100. Note that the performance on the high-
gain observer is not good in comparison with the exponential polynomial observer
and with the proportional reduced-order observer. An important advantage of the
proposed methodologies is that the magnitudes of the observer gains are smaller
than those used in the high-gain observer.
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4.6.1 Synchronization of the Colpitts Oscillator
by Means of an Asymptotic Reduced-Order Observer

Let us consider the normalized system of the Colpitts oscillator. We assume that the
output system is y D x2. Therefore, the slave system consists of two estimation
structures to achieve synchronization with the master system. Such structures are
obtained as follows. First, verify that the master system (Colpitts oscillator) is
algebraically observable, and then, using (4.14), construct the observer for the
unknown states. Previously, we have verified that the master system (Colpitts
oscillator) is algebraically observable (see Eqs. (4.31) and (4.20)). Then both
unknown states of the master system are algebraically observable, and therefore,
we can construct the observers based on Lemma 4.2 and Corollary 4.1.

For x1, the observer is given by

P
3 D �K
2
3

b
y �K3
3; (4.32)

Ox1 D K3

b
y C 
3;

and for x3, we have

P
4 D �K4Œ
4 CK4y�;

P
5 D ŒK5 � d�
K5

cb
Œ
4 CK4y� �K5y �K5
5;

Ox3 D �K5

cb
Œ
4 CK4
�C 
5: (4.33)

Therefore, (4.32) and (4.33) constitute the slave system. We now present some
experimental results for the synchronization of the Colpitts oscillator using the
asymptotic reduced-order observer (4.32) and (4.33). Figure 4.4a, b shows the
obtained results for the initial conditions Ox1 D �2:498 and Ox3 D 1:506 in
the schemes (4.32) and (4.33), respectively. Note that the synchronization results
achieved with the reduced-order observer are good. Figure 4.4c presents the phase
portrait, where one may clearly observe the chaotic behavior of the Colpitts
oscillator. Finally, Fig. 4.4d illustrates the performance index, which has a tendency
to decrease.
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Fig. 4.4 Real-time synchronization of Colpitts oscillator using reduced-order observer: (a)
synchronization of coordinates x1 and Ox1, (b) synchronization between x3 and Ox3 , (c) phase
portrait of the master system (x3 (horizontal) versus x1 (vertical)) and the slave system ( Ox3 and
Ox1), and (d) performance index

4.6.2 Rössler System

We consider the popular nonlinear Rössler’s system [30], which is described by

Px1 D �.x2 C x3/;

Px2 D x1 C ax2; (4.34)

Px3 D b C x3.x1 � c/;
y D x1:

It is well known that in a large neighborhood of .a D b D 0:2; c D 5/, this system
exhibits chaotic behavior.

Remark 4.4 It is not difficult to prove that system (4.34) is Lipschitz.
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Before proposing the state observer, we prove the algebraic observability condi-
tion for system (4.34). Replacing y into the system (4.34), we obtain

Py D �x2 � x3; (4.35)

Px2 D y C ax2; (4.36)

Px3 D b C x3.y � c/: (4.37)

Taking the time derivative from (4.35) yields

RPy D � Px2 � Px3: (4.38)

From (4.35), we get

x3 D �y � x2: (4.39)

Replacing (4.36), (4.37), and (4.39) into (4.38) gives us

Py � y Py C c Py C y � x2y C .a C c/x2 C b D 0: (4.40)

In the same manner, for x3, we have from (4.35) that

x2 D � Py � x3: (4.41)

Substituting (4.36), (4.37), and (4.41) into Eq. (4.38) then yields

PPy � a Py C y C x3y � .aC c/x3 C b D 0: (4.42)

Remark 4.5 From (4.40) and (4.42), x2 and x3 are algebraically observable.

According to Proposition 4.1, we get the following system (slave system) for the
observer (Fig. 4.5):

POx1 D �. Ox2 C Ox3/C k1;1.x1 � Ox1/C k1;2.x1 � Ox1/m;
POx2 D Ox1 C a Ox2 C k2;1.x1 � Ox1/C k2;2.x1 � Ox1/m; (4.43)

POx3 D b C Ox3. Ox1 � c/C k3;1.x1 � Ox1/C k3;2.x1 � Ox1/m:

We show some simulations for the Rössler system (4.34) and its observer given
by system (4.43), where we have taken for the parameter values a D b D 0:2,
c D 5, K1 D Œk1;1 k2;1 k3;1�

T D Œ5 � 5 5�T , K2 D Œk1;2 k2;2 k3;2� D Œ10 10 10�T ,
m D 3. The design of the exponential observer presented in this chapter is based
on the solution of the Riccati equation, which can be obtained using the Matlab
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Fig. 4.5 Synchronization between Colpitts oscillator and its high-gain observer: (a) synchro-
nization of coordinates x1 and Ox1, (b) synchronization between x3 and Ox3, (c) phase portrait of
the master system (x3 (horizontal) versus x1 (vertical)) and the slave system ( Ox3 versus Ox1),
and (d) performance index

function ARE. The performance index of the corresponding synchronization process
is calculated as [21]

J.t/ D 1

t C 0:001

Z 1

0

k e.t/ k2Q0
d� ;Q0 D I; (4.44)

where e.t/ denotes the estimation error.
Figure 4.6a–c shows the convergence of the estimated states (slave system) to

the real states (master system) without any noise in the system output. The initial
conditions are x1 D �0:5, x2 D 0:5, x3 D 4, Ox1 D �4, Ox2 D 3, Ox3 D �4.

Figure 4.7a, b shows the chaotic behavior of system (4.34) and the observer
given by system (4.43). They also show the convergence of the state estimates to
the real states, without any noise in the system output. Furthermore, in Fig. 4.8a–c
is shown the effect of noise on the estimation process. A white noise is added
in the measurement (around the current value of the measured output). We can
see that the exponential polynomial observer is robust against noisy measurement.
Finally, Fig. 4.9 illustrates the performance index for the corresponding estimation
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Fig. 4.6 Synchronization between drive system (4.34) and response system (4.43), without any
noise in the system output, (a) signals x1 and Ox1; (b) signals x2 and Ox2; (c) signals x3 and Ox3

processes. It should be noted that the quadratic estimation error (performance index)
is bounded and has a tendency to decrease.

The corresponding high-gain observer is given by

POx1 D �. Ox2 C Ox3/ � 3�. Ox1 � y/;

POx2 D Ox2 C a Ox2 � 1

Ox1 � a
Œ3�.1C Ox3/C 3�2a � �3�. Ox1 � y/;

POx3 D b C Ox3. Ox1 � c/ � 1

Ox1 � c � a
Œ�3�.1C Ox3/C 3�2a � �3�. Ox1 � y:/ (4.45)
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Fig. 4.7 Chaotic behaviour of drive system (4.34) and response system (4.43), with white noise
in the system output .� D 0:1/, (a) signals x1, x3 and Ox1, Ox3; (b) signals x1, x2, x3 and Ox1, Ox2, Ox3

We show a simulation for the Rössler system (4.35) and the observer given by sys-
tems (4.44) and (4.45), where we have taken for the parameter values aD bD 0:2,
c D 5, m D 3, K1 D Œk1;1 k2;1 k3;1�

T D Œ5 � 5 5�T , K2 D Œk1;2 k2;2 k3;2�
T D

Œ10 10 10�T , � D 2. All simulation results in this chapter were carried out with the
help of Matlab 7.1 with Simulink 6.3 as the toolbox.
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Fig. 4.8 Synchronization between drive system (4.34) and response system (4.43), without any
noise in the system output, (a) signals x1 and Ox1; (b) x2 signals Ox2 and; (c) signals x3 and Ox3

1.5
Rossler

1

0.5

0
0 200 400 600

t
800 1000

Fig. 4.9 Quadratic estimation error, (a) without any noise in the system output (solid line);
(b) with white noise .� D 0:1/ in the system output (dotted line)
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4.6.3 Rikitake Oscillator

A simple mechanical model used to study the reversals of the Earth’s magnetic
field, idealized by the Japanese geophysicist Rikitake [29], consists of two identical
coupled single Faraday-disk dynamos of the Bullard type. The dynamics of
this system is governed by the following three-dimensional system of nonlinear
differential equations:

Px1 D ��x1 C x2x3;

Px2 D ��x2 C .x3 � a/x1;

Px3 D 1 � x2x1: (4.46)

y D x1

Here a and � are parameters, which we will assume to be nonnegative.

Remark 4.6 It is not hard to see that above system is Lipschitz.

Before proposing the exponential polynomial observer, we prove the algebraic
observability condition for system (4.46) (see Chap. 1). Replacing y D x1 in
system (4.46), we obtain

Py D ��y C x2x3; (4.47)

Px2 D ��x2 C .x3 � a/y; (4.48)

Px3 D 1 � x2y: (4.49)

Taking the derivative with respect to time from (4.47), we have

Ry D �� Py C Px2x3 C x2 Px3: (4.50)

From (4.47), we get

x3 D 1

x2
f Py C �yg: (4.51)

Substituting (4.48), (4.49) and (4.51) into (4.50), we obtain

0 D x42 � 1

y
x32 C

n Ry
y

C 2�
Py
y

C �2
o
x22

C af Py C �ygx2 � f Py C �yg2 (4.52)

In the same manner for x3, we have from (4.47)

x2 D 1

x3
f Py C �yg (4.53)



4.6 Synchronization with a High-Gain Observer 83

substituting (4.48), (4.49) and (4.53) into (4.50)

0 D x43 � ax33 �
� Ry
y

C 2�
Py
y

C �2
�

x23

C f Py
y

C �gx3 � f Py C �yg2 (4.54)

Remark 4.7 From (4.52) and (4.54), x2 and x3 are algebraically observable.

Going back to the original coordinate system, we get the following system
(slave system) for the observer

POx1 D �� Ox1 C Ox2 Ox3 C k1;1.x1 � Ox1/C k1;2.x1 � Ox1/m
POx2 D �� Ox2 C . Ox3 � a/ Ox1 C k2;1.x1 � Ox1/C k2;2.x1 � Ox1/m (4.55)

POx3 D 1 � Ox1 Ox2 C k3;1.x1 � Ox1/C k3;2.x1 � Ox1/m

Now, some numerical results for Rikitake system (4.46) and its observer given
by system (4.55) are presented. System (4.46) is chaotic with the set of parameter
values � D 1, a D 0:375. We have chosen the parameter values for systems (4.46)
and (4.55) as � D 1, a D 0:375, m D 3, K1 D Œk1;1; k2;1; k3;1�

T D Œ2 2 2�,
K2 D Œk1;2 k2;2 k3;2�

T D Œ3 3 3�T .
Figure 4.10a–c shows the convergence of the estimated states (slave system) to

the real states (master system), without any noise in the system output. The initial
conditions are x1 D �1, x2 D 0:5, x3 D 4, Ox1 D �4, Ox2 D �1, Ox3 D 2.

Figure 4.11a–c shows the chaotic behaviour of the master system (4.46) and the
slave system (4.55), and also show the convergence of the estimated states (slave
system) to the real states (master system), without any noise in the system output.

In Fig. 4.12a–c, are shown the estimated states with the presence of noise in
the system output (white noise with � D 0:1 , ˙10 around the current value
of the system output). It should be noted that the proposed observer is robust
against noisy measurements. In Fig. 4.13 is illustrated the performance index for
the corresponding synchronization process without any noise in the system output
and with noise in the system output (white noise with � D 0:1 , ˙10 around the
current value of the system output). In both cases, the corresponding performance
index has a tendency to decrease.

The high-gain observer for the system (4.46) is given by the next system

POx1 D �� Ox1 C Ox2 Ox3 � 3�. Ox1 � y/
POx2 D �� Ox2 C . Ox3 � a/ Ox1

� 1

�2 Ox1 Ox23 C a Ox1 Ox3 C Ox2 � 2 Ox1 Ox22
Œ3�z1 C 3�2z2 C �3 Ox2�. Ox1 � y/

POx3 D 1 � Ox2 Ox1 C 1

�2 Ox1 Ox23 C a Ox1 Ox3 C Ox2 � 2 Ox1 Ox22
Œ3�z3 C 3�2z4 C �3 Ox3�. Ox1 � y/

(4.56)



84 4 Experimental Synchronization by Means of Observers

Fig. 4.10 Synchronization between drive system (4.46) and response system (4.55), without any
noise in the system output, (a) signals x1 and Ox1; (b) signals x2 and Ox2; (c) signals x3 and Ox3

where

z1 D �2 Ox2 � 2� Ox1 Ox3 C a� Ox1 � Ox2 Ox23 C a Ox2 Ox3 C Ox32
z2 D 2� Ox2 � 2 Ox1 Ox3 C a Ox1
z3 D �2 Ox3 � �C 2� Ox1 Ox2 � Ox33 C a Ox23 C Ox22 Ox3
z4 D 2� Ox3 � 1C 2 Ox1 Ox2 (4.57)
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Fig. 4.11 Chaotic behaviour of drive system (4.46) and response system (4.55), with white noise
in the system output .� D 0:1/, (a) signals x1, x3 and Ox1, Ox3; (b) signals x2, x3 and Ox2, Ox3; (c)
signals x1, x2 and Ox1, Ox2

Now, some numerical results for Rikitake system (4.46) and its observer given
by systems (4.57) are presented.

System (4.46) is chaotic with the set of parameter values � D 1, a D 0:375.
We have chosen the parameter values for systems (4.46), (4.67) as � D 1, a D

0:375, m D 3, K1 D Œk1;1 k2;1 k3;1�
T D Œ2 2 2�, K2 D Œk1;2 k2;2 k3;2�

T D
Œ3 3 3�, � D 2. Figures 4.14a–c and 4.15a–c show the convergence of the estimated
states (slave system) to the real states (master system), for different sets of initial
conditions, without any noise in the system output.
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Fig. 4.12 Synchronization between drive system (4.46) and response system (4.55), with white
noise in the system output .� D 0:1/ , (a) signals x1 and Ox1; (b) signals x2 and Ox2; (c) signals x3
and Ox3

Figure 4.16a–c shows the chaotic behaviour of the master system (4.46) and the
slave system (4.57), and also show the convergence of the estimated states (slave
system) to the real states (master system), without any noise in the system output.

In Fig. 4.17a–c is shown the estimated states with the presence of noise in the
system output (white noise with � D 0:1;˙10 around the current value of the
system output). It should be noted that the proposed observer is robust against noisy
measurements.

In Fig. 4.18 is illustrated the performance index for the corresponding synchro-
nization process without any noise in the system output and with noise in the system
output (white noise with � D 0:1;˙10 around the current value of the system
output)
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Fig. 4.13 Performance index, (a) without any noise in the system output (solid line); (b) with
white noise .� D 0:1/ in the system output (dotted line)

Now, we consider the Lorenz chaotic system described by the following set of
differential equations:

Px1 D �.x2 � x1/
Px2 D x1 � x2 � x1x3
Px3 D x1x3 � ˇx3
y D x1

(4.58)

with positive parameters (�; ; ˇ > 0 ) the system (4.58) exhibits chaotic behaviour.
In the same form, we prove the algebraic observability condition for system

(4.58). After algebraic manipulations we obtain:

Py C �y C �x2 D 0 (4.59)

� Ry C Py.� C 1/C y�. C 1/C y�x3 D 0 (4.60)

Remark 4.8 From (4.59) and (4.60), is clear that x2 and x3 satisfies the AOC
(see Chap. 1), thus x2 and x3 are algebraically observable.
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Fig. 4.14 Synchronization between master system (4.46) and its observers: exponential polyno-
mial observer (4.56) and high-gain observer (4.57), without any noise in the system output: (a)
signals x1 and Ox1; (b) signals x2 and Ox2; and (c) signals x3 and Ox3. The initial conditions are
x1 D �1, x2 D 0:5, x3 D 4; Ox1 D �3; Ox2 D �2; Ox3 D �1
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Fig. 4.15 Synchronization between master system (4.46) and the exponential polynomial observer
(4.56), without any noise in the system output (a) signals x1 and Ox1; (b) signals x2 and Ox2; and (c)
signals x3 and Ox3. The initial conditions are x1 D �1, x2 D 0:5, x3 D 4; initial condition 1:
Ox1 D �3; Ox2 D �2; Ox3 D 1; initial condition 2: Ox1 D �4; Ox2 D �1; Ox3 D 2; and initial
condition 3: Ox1 D 1; Ox2 D 3; Ox3 D 6



90 4 Experimental Synchronization by Means of Observers

Fig. 4.16 Chaotic behavior of master system (4.46) and its observers: exponential polynomial
observer (4.56) and high-gain observer (4.57), without any noise in the system output: (a) signals
x1; x3 and Ox1; Ox3; (b) signals x2; x3 and Ox2; Ox3; and (c) signals x1; x2 and Ox1; Ox2. The initial
conditions are x1 D �1; x2 D 0:5; x3 D 4; Ox1 D �4; Ox2 D �1; Ox3 D 2
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Fig. 4.17 Synchronization between master system (4.46) and its observers: exponential polyno-
mial observer (4.56) and high-gain observer (4.57), with white noise in the system output .� D
0:1/: (a) signals x1 and Ox1; (b) signals x2 and Ox2; and (c) signals x3 and Ox3. The initial conditions are
x1 D �1, x2 D 0:5, x3 D 4; Ox1 D �3; Ox2 D �2; Ox3 D 1
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Fig. 4.18 Performance index: (a) without any noise in the system output; (b) with white noise
in the system output .� D 0:1/. The intial conditions are x1 D �1; x2 D 0:5; x3 D 4; Ox1 D
�3; Ox2 D �2; Ox3 D 1
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4.7 Bounded Error Observer Based Design
of Synchronizing Chaotic Systems

In this section, we assume that the output system is measured exactly. Then we only
reconstruct the remaining variables. We begin synchronizing the Rössler system via
bounded error observer.

Consider the system (4.34) and make the change of variables

Oz2 D Ox2 C ky

Oz3 D Ox3 C ky
(4.61)

where k is a fixed real constant. The dynamics of fOz2; Oz3g is given by

POz2 D �Œk � a�Oz2 C O�2 (4.62)

POz3 D �Œc C k � y�Oz3 C O�3 (4.63)

with O�2 D y�kŒayCOz3�C2k2y, O�3 D bCkŒ�y2Ccy�Oz2�C2k2y, k � maxfa; y�cg.

Corollary 4.2 In accordance with Eqs. (4.62) and (4.63) the general differential
equation is given by

PO� D �h O� C O� (4.64)

which is uniformly bounded, with h > 0 , if the following assumptions are
considered:

A1: j O� � �j < N < 1
A2: For t0 sufficiently large, limt!t0 sup

N

h
D 0

Proof Let us define the estimation error (the difference between the actual observed
signal and its estimate) as follows:

e WD O� � � (4.65)

applying the time derivative to (4.65), and taking � D O� � � , we obtain

Pe C he D � (4.66)
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we obtain the solution from (4.65)

e D exp.�ht/e0 C
Z t

0

exp.hŒ� � t �/�d� (4.67)

where e0 is an initial condition.
Using Triangle and Cauchy–Schwarz inequalities from expression (4.63):

0 � jej � j exp.�ht/jje0j C
Z t

0

j exp.hŒ� � t �/�d� j (4.68)

from A1:

0 � jej � j exp.�ht/jje0j CN

Z t

0

j exp.hŒ� � t �/d� j (4.69)

thus, as t ! t0, t0 sufficiently large

0 � lim
t!t0

supjej � lim
t!t0

supN
Z t

0

j exp.hŒ� � t �/d� j (4.70)

0 � lim
t!t0

supjej � lim
t!t0

sup
N

h
j1 � exp.�ht/j (4.71)

0 � lim
t!t0

supjej � lim
t!t0

sup
N

h
(4.72)

From A2 limt!t0 jej D 0, for t0 sufficiently large. �

Corollary 4.3 The bounded error observer for Rössler system is given by

POz2 D �Œk � a�Oz2 C O�2
POz3 D �Œc C k � y�Oz3 C O�3
Ox1 D y

Ox2 D Oz2 � ky

Ox3 D Oz3 � ky

with O�2 D y�kŒayCOz3�C2k2y, O�3 D bCkŒ�y2Ccy�Oz2�C2k2y, k � maxfa; y�cg.
�
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Now, the synchronization of Lorenz system via bounded error observer is given
by the following corollary

Corollary 4.4 In the same manner given above. The bounded error observer for
Lorenz system (4.58) is as follows

POz2 D �Œ1 � k��Oz2 C O�2
POz3 D �ˇOz3 C O�3
Ox1 D y

Ox2 D Oz2 � ky

Ox3 D Oz3 � ky

with O�2 D y�yOz3CkyŒ1Cy����k2�y, O�3 D yOz2CkŒ�y2CˇyC� Oz2��y��k2�y,
k � 1=� .

It is supposed that �2, �3 satisfies the assumption A1. �
Finally, the synchronization of Rikitake system via bounded error observer is

given by the following corollary

Corollary 4.5 In the same manner given above. The bounded error observer for
Rikitake system (4.46) is as follows

POz2 D �.� � kOz3 C k2y/Oz2 C O�2
POz3 D .k2y � kOz2/Oz3 C O�3
Ox1 D y

Ox2 D Oz2 � ky

Ox3 D Oz3 � ky

with O�2 D .Oz3�a/y�ky2�k2yOz2Ck3y2, O�3 D 1�yOz2Ck.y2��y/�k2yOz2Ck3y2.
Here the observer gain should satisfies the next relations,

jkj � maxfOz2g
maxfyg

and

k >
�signfkgmaxfOz3g ˙p

maxfOz3g � 4maxfyg�
2maxfyg

it is supposed that �2, �3 satisfies the assumption A1. �
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4.8 Numerical Results

In order to verify the effectiveness of the proposed methodology, we show the
convergence of the estimates to the current signals for the applications in Sect. 4.7.

We show some simulations for the Rössler’s system. We have considered the
following initial condition vector to the master system xm0 D .0:5;�2:5;�4/, and
the initial conditions to the slave system (observer) Ox2 D �2:5, Ox3 D �4, the
parameters of system are a D b D 0:2, c D 5 and observer gain is fixed as k D 5.
Figure 4.19 shows the convergence of the state estimates (slave system) to the real
states (master system).
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Fig. 4.19 Synchronization of Rössler system
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Fig. 4.20 Synchronization of Lorenz system

To simulate the Lorenz system the observer gain is fixed as k D �1. The
initial condition vector to the master system is xm0 D .1; 0;�5/ and the initial
conditions to the slave system (observer) Ox2 D �5, Ox3 D 8. Figure 4.20 shows the
synchronization of Lorenz system.

Finally we have chosen the values for the Rikitake system and the observer as
� D 1, a D 0:375, k D �0:5. Figure 4.21 shows the convergence of the state
estimates (slave system) to the real states (master system). The initial condition
vector is xm0 D .�1; 0:5; 4/ and the initial conditions for slave system are Ox2 D �1,
Ox3 D 2.
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4.9 Conclusion

In this chapter we tackled the synchronization problem based upon observers theory.
As well as, as main contributions, we show the real-time synchronization in the
Colpitts oscillator by using two observer structures: an exponential polynomial
observer and an asymptotic reduced-order observer, as well as, for comparison
purposes we implemented a high gain observer and a bounded error observer. Some
experimental results show the efectiveness of the proposed methodologies.
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Chapter 5
Synchronization of an Uncertain Rikitake
System with Parametric Estimation

Abstract In this chapter, we deal with the synchronization and parameter estima-
tions of an uncertain Rikitake system. The strategy consists in proposing a slave
system that has to follow asymptotically the unknown Rikitake system, referred to as
the master system. The gains of the slave system are adjusted continually according
to a convenient adaptation control law until the measurable output errors converge
to zero. The convergence analysis is carried out using Barbalat’s lemma.

5.1 Introduction

The goal is to synchronize the complete response of the slave system to the master
system by driving the slave with a signal derived from the master. The problem
can now be easily tackled when the parameters of the master system are known.
Most of the methods require complete knowledge of the system’s parameters [1–4].
However, to achieve synchronization between two chaotic systems is far from being
straightforward. In fact, there are few publications on this challenging problem,
because it consists in both identification of the unknown parameters and the design
of a controller to achieve synchronization. In [5], an observer was applied to identify
the unknown parameter of the Lorenz system. In [6], the authors studied the same
problem for Chen’s chaotic system with the same method. The interest in parameter
identification rests in its potential applications in communications, essentially when
parameter modulation is used for message transmission, since a certain number of
drawbacks have been revealed in the practical implementation of most chaos-based
secure communications algorithms. In particular, one of the basic issues of interest
is the effect of uncertainty and parameter mismatch on the stability of the process
of synchronization of chaotic oscillators.

In this chapter, an adaptation asymptotic method for the synchronization and
identification of the Rikitake system with several unknown parameters is presented.
This system resembles the reversal of polarity of the Earth’s electromagnetic field,
and it is well known that it has chaotic behavior for some set of initial conditions and
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some set of parameter values. By this method, we can achieve chaos synchronization
and identify the unknown parameters simultaneously. Roughly speaking, the sug-
gested approach consists in designing a controlled slave system whose controllers
and adaptive parameters are adjusted according to a proposed adaptive algorithm.
It is done in such a way that the synchronization errors between the outputs of
both systems, the uncertain Rikitake and the slave, converge asymptotically to zero.
The synchronization in this chapter is seen as a control problem consisting in the
design of a controller for the receiver using the transmitted signal derived from
the master to ensure that the controlled receiver synchronizes with the transmitter.
Hence, the requirement for synchronized behavior is that given the transmitted
signal, the slave be forced to follow the master system. Numerical results show the
synchronization error (difference between master and slave states). This can help in
analyzing the behavior of the synchronization procedure. The convergence analysis
of the proposed scheme is carried out using the Lyapunov method in conjunction
with the Barbalat’s lemma. It is important to emphasize that the robustness of our
control strategy allows us to detect effectively piecewise constant variations on the
parameter values of the uncertain Rikitake system.

The remainder of this chapter is organized as follows. In Sect. 5.2, we introduce
the problem statement. In Sect. 5.3, we develop our solution to synchronize and
identify the constant unknown parameters of the Rikitake system by means of the
Lyapunov method. To assess the effectiveness of our method, we present some
numerical simulations in Sect. 5.4. Finally, we present our conclusions in Sect. 5.5.

5.2 Problem Statement

5.2.1 Rikitake Model System

Previously, in Chap. 4, the Rikitake system [7] was synchronized by means of
observers, and we assumed complete knowledge of parameters. Now we will work
with the same system with � and a now considered unknown:

Px1 D ��x1 C z1y1;
Py1 D ��y1 C .z1 � a/x1;

Pz1 D 1 � x1y1;
(5.1)

where the parameters � and a have some physical meaning when they are positive.
For a physical meaning of the states x1, y1, and z1 we recommend that the reader
consult [7]. However, the states x1 and y1 are directly related to the currents through
each disk of the dynamo system, and z1 is related to the angular velocity of one
of the disks. This system exhibits chaotic behavior for the parameter values in a
neighborhood f� D 5; a D 2g and for a large enough set of initial conditions.
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5.2.2 Some Algebraic Properties and Problem Formulation

In this section, we present some algebraic properties that the Rikitake system
satisfies. To this end, we introduce the following definitions.

Definition 5.1 Consider a smooth nonlinear system described by a state vector
X D fxi gniD1 2 R

n and by the output vector G D fgi gmiD1 2 R
m of the form

PX D f .X;P /;G D h.X/; (5.2)

where h.�/ is a smooth vector function and P 2 R
l is a constant parameter vector,

with l < n. Let G.j / denote the j th time derivative of the vectorG. We say that the
vector state X is algebraically observable if it can be uniquely expressed as

X D ˚.G;G.1/; : : : ; G.j //

for some integer j and for some smooth function ˚ .

Definition 5.2 Under the same conditions as in Definition 5.1, if the vector of
parameters P satisfies the relation

˝1.G; : : : ; G
.j // D ˝2.Y; : : : ; Y

.j //P; (5.3)

where ˝1.�/ and˝2.�/ are respectively n 	 1 and n 	 n smooth matrices, then P is
said to be algebraically linearly identifiable with respect to the output vector G [8].

According to the previous definitions, it is evident that system (5.1) is alge-
braically observable with respect to the outputs g1 D x1 and g2 D y1, since the
state z1 can be rewritten as

z1 D Pg2 C �g2

g1
C a: (5.4)

Hence the Rikitake system is algebraically observable with respect to the selected
outputs g1 D x1 and g2 D y1. Moreover, substituting the above expression into the
first differential equation of (5.1), we have

Pg1g1 � Pg2g2 D ��.g21 C g22/C ag1g2 D (5.5)

D Œ�.g21 C g22/C g1g2�p:

Therefore, we conclude that system (5.1) with vector of parameters p D .�; a/

is algebraically identifiable with respect to the available outputs. That is, the
unavailable state z1 and the vector of parameters p can be simultaneously recovered
from the knowledge of the outputs g1 D x1 and g2 D y1.
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From the above definitions, it is possible to solve the synchronization problem
of the uncertain Rikitake system, provided that the states x1 and y1 are always
available. Moreover, it is also possible to recover the unknown parameters � and
a. Thus, we are ready to establish the main control problem of this chapter.

Lemma 5.1 Consider the uncertain Rikitake system (5.1), referred to as the master
system, with the available output states x1 and y1. Let us propose the following
slave-controlled system:

Px2 D � O�x1 C z2y1 � u1;
Py2 D � O�y2 C .z2 � Oa/x1 � u2;
Pz3 D 1� x1y1 � u3:

(5.6)

Then the control objective is to find u D .u1, u2; u3/ and Op D . O�; Oa/ such that the
slave system (5.6) follows the unknown Rikitake system (5.1); with Op converging to
the actual values of .�; a/. In other words, we need to find u and Op of system (5.6)
such that .w1; Op/ ! .w2; p/, as long as t ! 1.1 �

The proof is given in next section.
We finish this section by introducing the following errors:

ex D x1 � x2I ey D y1 � y2I ez D z1 � z2I Q� D � � O�I Qa D a � Oa:

According to them, we define the following vectors:

eT D .ex; ey; ez/ I QpT D . Q�; Qa/:

5.3 Lyapunov-Based Formulation

In this section we solve the synchronization and parameter identification of the
constant unknown parameters of the Rikitake system by means of the Lyapunov
method. To this end, we first calculate the dynamics of the synchronization errors
between the master and the slave systems. Next, based on a simple quadratic
Lyapunov function, we propose the needed controller and the needed estimator that
ensure the synchronization of both systems.

1Here we denote the vector states related to the master and slave systems by w1 and w2,
respectively. That is, wTi D .xi ; yi ; zi /; for i D f1; 2g.
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Before solving the control problem, we introduce the following assumptions
related to the selected outputs of the master system:

(A1) The states x D x1 and y D y1 are available for measurement.
(A2) All the states of the master system are bounded, with the generic property that

the steady solution x and y, continues oscillating around zero.

Remark 5.1 Assumption A2 is true because in most cases, all the states of the
Rikitake system are bounded for a large set of initial conditions and for a large
set of positive parameters � and a. In fact, assumption A2 depends on the set of
initial conditions and the values of the parameter vector q. To clarify the meaning
of this property, we present a case in which assumption A2 does not hold. Selecting
the parameter values as f� > 0I a > 0g, and the initial condition as w1.0/ D
.x1.0/ D 0; x1.0/ D 0; z1.0/ D z/, we have that x1.t/ D 0, y1.t/ D 0, and
z1.t/ D t C z. Evidently, assumption A2 cannot be fulfilled, because the states
x and y remain fixed at the origin, and the state z1 is unbounded [9]. In fact, no
identification method or scheme can be proposed if the master system has solutions
that tend either to infinity or to a constant.

Remark 5.2 In this chapter, as a fundamental assumption, we suppose that all states
of the master system are bounded with the property that the steady states x and
y continue oscillating around zero, i.e., these steady solutions should not be fixed
at zero. In this manner, the results are not affected when any additional terms are
included. For bounded perturbations, if the trajectories remain or belong to the
same manifold or an equivalent space state region of the unperturbed system, all
the assumptions considered are adequate.

Proof of Lemma 5.1. From (5.1) and (5.6), we have

PeD
2

4
Pex
Pey
Pez

3

5 D
2

4
� Q�x C ezy C u1
� Q�y C .ez � Qa/x C u2
u3

3

5 : (5.7)

For the sake of simplicity, we write y D y1 and x D x1. As we can see, the above
system can be considered a control problem, where the vector inputs u and Qp must
be proposed such that the state e asymptotically converges to zero.

Consider a Lyapunov function

V D 1

2
eT e C 1

2
QpT Qp: (5.8)

The time derivative of V along the trajectories of (5.7) is then given by

PV D � Q� PO� � Qa
:

Oa � Q�e2x C exezy C exu1 � Q�yey
Cezxey � Qaxey C u2ey C ezu3:

(5.9)
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In order to make V negative semidefinite, we propose POp and u as follows:

POp D
" PO�

POa

#

D
��exx � eyy

�xey

�

(5.10)

and u, as

u D
2

4
u1
u2
u3

3

5 D
2

4
�k1ex � k11ekx
�k2ey � k21e

k
y

�eyx

3

5 ; (5.11)

where k1, k2, k11, and k21 are strictly positive constants and k is any odd integer.
Substituting expressions (5.11) into (5.7), we have that the closed-loop system

can be read as

Pex D � Q�x C ezy � k1ex � k11e2kC1
x

Pey D � Q�y C .ez � Qa/x � k2ey � k21e
2kC1
y

Pez D �exy;
(5.12)

where the parameter dynamics are given by

PO� D �exx � yey I POa D �xey: (5.13)

Substituting (5.12) and (5.13) into (5.9), we obtain

PV D �
�
k1e

2
x C k2e

2
y C k11e

kC1
x C k22e

kC1
y

�
: (5.14)

This implies that PV is negative semidefinite, and so V converges. Hence the sets
of signals ex; ey; ez, Q�; Qa are bounded. Let us proceed to show that e converges to
zero as long as t ! 1, by applying Barbalat’s lemma [10].2 Integrating both sides
of (5.14), we obtain

Z t

0

�
k1e

2
x.s/C k2e

2
y.s/C k11e

kC1
x .s/C k22e

kC1
y .s/

�
ds � V.0/: (5.15)

From the equations of (5.12) and A2, it follows that Pe is bounded, which implies
that e is uniformly continuous. Using Barbalat’s lemma, it follows that vector states
e converge to as t ! 1. Once again, differentiating (5.12), it is easily shown that Re
is bounded. Thus, Pe is uniformly continuous, and also e has a finite limit as t ! 1.

2Barbalat’s lemma states that if the differential function f .t/ has a finite limit as t ! 1, and if
df=dt is uniformly continuous, then df=dt ! 0 as t ! 1. A consequence of this lemma is that if
f 2 L2 and df=dt is bounded, then f ! 0 as t ! 1.
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From Barbalat’s lemma, we conclude that Pe ! 0 as t ! 1. Since V converges
as t ! 1, we have that the two parameter errors Q� and Qa converge as t ! 1.
Besides, from (5.13), it follows that PO� and POa converge to zero as t ! 1. Roughly
speaking, when t is large enough, O� and Oa are almost constant, and the differential
equations of (5.12) imply that

0 D .� � O�/x;
0 D .a � Oa/y: (5.16)

However, once again from assumption A2, we have that the steady states x and y
remain oscillating around zero. Therefore, we must have � D O� and a D Oa. That
is, QpT ! 0 as t ! 1. �

5.4 Numerical Results

Numerical simulations have been carried out in order to test the effectiveness
of the proposed asymptotic control strategy for synchronization and recovery of
the unknown parameters of the uncertain Rikitake system. The program uses the
Runge–Kutta integration algorithm, with the integration step set to 0:001.

In the first simulation, we illustrate the qualitative property described in assump-
tion A2. To this end, we fixed the master system parameter as q D .� D 2; a D 5),
while the initial conditions were selected as w1.0/ D .x1.0/ D 1,y1.0/ D �1,
z1.0/ D 0/. Figure 5.1 shows the behavior of the whole state of the Rikitake system.
We can see from this figure that the whole state solution of the master system is
bounded, and the states x1 and y1 remain oscillating around zero; therefore, we can
claim that assumption A2 is completely fulfilled.

Fig. 5.1 This figure depicts
the qualitative behavior
of the Rikitake system when
it is initialized
to w1.0/ D .1;�1; 0/ and the
parameter vector is fixed at
q D .2; 5/



108 5 Synchronization of an Uncertain Rikitake System with Parametric Estimation

Fig. 5.2 This figure shows the convergence to zero of the master–slave synchronization error when
the master system is initialized to w1.0/ D .1;�1; 0/ and its parameters vector is fixed at q D
.2; 5/

Fig. 5.3 This figure shows the parameter estimation when the master system is initialized to
w1.0/ D .1, �1,0/ and the actual parameter vector is fixed at q D .2; 5/

To show the performance of the proposed control strategy, we carried out a
second simulation using the same setup as above, fixing the slave system gains as
k1 D k2 D 0:8 and k12 D k22 D 0:266 with the slave system initialized at zero,
i.e., w2.0/ D 0 and Op.0/ D 0. In Fig. 5.2, we can see that the synchronization errors
converge asymptotically to zero. That is, the slave system follows the uncertain
master system almost perfectly. The estimated parameters are shown in Fig. 5.3.
As we expect, better performance can be obtained as long as the time is increased.
From these simulations, we conclude that the proposed estimator reconstructs the
parameters reasonably well after an elapsed time of 100 s.
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Fig. 5.4 Parameter estimates when abrupt parametric variations in � and a are presented in the
master system

Finally, to show the robustness of the proposed asymptotic parameter estimation
method, we have subjected the parameter values of the master system to piecewise
constant variations, as follows:

if t � 150 then f� D 1; a D 1:5g else f� D 0:5; a D 1:0g:

In this case, the initial conditions and the control gains of the slave system were set
as before, while the master system was initialized at w1.0/ D .0:5;�0:3; 0:2/. Fig-
ure 5.4 shows the numerical simulation of the corresponding parameter estimation
process from t D 0 s to t D 300 s. From this simulation, we can see that even when
the values of both parameters were abruptly changed at t D 150, the slave system
was able to detect it and estimate once again the new unknown parameter values
rather accurately, needing only 60 s.

5.5 Concluding Remarks

A Lyapunov-based approach for the synchronization and parameter identification
of the constant unknown parameters of a Rikitake system was presented under the
assumptions that the two output states x and y are available for measurement.
To accomplish this task, we first show that the system is observable and linearly
algebraically identifiable with respect to the available outputs. Then we propose
a slave controlled system whose controllers were proposed such that the vector
synchronization error and the vector parameter error among the master and slave
systems converge asymptotically to zero. The convergence proof was carried out
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using the traditional Lyapunov method in combination with Barbalat’s lemma and
assumption A2. Also, it is worth mentioning that our parameter identification
algorithm does not require that the Rikitake system always exhibits chaotic behavior.
Finally, numerical simulations were carried out to evaluate the performance of the
proposed solution.
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Chapter 6
Secure Communications and Synchronization
via a Sliding-Mode Observer

Abstract An information signal embedded in a chaotic transmitter can be
recovered by a receiver if it is a replica of the transmitter. In this chapter, an aspect
of chaotic communication is introduced. A sliding-mode observer replaces the
conventional chaotic system at the receiver side, which does not need information
from the transmitter, so the uncertainties in the transmitter and the transmission
line do not affect the synchronization. The proposed communication scheme is
robust with respect to some disturbances and uncertainties. Three chaotic systems,
the Duffing equation, Van der Pol oscillator, and Chua’s circuit, are provided to
illustrate the effectiveness of the chaotic communication.

6.1 Introduction

The general idea for transmitting information via chaotic systems is that an
information signal is embedded in the transmitter system that produces a chaotic
signal. The information signal is recovered when the transmitter and the receiver are
identical. Since Pecora and Carroll’s observation on the possibility of synchronizing
two chaotic systems, several synchronization schemes have been developed [1].

There are many applications to chaotic communication [6] and chaotic network
synchronization [7]. The techniques of chaotic communication can be divided into
three categories: (a) chaos masking [8], whereby the information signal is added
directly to the transmitter; (b) chaos modulation [4, 9], which is based on master–
slave synchronization, where the information signal is injected into the transmitter
as a nonlinear filter; (c) chaos shift keying [3], in which the information signal
is supposed to be binary and is mapped to the transmitter and receiver. In these
three cases, the information signal can be recovered by a receiver if transmitter and
receiver are synchronized. In order to reach synchronization, the receiver should be
a replica of the transmitter [5–8].

Linear and nonlinear observers in the control theory literature can be applied to
the design of receivers. The receiver is regarded as a chaotic observer, which has
two parts: a duplicated chaotic system of the transmitter and an adjustable observer
gain [4]. Some modifications are made when it is difficult to obtain a replica of the
synchronization. For example, if the transmitter and receiver are set to the same
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chaotic structures, then parameter identification methods can be used to construct
the chaotic receiver [10]; when there are uncertainties in synchronization (e.g.,
the transmitter is not known exactly, there is noise in the transmission line), the
transmitter and the receiver could be established in the same fuzzy models. A fuzzy-
model-based design method has been applied to reach synchronization [11]; stability
analysis of observer-based chaotic communication with respect to uncertainties can
be found in [9, 12, 15].

Robust control techniques and many traditional schemes have been applied in
robust synthesis for chaotic synchronization, e.g., a robust observer and the H1
technique are used in [13, 14]. Since a sliding-mode observer contains a sliding-
mode term, it provides robustness against an inaccurate modeling of measurement
and output noise [24]. Early work dealing with sliding-mode observers that consider
measurement noise includes [15]. Those authors discussed state estimation using a
sliding-mode technique. The authors of [16] discussed variable structure control as
a high-speed switched feedback control resulting in a sliding mode. In [17], the
authors analyzed systems with a sliding mode in the presence of noise. In [18], a
sliding-mode approach to construct observers that are highly robust with respect to
noise in the input of the system was successfully designed.

But it turns out that the corresponding stability analysis cannot be directly applied
in situations with output noise (or mixed uncertainty). So it is still a challenge
to suggest a workable technique to analyze the stability of the identification error
generated by sliding-mode-type (discontinuous nonlinearity) observers [19, 20, 25].

In this chapter, we design a pure sliding-mode observer for chaotic communica-
tions. The main difference between this and the above methods is that the receiver
is no longer a chaotic system. The uncertainty of the transmitter will not affect
the synchronization. The proposed communication scheme can be more robust than
both transmitter and receiver employed in chaotic systems, but the information may
be recovered by an observer that does not have knowledge of the transmitter. It is a
big challenge to secure communication by means of chaos. Numerical simulations
using a prototype of chaotic oscillators are also provided.

6.2 Chaotic Communication Based on a Sliding-Mode
Observer

In normal chaotic communication, the transmitter and receiver are chaotic systems.
They can be described in the form of the following nonlinear system:

P� D f .�/C g.�/u;

y D h.�/; (6.1)
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where � 2 R
n is the state of the plant, u 2 R is a control input, y 2 R is a measurable

output, f , g, and h are smooth nonlinear functions. Most chaotic systems have
uniform relative degree n, i.e.,

Lgh.�/ D � � � D LgL
n�2
f h.�/ D 0; LgL

n�1
f h.�/ ¤ 0:

So there exists a mapping

� D T .�/ (6.2)

that can transform the system (6.1) into the following normal form [21]:

P�i D �iC1; i D 1; : : : ; n � 1;
P�n D ˚.�; u/;

y D �1; (6.3)

where ˚.�/ is a continuous nonlinear function.
First, we discuss a simple case, in which the transmitter and the receiver are

second-order chaotic oscillators, for example the Duffing equation and Van der Pol
oscillator. When n D 2, then (6.3) becomes

P�1 D �2;

P�2 D ˚.�1; �2; u/;

y D �1: (6.4)

The Duffing equation describes a specific chaotic circuit [22]. It can be written as

P�1 D �2;

P�2 D p1�1 � p2�
3
1 � p�2 C q cos.!t/C ut ; (6.5)

where p, p1, p2, q, and ! are constants, and ut is a control input. It is known that the
solution of (6.5) exhibits almost periodic and chaotic behavior. In the uncontrolled
case, if we select p1 D 1:1, p2 D 1, p D 0:4, q D 2:1, ! D 1:8, the Duffing
oscillator (6.5) has a chaotic response, as shown in Fig. 6.1.

The Van der Pol oscillator can be described as [23]

P�1 D �2;

P�2 D a1
�
.1 � a2�21/�2 � a3�1

C ut : (6.6)

In the uncontrolled case, if we select a1 D 1:5, a2 D 1, a3 D 1, the Van der Pol
oscillator (6.6) has a chaotic response, as shown in Fig. 6.2.
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Fig. 6.1 Chaotic behavior
of Duffing equation with
x.0/ D Œ0; 0�T

Fig. 6.2 Chaotic behavior
of a Van der Pol oscillator
with x.0/ D Œ1; 1�T

In this chapter, chaos modulation [2, 4, 9] is used for communication, whereby
the information signal s is embedded in the output of the chaotic transmitter. The
transmitter is a slight modification of the normal chaotic system (6.4) as follows:

P�1 D �2;

P�2 D ˚.�1; �2/;

y D �1 C s; (6.7)

where the output y D �1 C s is chaotic masking.
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In this chapter, we discuss an observer-based receiver, and we propose the
following sliding-mode observer for the receiver:

PO�1 D O�2 Cm��1sign.y � Oy/; m > 0;

PO�1 D m2��2sign.y � Oy/; (6.8)

where O�1, O�2 are the states on the receiver side; Oy is the estimate of the output y;
m and � are small positive parameters m > 0, 0 < � < 1; and the sign function is
defined as

˛.x/ D
8
<

:

1 .y � Oy/ > 0;
�1 .y � Oy/ < 0
0 .y � Oy/ D 0:

The schematic diagram of the chaotic communication based on a sliding-mode
observer is shown in Fig. 6.3.

Fig. 6.3 Sliding-mode chaotic communication
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The receiver (6.8) proposed in this chapter is very easy to apply and is robust with
respect to uncertainty on the transmitter side. For example, in [4, 9], the receiver is

PO�1 D �2 C l1.y � Oy/;
PO�2 D a1

�
.1 � a2 O�21/ O�2 � a3 O�1

C l2.y � Oy/;
Oy D O�1; (6.9)

where l1 and l2 are solutions of a Riccati inequality. Any uncertainty on the
transmitter side, for example if the parameters a1, a2, and a3 are not known exactly,
will affect the accuracy of the recovery of the information signal.

Let us define the synchronization error as

e1 D �1 � O�1;

e2 D 1

m
.�2 � O�2/: (6.10)

The recovered signal at the receiver is

Os D y � Oy D e1 C s:

By (6.7) and (6.8), the synchronization error can be represented as

Pe D A�e � Ksign.Ce C s/C�f; (6.11)

as is given in Chap. 3 with ı D s and with

A� D
��� m

0 ��
�

; � > 0;

K D m��1
�

1

m��1

�

;

�f D
0

@
�e1

˚

m
C �e2

1

A ;

C D 	
1 0


:

We can then reformulate the following theorem for secure communications.

Theorem 6.2 The sliding-mode observer-based receiver (6.8) can recover the
information signal s embedded in the chaotic transmitter (6.7). The signal recovery
error Qs D s � Os converges to the following residual set:

D" D fQsj k Qs kP� N�.k/g ;
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and P is a solution of the Riccati equations

N� D
 

.k/
p
.k˛p/2 C .k/˛Q C k˛p

!2

;

where

.k/ D 2 k �f k L20f C 4k
�q

n��1
f

�
Ns;

k˛p D k.�min.P
�1=2C T CP�1=2/;

˛Q D �min.P
�1=2QTQP�1=2/ > 0;

where n is the dimension of the chaotic system.

Proof The proof is similar to that of Theorem 3.1 and is therefore omitted. �
Remark 6.1 The theorem actually states that the weighted estimation error V.e/ D
eT Pe converges to the zone N�.k/ asymptotically; that is, it is ultimately bounded:

N�.k/ � eTPe � eT1 Pe1;

N�.k/ D

0

B
B
B
B
B
B
@

2 k �f k L20f
k

C 4.
q
n��1

f /Ns
v
u
u
t
˛2p C Œ

2 k �f k L20f
k2

C
4.
q
n��1

f /Ns
k

�C ˛Q C ˛p

1

C
C
C
C
C
C
A

2

: (6.12)

Remark 6.2 Although we have restricted attention to the case of a second-order
chaotic system, the observer construction and convergence analysis can be extended
to the n-dimensional case. The chaotic transmitter is

P�j D �jC1; j D 1; : : :; n � 1;
P�n D H.�; s/;

y D �1 C s; (6.13)

and the sliding-mode observer-based receiver is constructed as

PO�j D O�jC1 Cmj�
�j sign.y � Oy/; 1 � j � n � 1;

PO�n D mn�
�nsign.y � Oy/; (6.14)
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where the constants kj are chosen such that the polynomial 
n C kn�1
n�1 C � � � C
k1 D 0 has all its roots in the open left-hand complex half-plane.

Remark 6.3 Some chaotic systems do not have the normal form (6.3), and we
cannot apply a sliding-mode observer directly to the receiver, for example Chua’s
circuit

C1 P�1 D G.�2 � �1/ � g.�1/C u;

C2 P�2 D G.�1 � �2/C �3;

L P�3 D ��2;
y D �3; (6.15)

where g.�1/ D m0�1 C 1=2.m1 �m0/Œj�1 CBpj�C j�1 �Bpj�, �1, �2, �3 denote the
voltages across C1, C2, and L. It is known that with C1 D 1=9, C2 D 1, L D 1=7 ,
G D 0:7, m0 D �0:5, m1 D �1:5, Bp D 1, the circuit displays a double scroll, as
depicted in Fig. 6.4. But if we make the transformation � D T .�/ as

�1 D �3;

�2 D �L�2;

�3 D LG

C2
.�2 � �1/� L

C2
�3; (6.16)

Fig. 6.4 Chaotic behavior of Chua’s circuit with initial condition Œ0; 0; 1�T
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then Chua’s circuit assumes the normal form

P�1 D �2;

P�2 D �3;

P�3 D f .�1; �2; �3/C gu;

y D �1; (6.17)

where f .�1; �2; �3/ D G=C2f��3 � .G=C1/Œ�2�2 � .1=GL/�1 � .C2=G/�3 �
.1=C1/g.��1 � 1.1=GL/�1 � .C2=G/�3/�g � .1=C2L/�1, g D G=C1C2. Now a
sliding-mode observer-based receiver (6.14) can be applied.

6.3 Numerical Simulation

We use three types of chaotic systems as transmitters, whereby the information
signal s is embedded in the output of the transmitter:

1. Duffing’s equation is

P�1 D �2 C 1

�
s;

P�2 D �1:1y � y3 � 0:4�2;

C2:1 cos.1:8t/C 1

�2
s;

y D �1 C s; �.0/ D Œ0; 0�T : (6.18)

2. The Van der Pol oscillator is

P�1 D �2 C 1

�
s;

P�2 D 1:5Œ.1 � �21/�2 � �1�C 1

�2
s;

y D �1 C s; �.0/ D Œ2;�1�T : (6.19)

3. For Chua’s circuit, we use the following parameters: C1 D 1

9
, C2 D 1, L D 1

7
,

G D 0:7, m0 D �0:5, m1 D �1:5, Bp D 1.
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By the transformation (6.16), Chua’s circuit (6.15) can be written as

P�1 D �2;

P�2 D �3;

P�3 D 31

4:9
�3 � 310

7
�1 � 22

4:9
�3 � 22

7
�2 � 220

7
�1;

�0:7�2 � 7�1 C 22g.�1; �2; �3/;

y D �2; �.0/ D Œ1; 0;�7�T ; (6.20)

where g.�1; �2; �3/ D j � .1=4:9/�3 � .1=7/�2 � .10=7/�1 C 1j � j � .1=4:9/�3 �
.1=7/�2 � .10=7/�1 � 1j. We use �2 and �3 as the transmitter:

P�2 D �3 C 1

�
s;

P�3 D 31

4:9
�3 � 310

7
�1 � 22

4:9
�3 � 22

7
y � 220

7
�1;

�0:7y � 7�1 C 22g.�1; y; �3/C 1

�2
s;

y D �2 C s; (6.21)

where �1 satisfies P�1 D �2.
Now we design the sliding-mode receiver as (6.8). We choose m D 0:1, � D

0:01. The sliding-mode observer-based receiver is

PO�1 D O�2 C 10sign.y � Oy/;
PO�2 D 102sign.y � Oy/;
Oy D O�1; O�.0/ D Œ1; 1�T : (6.22)

The information signal s is chosen as a sinusoidal signal with frequency of
100Hz as in [4], i.e.,

s D 0:05 sin.200	t/:

Figures 6.5, 6.6, 6.7 show the communication process with three different chaotic
transmitters and one receiver. Here the waveform of the transmitted signal y is
shown in subplot (a), and the convergence behavior of s� Os is shown in subplots (b).
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Fig. 6.5 Duffing equation for chaotic communication

Fig. 6.6 Van der Pol oscillator for chaotic communication
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Fig. 6.7 Chua’s circuit for chaotic communication

Following a transient process with t > 0:1 s, the maximum relative error is
defined as

emax D max.js � Osj/
max.jsj/ :

For Duffing’s oscillator, emax Š 1:5%. For the Van der Pol oscillator, emax Š
2%. For Chua’s circuit, emax Š 1:915%. Although the relative errors are different,
they are acceptable for signal communication. It is interesting to see that a single
receiver (6.8) can recover the information signal from three different chaotic
transmitters.

A model-based observer requires complete information for the transmitter. We
use a linear observer [4] for comparison with our results; see Fig. 6.8. We find
that the model-based observer gives the best performance, but if the transmitter is
unknown or partially known, such a receiver does not work. Another advantage of a
model-based receiver is that it can be applied to any chaotic transmitter as in (6.1),
but a sliding-mode observer is suitable only for a chaotic system that has the normal
form (6.3).
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Fig. 6.8 Signal errors for different types of receivers

6.4 Conclusions

In this chapter, we have proposed a chaotic communication approach, whereby the
receiver is a sliding-mode observer. The main difference between such an approach
and normal chaos modulation in communication is that the receiver is no longer a
chaotic system. The proposed scheme is robust with respect to uncertainty. Although
the communication signal error can be made arbitrarily small by selecting a proper
observer gain in the receiver. A large observer gain will also enlarge the transmission
noise. A sliding-mode-based receiver cannot work as well as a normal receiver, and
it may impose a security risk on the current secure communication system using
chaotic communication techniques when the transmitter is in the form of (6.3), or
it can be transformed into this form. To the best of our knowledge, this kind of
receiver has not yet been implemented in a real-world application. But we hope
that this chapter will encourage further research effort in the field of real chaotic
communication.
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Chapter 7
Synchronization and Antisynchronization
of Chaotic Systems: A Differential
and Algebraic Approach

Abstract In this chapter, chaotic systems synchronization and antisynchronization
problems are tackled by means of differential and algebraic techniques for nonlinear
systems. An observer is proposed for systems satisfying an algebraic observability
property. This observer can be used as a slave system whose states are synchronized
with the master (chaotic) system. This approach has the advantages of being
independent of the chaotic nature of the master system. It uses a reduced set of mea-
surable signals from the master system, and it also solves the antisynchronization
problem as a straightforward extension of the synchronization problem. A Colpitts
oscillator is given to illustrate the effectiveness of the suggested approach.

7.1 Introduction

In this chapter we have taken the classic Colpitts oscillator as a suitable chaotic
system to illustrate the proposed methodology. As in previous chapters, where the
synchronization of a Colpitts oscillator was carried out by means of observers, the
synchronization of Colpitts oscillators using feedback techniques has been reported
in [1–3]. In those works, the approach of a Luenberger-like observer is indirectly
used with the disadvantage of assuming measurable the three state variables of the
first Colpitts oscillator taken as the master system to synchronize the second one.

Antisynchronization is another phenomenon of interest in chaotic oscillators.
With our approach, we show that once the synchronization problem is solved,
antisynchronization is a straightforward modification of the designed observer for
synchronization.

This chapter is organized as follows: In Sect. 7.2, we present some basic
definitions and examples to introduce the differential-algebraic setting and the
antisynchronization problem. In Sect. 7.3, the statement of the problem is presented
in terms of the algebraic observability of an unknown variable and the construction
of a reduced-order observer. In Sect. 7.4, these techniques are applied to solve
the problem of synchronization and antisynchronization of a Colpitts oscillator.
Furthermore, we show some numerical results that illustrate how synchronization
and antisynchronization are achieved, and finally, in Sect. 7.5, some concluding
remarks are presented.
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7.2 Statement of the Problem

As in previous chapters, let us consider the following system:

Px.t/ D f .x; u/;
y.t/ D h.x; u/;

(7.1)

where x D .x1 x2 : : : xn/
T 2 R

n is the state vector, u 2 R
m is the input vector,

y 2 R
p is the output vector, and h is assumed to be an analytic vector function.

System (7.1) can be seen as a dynamics given by Khu; yi=Khui with output y
and where K is the differential field given by R [5].

Let xi , i 2 f1; : : :; ng, be an unknown state variable of (7.1), and let us introduce
the new variable �.xi / as a function of the unknown state xi . Then (7.1) can be seen
as the following extended dynamics:

Px.t/ D f .x; �; u/;

P� D �.x; u/; (7.2)

y.t/ D h.x; u/;

where�.x; u/ is an unknown function.
As can be seen, it is impossible to construct a classical Luenberger observer,

because the dynamics (7.4) has an unknown part. Under these conditions,
Lemma 2.1 describes the construction of a purely proportional reduced-order
observer for (7.1), which is a model-free reduced-order observer.

7.2.1 Antisynchronization

The synchronization problem is solved in terms of the asymptotic convergence of
the observed variables given by (2.17) (see Chap. 2). From this expression, we have

lim sup
t!1

j�� O�j D N"; (7.3)

where N" D M
jKj . If we choose the change of variable O� D �O�, then (7.3) becomes

lim sup
t!1

ˇ
ˇ
ˇ�C O�

ˇ
ˇ
ˇ D N";

where O� can be considered the estimated state of the antisynchronized system.
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Remark 7.1 Note that antisynchronization error N" defines a ball with definite radius
equal to M

jKj , which can be made small enough with an appropriate choice of the

observer’s gainK (K 2 R
C, the convergence rate of the observer).

7.3 Synchronization and Antisynchronization of a Colpitts
Oscillator

The classic Colpitts oscillator is a single-transistor implementation of a sinusoidal
oscillator that has been widely used in electronic devices and communication
systems [6]. The fundamental frequency of this oscillator can be tuned from
radio frequency to the microwave range [2]. It is well known that this circuit can
exhibit chaotic behavior in different frequency ranges. The first experimental chaotic
behavior at kilohertz frequencies was reported in [4]. Thereafter, many experiments
have reported chaos in Colpitts oscillators in higher frequency ranges [3].

Let us consider the Colpitts oscillator whose circuit is shown in Fig. 7.1. It
consists of a single bipolar transistor, which is biased in its active region by means
of the constant voltage source V . It contains a feedback network consisting of

Fig. 7.1 Colpitts oscillator
circuit
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an inductor L with a series resistance R and a capacitive divider formed by C1
and C2. By applying Kirchhoff’s laws on voltages and currents, we can get the
corresponding equation for this circuit as follows (see Chap. 4):

C1
dvC1

dt
D iL � iC ;

L
diL
dt

D V � vC1 � vC2 � RiL; (7.4)

C2
dvC2

dt
D iL � iC C iE.vC2/� I0;

where vC1 and vC2 are the respective capacitor voltages, and iL is the inductor
current, I0 is the constant current source, and iC , iE are respectively the collector
and emitter currents.

Here, a piecewise linear model is considered for the I–V curves of the emitter–
base junction [2]:

iE.vC2/ D
8
<

:

�vC2 � v�

r
; vC2 < �v�;

0 vC2 � �v�;
(7.5)

where r is the small-signal ON resistance of the emitter–base junction, and v� is the
breakpoint voltage (v� � 0:7V).

After normalizing voltages, currents, and time by introducing the dimensionless
quantities vref D v�; iref D v�p

L=C1
, tref D p

LC1 and taking into account that
iE � iC , then (7.6) takes the form

Px1 D x2 � F.x3/;

Px2 D u � x1 � bx2 � x3;
Px3 D .x2 � d/ =";

y D x3;

(7.6)

where u D V
v�

is the input of the system, x D �
vC1 iL vC2

T D �
vce iL �vbe

T
is

the state vector, a D
p
L=C1
r

, b D Rp
L=C1

, d D
p
L=C1I0
v�

, " D C2
C1

, and the nonlinear
(7.5) is given by

F.x3/ D
� �a.x3 C 1/; x3 < �1;

0 x3 � �1: (7.7)

As can be seen, system (7.6) has the form (7.1). Then it can be seen as a dynamics
of the form R hu; yi =R hui, since it can be expressed as

"«y C b" Ry C ."C 1/ Py � F.y/ � Pu C d D 0:
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In our approach, we need neither an exact copy of the Colpitts oscillator
nor the complete information from the three states of the original oscillator. We
consider only a measurable state variable or output y D x3, and we analyze the
algebraic observability for the other states. Therefore, the first step is to rewrite the
system (7.6) in terms of its output:

Px1 D x2 � F.y/;

Px2 D u � x1 � bx2 � y;

Py D .x2 � d/ =":
(7.8)

Then from (7.8), we obtain

x1 D u � b." Py C d/ � " Ry � y (7.9)

and

x2 D " Py C d; (7.10)

so it is possible to express the states x1 and x2 as differential algebraic polynomials
of y, u, and their time derivatives with b; ", d 2 R

C. Then we can conclude that
the system (7.6) is algebraically observable over R hu; yi (see Definition 1.6), and
therefore it is possible to construct a new dynamical system (the observer) that will
produce new state variables that are synchronized with the state variables of the
actual system (7.6).

7.3.1 Observer Design

From Lemma 2.1 given in Chap. 2, we proceed by constructing a reduced-order
observer for each state variable. In this way, for the variable x2 we have

�
Ox2 D K2.x2 � Ox2/; (7.11)

whereK2 > 0, and from (7.10),

�
Ox2 D K2." Py C d � Ox2/; (7.12)

but we do not know the time derivative Py. In order to avoid this difficulty, we
introduce an auxiliary variable 
2 as follows:


2
4D Ox2 �K2"y:
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That is,

Ox2 D 
2 CK2"y: (7.13)

Taking the time derivative from (7.13) and taking into account (7.12), we obtain

P
2 D K2.d � 
2 �K2"y/; (7.14)

so that we have an observer for x2 consisting of (7.13) and (7.14). Now for the
variable x1, we have

�
Ox1 D K1.x1 � Ox1/; (7.15)

whereK1 > 0, and from (7.9),

�
Ox1 D K1.c � b" Py � bd � " Ry � y � Ox1/: (7.16)

In this case, we need a second-order time derivative of y. In the same manner as
above, we introduce a new variable

x4
4D Py; (7.17)

and we propose an observer for x4,

�
Ox4 D K4.x4 � Ox4/;

that is,

�
Ox4 D K4. Py � Ox4/; (7.18)

and we define the auxiliary variable


4
4D Ox4 �K4y;

or

Ox4 D 
4 CK4y: (7.19)
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Then by taking the time derivative from (7.19) and comparing with (7.18), we obtain

P
4 D K4
4 �K2
4y: (7.20)

On the other hand, by replacing (7.17) in (7.16), we can write

�
Ox1 D K1.c � b"x4 � bd � " �

x4 � y � Ox1/: (7.21)

Finally, to avoid calculating x4, we introduce an auxiliary variable


5
4D Ox1 CK1"x4;

which yields

Ox1 D 
5 �K1"x4: (7.22)

Taking the time derivative and comparing with (7.21), we obtain

P
5 D K1 Œ�
5 C c C .K1 � b/ "x4 � bd � y� : (7.23)

Then we can construct the following asymptotic observer for x1:

Ox1 D 
5 �K1" Ox4 D 
5 �K1" .
4 CK4y/ ;

P
4 D K4
4 �K2
4y;

P
5 D K1 Œ�
5 C c C .K1 � b/ " .
4 CK4y/� bd � y� :
(7.24)

7.4 Numerical Results

The parameter values considered in the numerical simulations correspond to chaotic
behavior [2]; they are a D 30; b D 0:8; d D 0:6; " D 1. The input u is maintained
constant u D 0:6. The initial conditions are x1.0/ D 2; x2.0/ D x3.0/ D 0:5.

In Fig. 7.2, the synchronization of the three state variables is shown. As can be
seen, this synchronization occurs immediately. In the phase space shown in Fig. 7.3,
one can appreciate the antisynchronization achieved by simply changing signs in the
observers (7.15) and (7.11) for reconstructing �x1 and �x2, instead of x1 and x2.



132 7 Synchronization and Antisynchronization of Chaotic Systems: A Differential. . .

Fig. 7.2 Synchronization of the three state variables

Fig. 7.3 Phase trajectories of the original and the antisynchronized systems
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7.5 Concluding Remarks

In this chapter, the problems of synchronization and antisynchronization have
been treated by means of differential and algebraic techniques. A reduced-order
observer based on an algebraic observability condition was proposed. This observer
has been used as a slave system whose states are synchronized with the chaotic
system. A reduced set of measurable state variables was needed to achieve the
synchronization with this approach. The antisynchronization problem was proved
to be a straightforward extension of the synchronization problem. A Colpitts
oscillator model was given as an illustrative case to show the effectiveness of the
suggested approach, and some numerical simulations were presented to help the
reader visualize the synchronization and antisynchronization results.
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Chapter 8
Synchronization of Chaotic Liouvillian Systems:
An Application to Chua’s Oscillator

Abstract In this chapter, we deal with the synchronization of chaotic oscillators
with Liouvillian properties (chaotic Liouvillian system) based on a nonlinear
observer design. The strategy consists in proposing a polynomial observer (slave
system) that tends to follow exponentially the chaotic oscillator (master system).
The proposed technique is applied in the synchronization of Chua’s circuit. Simula-
tion and experimental results are used to visualize and illustrate the effectiveness of
the proposed scheme in synchronization.

8.1 Introduction

Synchronization of chaotic systems has received attention from researchers in many
fields. In general, synchronization research has been focused on the following
areas: nonlinear observers [1–17], nonlinear control [18], feedback controllers [5],
nonlinear backstepping control [19], time-delayed systems [12, 20], directional and
bidirectional linear coupling [21], adaptive control [9], adaptive observers [22, 23],
sliding-mode observers [13, 24], and active control [25], among others.

This chapter considers the master–slave synchronization problem via an expo-
nential polynomial observer (EPO) based on differential and algebraic techniques
[26–28]. In Chap. 1, differential and algebraic concepts allowed us to establish
an algebraic observability condition, and therefore, they provide a first step to
constructing an algebraic observer. An observable system in this sense can be
regarded as a system whose state variables can be expressed in terms of the input
and output variables and a finite number of their time derivatives. Thus, the chaos
synchronization problem can be posed as an observer design procedure, whereby
the coupling signal is viewed as output and the slave system is regarded as observer.
The main characteristic is that the coupling signal is unidirectional, i.e., the signal
is transmitted from the master system (Chua’s circuit) to the slave system (EPO).
The slave is tasked with recovering the unknown state trajectories of the master
system. The strategy consists in proposing an EPO that exponentially reconstructs
the unknown states of Chua’s system.

© Springer International Publishing Switzerland 2015
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Chua’s circuit is a nonlinear electronic chaotic oscillator. This circuit is easily
constructed [29] and has been employed in a variety of applications [30], e.g., com-
munication systems [31]. The chaotic associative memory architecture proposed in
[32] uses a network of Chua’s oscillators coupled via piecewise linear conductances.

In this chapter, Chua’s oscillator is viewed as a chaotic system with some
Liouvillian properties [26, 28], referred to as a chaotic Liouvillian oscillator. The
Liouvillian character of the system (if a variable can be obtained by the adjunction
of integrals or exponentials of integrals) is exploited as an observability criterion,
that is, with this property we can determine whether a variable can be reconstructed
with measurable output.

This chapter is organized as follows. In Sect. 8.2, we give some definitions
regarding the differential-algebraic approach and Liouvillian systems. In Sect. 8.3,
we treat the synchronization problem and its solution by means of an exponential
polynomial observer. In Sect. 8.4, we present the synchronization of Chua’s circuit
[33], and we offer some numerical simulations and real-time experiments. Finally,
in Sect. 8.5, we close the chapter with some concluding remarks.

8.2 Definitions

We begin with some basic definitions related to Liouvillian systems.
By way of motivation, let us consider the following examples.

Example 8.1 Consider the nonlinear system

Px1 D x2 C x23 ;

Px2 D x3;

Px3 D u:
(8.1)

If we define y D x2, then

x2 D y;

x3 D Py;
Px1 D y C Py2:

(8.2)

The above system is not algebraically observable, since x1 cannot be expressed
as a differential algebraic polynomial in terms of fu; yg (see Chap. 1).

Motivated by this fact, we present the following definition.

Definition 8.1 (Liouvillian System) A dynamical system is said to be Liouvillian
if the elements (for example, state variables or parameters) can be obtained by an
adjunction of integrals or exponentials of integrals of elements of R.
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Example 8.2 We consider a nonlinear system as in Example 8.1. From (8.2), we
can observe that although x1 does not satisfy the AOC (Chapter 2), we can obtain it
by means of the integral

x1 D
Z

.y C Py2/:

Therefore the nonlinear system (8.1) is Liouvillian.

Example 8.3 Consider the following nonlinear second-order system that models a
predator–prey situation:

�
x1 D x1x2 � x1 C k; (8.3)
�
x2 D �x1x2 � x2:

y D x1

We have, therefore,

�
y D yx2 � y C k;

�
x2 D �yx2 � x2; (8.4)

which we can solve directly to obtain

�
y D yx2 � y C k;

x2 D exp

�

�
Z

.y C 1/ dt

�

:

We obtain the parameter k as

k D �
y � exp

�

�
Z

.y C 1/ dt

�

C y;

and we say that system (8.3) is Liouvillian.

For further information, we recommend [26, 28].

8.3 Problem Formulation and Main Result

Let us consider the following chaotic Liouvillian system:

Px D A x C  .x/C '.x/C �.u/;
y D C x;

(8.5)
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where x 2 R
n is the state vector1; u 2 R

l is the input vector, l � n; y 2 R is the
measured output; �.�/ W Rl ! R

n is an input-dependent vector function; A 2 R
n�n

and C 2 R
1�n are constants; and  .�/ W R

n ! R
n, '.�/ W R

n ! R
n are state-

dependent nonlinear vector functions.
We restrict each  i.�/ to be nondecreasing, that is, for all a; b 2 R, a > b, it

satisfies the following monotone sector condition:

0 �  i .a/ �  i.b/

a � b
; i D 1; : : : ; n: (8.6)

In the same manner, we restrict each 'i .�/ to be nondecreasing, that is, for all
a; b 2 R, a > b, it satisfies

'i.a/ � 'i .b/
a � b � 0; i D 1; : : : ; n: (8.7)

To show the relation between the observers for nonlinear systems and chaos
synchronization, we give a definition of the observer.

Definition 8.2 (Exponential Observer) An exponential observer for (8.5) is a
system with state Ox such that

kx � Oxk � � exp.��t/;

where � and � are positive constants.

In the context of master–slave synchronization, x can be considered the state
variable of the master system, and Ox can be viewed as the state variable of the
slave system. Hence, the master–slave synchronization problem can be solved by
designing an observer for (8.5).

In what follows, we will solve the synchronization problem using an exponential
polynomial observer based on the Lyapunov method [26]. To this end, we first
compute the dynamics of the synchronization error (difference between the master
and the slave systems). Next, by means of a simple quadratic Lyapunov function,
we prove the exponential convergence.

System (8.5) is assumed to be a chaotic Liouvillian system. Then by Defini-
tion 8.1, all states of (8.5) can be reconstructed. In this sense, we will propose an
observer scheme.

The observer structure. The observer for system (8.5) has the following form:

POx D A Ox C  . Ox/C '. Ox/C �.u/C˙m
iD1Ki .y � C Ox/2i�1 ; (8.8)

where Ox 2 R
n andKi 2 R

n for 1 � i � m.

1Mathematically, chaotic systems are characterized by local instability and global boundedness of
the trajectories, i.e., kx.t/k is bounded for all t � 0.
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Remark 8.1 The meaning ofm can be understood as follows. As is well known, an
extended Luenberger observer can be seen as a first-order Taylor series around the
observed state. Therefore, to improve the estimation performance, high-order terms
are included in the observer structure. In other words, the rate of convergence can be
increased by injecting additional terms with increasing powers of the output error.

8.3.1 Observer Convergence Analysis

In order to prove observer convergence, we analyze the observer error, which is
defined as e D x� Ox. From Eqs. (8.5) and (8.8), the dynamics of the state estimation
error is given by

Pe D .A �K1C/e C �.e/C .e/�˙m
iD2Ki .Ce/2i�1 ; (8.9)

where �.e/ WD  .x/ �  . Ox/ and .e/ WD '.x/ � '. Ox/.
It follows from (8.6) that each component of �.e/ satisfies

0 � �i.ei /

ei
; 8 ei ¤ 0; (8.10)

which implies a relationship between �.e/ and e as follows:

eT �.e/ D ˙n
iD1ei�i .ei / D ˙n

iD1e2i
�i .ei /

ei
:

Using (8.10), we have the following condition:

0 � eT �.e/: (8.11)

By a similar analysis, from (8.7) we have

eT .e/ � 0: (8.12)

Properties (8.11) and (8.12) will allow us prove that the state estimation error
e.t/ decays exponentially.

We now present our main result.

Theorem 8.1 Consider the chaotic Liouvillian system (8.5) and the observer (8.8).
If there exist a matrix P D PT > 0 and scalars " > 0, �1 > 0, �2 > 0 satisfying
the linear matrix inequality (LMI)

2

4
.A �K1C/

T P C P.A �K1C/C "I P C �1I P � �2I

P C �1I 0 0

P � �2I 0 0

3

5 � 0 (8.13)
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and

�min
	
Mi CMT

i


 � 0 ; i D 2; : : : ; m; (8.14)

withMi WD PKiC , then there exist positive constants � and � such that for all t � 0,

ke.t/k � � exp.��t/;

where � D
r
ˇ

˛
ke.0/k, � D "

2ˇ
, ˛ D �min.P /, and ˇ D �max.P /.

Proof We use the following Lyapunov function candidate V D eTPe. From (8.9),
the time derivative of V is

PV D eT
�
.A �K1C/

T P C P.A �K1C/

e

C2eT P�.e/C 2eT P.e/� 2˙m
iD2.Ce/2i�2eTMie

D eT
�
.A �K1C/

T P C P.A �K1C/

e

C2eT P�.e/C 2eT P.e/�˙m
iD2 .Ce/2i�2 eT .Mi CMT

i /e;

and in view of (8.13) and (8.14),

PV � �"eT e � 2�1 e
T �.e/C 2�2 e

T .e/:

By properties (8.11) and (8.12), we have

PV � �"kek2: (8.15)

We write the Lyapunov function as V D kek2P . Then by the Rayleigh–Ritz inequal-
ity, we have that

˛kek2 � kek2P � ˇkek2; (8.16)

where ˛ WD �min.P / and ˇ WD �max.P / 2 R
C (because P is positive definite).

Using (8.16), we obtain the following upper bound for (8.15):

PV � � "
ˇ

kek2P : (8.17)

Taking the time derivative of V D kek2P and replacing in inequality (8.17), we
obtain

d

dt
kekP � � "

2ˇ
kekP :
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Finally, the result follows with

ke.t/k � � exp.�� t/; (8.18)

where � D
r
ˇ

˛
ke.0/k, and � D "

2ˇ
. �

Corollary 8.1 Let us consider  .�/ � 0. Then system (8.8) is an exponential
observer of system (8.5) if there exist a matrix P D PT > 0 and scalars " > 0,
�2 > 0 satisfying

�
.A �K1C/

T P C P.A �K1C/C "I P � �2I
P � �2I 0

�

� 0 (8.19)

and

�min
	
Mi CMT

i


 � 0; i D 2; : : : ; m; (8.20)

with � and � defined as in Theorem 8.1.

Proof The proof is similar to that of Theorem 8.1. �

Corollary 8.2 Let us consider '.�/ � 0. Then system (8.8) is an exponential
observer of system (8.5) if there exist a matrix P D PT > 0 and scalars " > 0,
�1 > 0 satisfying the LMI

�
.A�K1C/

TP C P.A �K1C/C "I P C �1I

P C �1I 0

�

� 0 (8.21)

and

�min
	
Mi CMT

i


 � 0; i D 2; : : : ; m; (8.22)

With � and � defined as in Theorem 8.1.

Proof The result follows directly from the procedure in Theorem 8.1. �

8.4 Numerical and Experimental Results

In this section, we consider the synchronization of a Chua system that is considered
a chaotic Liouvillian oscillator.
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8.4.1 Numerical Results

Chua’s circuit [30] is shown in Fig. 8.1. It is a simple oscillator circuit that exhibits
a variety of bifurcations and chaos. The circuit contains three linear energy-storage
elements (an inductor and two capacitors), a linear resistor, and a single nonlinear
resistor NR.

The state equations for the Chua circuit are as follows:

C1
dvC1

dt
D G.vC2 � vC1 /� g.vC1/;

C2
dv

C2

dt
D G.v

C1
� v

C2
/C iL;

L
diL
dt

D �vC2;

(8.23)

where G D 1

R
, and g.�/ is a nondecreasing function defined by

g.vR/ D m0vR C 1

2
.m1 �m0/.

ˇ
ˇvR C Bp

ˇ
ˇ� ˇ

ˇvR � Bp
ˇ
ˇ/: (8.24)

This relation is shown graphically in Fig. 8.2. The slopes in the inner and outer
regions are m0 and m1 respectively, with m1 < m0 < 0, ˙Bp denoting the

Fig. 8.1 Chua’s circuit, with
parameter values C1 D 10 nF,
C2 D 100 nF, R D 1:8 k�,
L D 18mH,
m0 D �0:409ms,
m1 D �0:756ms and
Bp D 1:08V

Fig. 8.2 Three segment
piecewise-linear v � i

characteristic of the linear
resistor in Chua’s circuit. The
outer regions have slopes m0;
the inner region has slope m1.
There are two breakpoints at
˙Bp
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breakpoints. The nonlinear resistor NR is said to be voltage-controlled because the
current in the element is a function of the voltage across its terminals.

In the first reported study of this circuit, Chua and Matsumoto [30, 34] showed by
computer simulation that the system possesses a strange attractor called the double
scroll. Experimental confirmation of the presence of this attractor was given shortly
afterward in [35]. Since then, the system has been studied extensively; a variety of
bifurcation phenomena and chaotic attractors in the circuit have been discovered
experimentally and confirmed mathematically [34].

In what follows, we consider the measured output y D vc2 . From the equations
of (8.23) we obtain

vc1 D C2

G
Py C y C 1

LG

Z

ydt;

vc2 D y;

iL D � 1

L

Z

ydt:

(8.25)

Then Chua’s system (8.23) is Liouvillian. This implies that unknown variables vC1
and iL can be reconstructed with the selected output y D vC2 .

Chua’s system (8.23) is of the form (8.5) with �.u/ D 0, '.�/ D 0,

A D

2

6
4

� G
C1

G
C1

0
G
C2

� G
C2

1
C2

0 � 1
L
0

3

7
5 ;  .x/ D

2

6
4

� g.x1/

C1

0

0

3

7
5 ;

C D �
0 1 0


; x D �

vC1 vC2 iL
T
:

Since g.x1/ is nonincreasing and C1 is a positive constant, it follows that
 1.x/ D  1.x1/ D �g.x1/=C1 is nondecreasing as in (8.6). Indeed,  2.x/ D
 3.x/ D 0 also satisfy property (8.6), and Chua’s system (8.23) is Liouvillian, so
that we may proceed with the observer design.

Taking into account that '.�/ D 0, we will use conditions in Corollary 8.2 to
obtain the observer gains. Using LMI software, observer gains are computed to drive
the estimation error to zero.

Applying (8.8), we obtain the observer for Chua’s system (8.23):

POx D

2

6
4

� G
C1

G
C1

0
G
C2

� G
C2

1
C2

0 � 1
L
0

3

7
5 Ox C

2

6
4

� g. Ox1/
C1

0

0

3

7
5C m

˙
iD1

2

4
k1;i
k2;i
k3;i

3

5
	�
0 1 0


e

2i�1

:
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Hence the state observer can be rewritten as

�
Ox1 D � G

C1
Ox1 C G

C1
Ox2 � g. Ox1/

C1
C k1;1e1;2 C k1;2.e1;2/

3 C � � � C k1;m.e1;2/
2m�1

�
Ox2 D G

C2
Ox1 � G

C2
Ox2 C k2;1e1;2 C k2;2.e1;2/

3 C � � � C k2;m.e1;2/
2m�1

�
Ox3 D � 1

L
Ox3 C k3;1e1;2 C k3;2.e1;2/

3 C � � � C k3;m.e1;2/
2m�1:

(8.26)

Figure 8.2 shows the general diagram of the synchronization of Chua’s
circuit (8.23) and the exponential observer (8.26) in the master–slave configuration.

Numerical simulations for the synchronization of Chua’s system are carried out
in order to show the performance of the exponential observer; later, we present
experimental results. The parameter values considered in the numerical simulations
correspond to chaotic behavior [33], and these are C1 D 10 nF, C2 D 100 nF,
R D 1:8 k�, L D 18mH, m0 D �0:409ms, m1 D �0:756ms, and Bp D 1:08V.
The Matlab-Simulinkr program uses the Dormand–Prince integration algorithm,
with the integration step set to 1 	 10�5.

We fix m D 2 in the observer (8.26). The LMI (8.21) is feasible with " D 0:001

and �1 D 0:001, and a solution is

P D
2

4
0:0008 �0:0006 0:1021

�0:0006 0:0005 �0:0805
0:1021 �0:0805 15:0959

3

5 ; K1 D
2

4
k1;1

k2;1
k3;1

3

5 D
2

4
1:5

0:5

45

3

5 ;

andK2 is chosen such that (8.22) is satisfied. Then we obtain

K2 D
2

4
k1;2
k2;2

k3;2

3

5 D
2

4
7:1573

14:1040

0:0268

3

5 :

Figures 8.3, 8.4, 8.5, and 8.6 show the obtained results for the initial conditions
x1 D x2 D x3 D 0, Ox

1
D 1; Ox2 D 0:5 and Ox3 D 0:002. The synchronization results

were achieved with the polynomial observer.

Fig. 8.3 Synchronization diagram
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Fig. 8.4 Synchronization of vc1

Fig. 8.5 Synchronization of vc2

The performance index (quadratic synchronization error) of the corresponding
synchronization process is calculated as [36]

J.t/ D 1

t C 0:001

Z t

0

je.t/j2Q0
; Q0 D I:

Figures 8.7 and 8.8 illustrate the performance index, which has a tendency to
decrease. Finally, Fig. 8.9 presents the synchronization in a phase diagram, where
one clearly may observe the chaotic behavior of Chua’s circuit.
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Fig. 8.6 Synchronization of iL

Fig. 8.7 Quadratic synchronization errors of vc1 and vc2

8.4.2 Experimental Results

Some experiments were carried out for the synchronization of Chua’s system in
order to show the performance of the exponential observer. The parameter values
are the same as in numerical simulations, but in this case, they were physically
implemented. The implementation of Chua’s circuit is shown in Figs. 8.10 and 8.11.

The measured output was obtained by means of the oscilloscope LeCroy Wave
Runner r 104MXi. This device supports the Matlab-Simulinkr platform, and
hence the implementation of the observer was also possible. The initial conditions
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Fig. 8.8 Quadratic synchronization error of iL

Fig. 8.9 Phase diagram

of the observer were chosen as Ox1.0/ D 0:5, Ox2.0/ D 0:25, and Ox3.0/ D 0:001.
Figure 8.12 shows the behavior of the Chua oscillator.

The performance of the proposed observer is evaluated by means of the relative
error, which in this case, is defined as

Nei D jxi � Oxi j
jxi j ; i D 1; 3: (8.27)

Figures 8.13 and 8.14 illustrate the corresponding relative errors, where it should
be noted that Ne1 D 0 and Ne3 D 0 for t > 0:006 s, as was expected.
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R

R6

R5

+

–

+

–

R4

L C2

18 mH 100 nF
C1

10 nF

1.8 k Ohm

3.3 k Ohm

22 k Ohm

22 k Ohm
R1

R2

R3

220 Ohm

220 Ohm

2.2 k Ohm

TL082 TL082

Fig. 8.10 Chua’s circuit

Fig. 8.11 Implementation of Chua’s circuit

Fig. 8.12 Chaotic behavior of the Chua oscillator
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8.5 Concluding Remarks

The synchronization problem of chaotic Liouvillian systems has been treated using
differential and algebraic techniques. We proposed a polynomial observer and
proved that the estimation error exponentially converges to zero by means of
properties of nondecreasing and nonincreasing, linear matrix inequalities, and the
Lyapunov method. This observer has been used as a slave system whose states
are exponentially synchronized with the chaotic system (Chua’s circuit). A reduced
set of measurable state variables was needed to achieve the synchronization with
this approach. The effectiveness of the suggested methodology was established by
means of numerical simulations and real-time implementation.
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Chapter 9
Synchronization of Partially Unknown
Nonlinear Fractional-Order Systems

Abstract In this chapter, a synchronization scheme for partially known nonlinear
fractional order systems is proposed. In this approach, the unknown dynamics is
considered as the master system, and the slave system estimates the unknown
variables. For solving this problem, we introduce a fractional algebraic observability
property, which is used as the main tool in the design of the master system. As
a numerical example, we consider a fractional-order Lorenz chaotic system, and
by means of some simulations, we demonstrate the effectiveness of the suggested
approach.

9.1 Introduction

We begin by mentioning some works related to synchronization in fractional
systems. For example, [6] and [5] proposed a feedback controller that allows
one to achieve synchronization between two identical fractional-order chaotic
systems. The theoretical analysis utilized is the stability criterion of linear fractional
systems; [10] studied the synchronization of fractional-order chaotic systems with
unidirectional linear error feedback coupling; [7] presented a classical Luenberger
observer design for the synchronization of fractional-order chaotic systems, i.e., the
observer structure needs a copy of the system and a linear output error feedback.
The application is restricted to scalar coupling signals; [2] and [5] gave sufficient
conditions for synchronization between two identical fractional systems using
Laplace transform theory.

The main contribution in this chapter is to present a technique for the synchro-
nization problem in partially known nonlinear fractional-order systems. We propose
a new procedure using the master–slave synchronization scheme for estimating
the unknown state variables based on a fractional algebraic observability (FAO)
property (is not required a copy of the system). The rest of this chapter is organized
as follows: in Sect. 9.2, we give some basic definitions on fractional derivatives. The
main result is given in Sect. 9.3. In Sect. 9.4, we show some numerical simulations,
and finally, we give conclusions in Sect. 9.5.

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
Chaotic Systems, Understanding Complex Systems,
DOI 10.1007/978-3-319-15284-4_9
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9.2 On Fractional Derivatives

There are several definitions of a fractional derivative of order ˛; see, for example,
[8, 11, 12]. We will use the Caputo fractional operator in the definition of fractional-
order systems, because the meaning of the initial conditions for systems described
using this operator is the same as for integer-order systems.

Definition 9.1 (Caputo Fractional Derivative) The Caputo fractional derivative
of order ˛ 2 R

C of a function x is defined as (see [11])

x.˛/ D t0D
˛
t x.t/ D 1

� .m � ˛/
Z t

t0

dmx.�/

d�m
.t � �/m�˛�1 d�; (9.1)

wherem � 1 � ˛ < m, d
mx.�/

d�m
is the mth derivative of x in the usual sense, m 2 N,

and � is the gamma function.1

Now we define a sequential operator, see [8], as follows:

D .r˛/x.t/ D t0D
˛
t t0D

˛
t : : : t0D

˛
t t0D

˛
t„ ƒ‚ …

r-times

x.t/; (9.2)

i.e., it is the Caputo fractional derivative of order ˛ applied r 2 N times sequentially,
with D .0/x.t/ D x.t/. We note that if r D 1, then D .˛/x.t/ D x.˛/.

9.2.1 Mittag-Leffler-Type Function

The Mittag-Leffler function with two parameters is defined as in [4]:

E˛;ˇ.z/ D ˙1
iD0

zi

� .˛i C ˇ/
; z; ˇ 2 C; Re.˛/ > 0: (9.3)

This function is used to solve fractional differential equations in analogy to the
exponential function in integer-order systems. In the particular case ˛ D ˇ D 1, we
have that E1;1.z/ D ez. Now if we have particular values of ˛, the function (9.3) has
asymptotic behavior at infinity.

1To simplify the notation, we have omitted the time-dependence on x.˛/. In what follows, we take
t0 D 0.
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Theorem 9.1 ([11]) If ˛ 2 .0; 2/, ˇ is an arbitrary complex number, and � is an
arbitrary real number such that

	˛

2
< � < min f	; 	˛g ; (9.4)

then for an arbitrary integer � � 1 the following expansion holds:

E˛;ˇ.z/ D �˙�
iD1

1

� .ˇ � ˛i/zi
CO

�
1

jzj�C1

�

(9.5)

with jzj ! 1, � � j arg.z/j � 	 . ut
The Mittag-Leffler function has the following properties:

Property 1.
R t
0 �

ˇ�1E˛;ˇ.�k�˛/ d� D tˇE˛;ˇC1.�kt˛/, ˇ > 0 (see [11]).

Property 2. E˛;ˇ.�x/, is completely monotonic, i.e., .�1/nE.n/

˛;ˇ.�x/ � 0 for 0 <
˛ � 1 and ˇ � ˛, for all x 2 .0;1/ and n 2 N [ f0g (see [9]).

We will use these facts in the following problem.

9.3 Main Result

We take the initial condition problem for an autonomous fractional-order nonlinear
system with 0 < ˛ < 1:

x.˛/ D f .x/; x.0/ D x0;

y D h. Nx/;
(9.6)

where x 2 ˝ � R
n, f W ˝ ! R

n is a Lipschitz continuous function,2 with
x0 2 ˝ � R

n. In this case, y denotes the output of the system (the measure that
we can obtain), Nx 2 R

p represents the states that we can observe (known states),
h W Rp ! R

q is a continuous function, and 1 � p < n.
Consider the system given by (9.6). We will separate it into two dynamical

systems with states Nx 2 R
p and � 2 R

n�p respectively. The whole state is grouped

2This ensures a unique solution; see [4].
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as xT D . NxT ; �T /. The first system describes the known states, and the second
represents unknown states. Then the system (9.6) can be written as

Nx.˛/ D Nf . Nx; �/;
�.˛/ D �. Nx; �/;
y D h. Nx/;

(9.7)

where f T .x/ D 	 Nf T . Nx; �/;�T . Nx; �/
, Nf 2 R
p , and � 2 R

n�p . Now the
problem is this: how can we estimate the �0 states? This question arises because
if we know the �0 states, we can use these signals to generate measurements
depending on them. In order to solve this observation problem, let us introduce the
following observability property (similar to the property used in nonlinear integer-
order systems; see [1]):

Definition 9.2 (FAO) A state variable �i 2 R satisfies the fractional algebraic
observability (FAO) criterion if it is a function of the first r 2 N sequential
derivatives of the available output y Nx , i.e.,

�i D �i

�
y Nx; y.˛/Nx ;D .2˛/y Nx; : : : ; D .r˛/y Nx

�
; (9.8)

where �i W R.rC1/p ! R.

If we assume that the components of the unknown state vector � satisfy FAO, then
we can describe our problem in terms of the master–slave synchronization scheme,
which is defined in the following way.

Consider the master system

�
.˛/
i D �i. Nx; �/; (9.9)

y�i D �i D �i

�
y Nx; y.˛/Nx ;D .2˛/y Nx; : : : ; D .r˛/y Nx

�
; (9.10)

for p C 1 � i � n, where �i is a component of the state vector �, and y�i denotes
the output of the i th master system.

Now let us propose a fractional dynamical system with the same order ˛, which
will be the slave system:

O�.˛/i D k O�i .y�i � O�i /; (9.11)

y O�i D O�i ; (9.12)

for pC 1 � i � n, where O�i is the state, y O�i denotes the output of the slave system,
and k O�i is a positive constant.

In the master–slave synchronization scheme, the output of the master sys-
tem (9.10) describes the target signal, while (9.12) represents the response signal.
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Therefore, the synchronization problem can be established as follows: given the
master system (9.9) and slave system (9.11), determine some conditions such that
the output of the slave system (9.12) synchronizes with the output of the master
system (9.10).

Let us define the synchronization error as

ei D y�i � y O�i D �i � O�i : (9.13)

We now establish a convergence analysis of the synchronization error.

Proposition 9.1 Let the system (9.6) be expressed in the form (9.7), where the
following conditions are satisfied:

H1: �i satisfies the FAO property for p C 1 � i � n.
H2: �i is bounded, i.e., 9M 2 R

C such that k�.x/k � M , 8 x 2 ˝ .
H3: k O�i 2 R

C.

Then synchronization of the master output (9.10) with the slave output (9.12) is
achieved for a global initial condition of the states.

Proof From H1, we can write Eqs. (9.9)–(9.13). Taking the fractional derivative of
Eq. (9.13), we have

e
.˛/
i D �

.˛/
i � O�.˛/i : (9.14)

Substituting the fractional dynamics (9.9) and (9.11) into (9.14), we obtain

e
.˛/
i C k O�i ei D �i.x/: (9.15)

There exists a unique solution for the system (9.15), due to the fact that
�i.x.t// � k O�i ei .t/ is a Lipschitz continuous function on e.3

The solution of (9.15) is taken from [4]. Then we have

ei .t/ D e0E˛;1.�k O�i t˛/

C
Z t

0

.t � �/˛�1E˛;˛.k O�i .t � �/˛/�i .�/d�;
(9.16)

where ei .0/ D ei0.
Using the triangle and Cauchy–Schwarz inequalities and H2, we obtain

jei .t/j � jei0E˛;1.�k O�i t˛/j;
CM

Z t

0

j.t � �/˛�1E˛;˛.�k O�i .t � �/˛/jd�:

3Equation (9.15) is nonautonomous, but the Lipschitz condition ensures a unique solution [4].
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The functions .t � �/˛�1E˛;˛.�k O�i .t � �/˛/ and E˛.�k O�i t˛/ are nonnegative due
to Property 2 of the Mittag-Leffler function and H3:

jei .t/j � jei0jE˛;1.�k O�i t˛/

CM
Z t

0

.t � �/˛�1E˛;˛.�k O�i .t � �/˛/d�:

Using Property 1 of the Mittag-Leffler function gives us

jei .t/j � jei0jE˛;1.�k O�i t˛/C Mt˛E˛;˛C1.�k O�i t˛/:

If t ! 1, we use Eq. (9.5) with � D 3	˛=4 due to H3:

lim
t!1 jei .t/j � jei0j lim

t!1E˛;1.�k O�i t˛/

CM lim
t!1 t˛E˛;˛C1.�k O�i t˛/ D M

k O�i
:

ut
Remark 9.1 If the FAO of a state variable is expressed in terms of the fractional
sequential derivatives of the output y, which are unknown, then is necessary to
introduce an artificial variable (if it is possible) in order to avoid the use of these
unknown derivatives.

9.4 Numerical Example

In this section, we study the synchronization of nonlinear fractional-order systems
by numerical simulation.

Remark 9.2 Chaotic systems are characterized by global boundedness of the
trajectories (see [3]). By this fact, H2 is always satisfied.

We consider the fractional-order Lorenz system described by a set of three
fractional differential equations, as follows:

x.˛/ D
0

@
ax2 � ax1
bx1 � cx2 � x1x3
x1x2 � dx3

1

A

y D x1

(9.17)

with parameters a D 10, b D 28, c D �8, d D 8=3, and ˛ D 0:8. The
system (9.17) exhibits chaotic behavior [13].
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Now we will apply the proposed methodology. First, we rewrite system (9.17) in
the form (9.7):

Nx.˛/ D a.�2 � Nx1/;
�.˛/ D

�
b Nx1 � c�2 � Nx1�3

Nx1�2 � d�3

�

;

y Nx D Nx1;
(9.18)

where Nx1 D x1, �2 D x2, and �3 D x3.
Before proposing a master system in the form (9.9) and (9.10), we need to

determine whether �2 D x2 and �3 D x3 satisfy the FAO property.
For �2, we have

y
.˛/

Nx D a.�2 � y Nx/ ) �2 D �2

�
y Nx; y.˛/Nx

�
D 1

a
y
.˛/

Nx C y Nx: (9.19)

In the same manner for �3, we obtain

�3 D � 1

y Nx

�
�
.˛/
2 C c�2 � by Nx

�
: (9.20)

Substituting (9.19) into (9.20), we have

�3 D �3

�
y Nx; y.˛/Nx ;D .2˛/y Nx

�

D � 1

ay Nx

h
D .2˛/y Nx C .aC c/y

.˛/

Nx C a.c � b/y Nx
i
:

(9.21)

Note that �3 D x3 loses the FAO property when y Nx D x1 D 0, whence only
Eq. (9.19) satisfies FAO with respect to the selected output y Nx D x1 ¤ 0.

Then from (9.19), we obtain the following master system in the form (9.9) and
(9.10), for �2 D x2:

8
ˆ̂
<

ˆ̂
:

�
.˛/
2 D b Nx1 � c�2 � Nx1�3;

y�2 D �2 D 1

a
y
.˛/

Nx C y Nx:
(9.22)

The next step is the design of the slave system that synchronizes with (9.22).
Using Eq. (9.11), we obtain

O�.˛/2 D k O�2.�2 � O�2/: (9.23)
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Substituting (9.19) into (9.23) leads to

O�.˛/2 D k O�2
�
1

a
y
.˛/

Nx C y Nx
�

� k O�2 O�2: (9.24)

Since y.˛/Nx is not available, the slave (9.24) cannot be implemented. In order to
overcome this problem, let us consider the following auxiliary variable 
 O�2 :


 O�2 D �k O�2
a
y Nx C O�2: (9.25)

Then

O�2 D 
 O�2 C k O�2
a
y Nx: (9.26)

The fractional derivative of order ˛ of (9.26) is

O�.˛/2 D 

.˛/

O�2 C k O�2
a
y
.˛/

Nx : (9.27)

Substituting (9.26) and (9.27) into (9.24), we obtain



.˛/

O�2 D �k O�2
 O�2 C
�

1 � k O�2
a

�

k O�2y Nx; 
 O�2.0/ D 
 O�20 : (9.28)

Then the slave system for �2 D x2 is given by

8
<

:
O�2 D 
 O�2 C k O�2

a
y Nx

y O�2 D O�2:
(9.29)

Now, since the discontinuity of Eq. (9.21) for y Nx D x1 is equal to zero, we cannot
construct a slave system for �3 in the proposed form. To overcome this problem, we
propose the following slave system:

(
O�.˛/3 D Nx1 O�2 � d O�3;
y O�3 D O�3: (9.30)
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Due to Eq. (9.13) and �.˛/3 from (9.18),4 we have

e
.˛/
3 C de3 D Nx1e2: (9.31)

It should be noted that Eq. (9.31) has the same form as (9.15). Thus in this case,
using Proposition 9.1, we obtain

je3j � mM

dk O�2
; (9.32)

wherem is the bound of Nx1.
We now present the corresponding simulation. We consider the following initial

conditions to the master system: Nx1.0/ D 1, �2.0/ D 0, �3.0/ D �5. The initial
conditions to the slave system are O�2.0/ D �5, O�3.0/ D 20, and the parameters
are a D 10, b D 28, c D �8, d D 8=3, ˛ D 0:8. The initial conditions of the
auxiliary functions are 
 O�2.0/ D �20, and finally, the gain parameter is k O�2 D 150.
The convergence of the estimates to the true signals is shown in Fig. 9.1.

Fig. 9.1 Synchronization of the fractional-order Lorenz system with a D 10, b D 28, c D �8,
d D 8=3, ˛ D 0:8, and initial conditions for master Nx1.0/ D 1, �2.0/ D 0, �3.0/ D �5 and for
slave O�2.0/ D �5, O�3.0/ D 20: (a) and (b) shows the estimates convergence, and (c) shows the
trajectories of master and slave systems

4This equation is used instead of FAO.
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9.5 Conclusions

We have designed a fractional observer for partially known nonlinear fractional-
order systems. We introduced a new concept called fractional algebraic observabil-
ity, which is of fundamental importance in determining the unknown dynamics of
fractional-order nonlinear systems by means of the master–slave synchronization
scheme. In particular, we applied the results to chaotic fractional-order systems.
However, this technique can be applied to other classes of systems that satisfy the
properties of Proposition 9.1.
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Chapter 10
Generalized Synchronization via the Differential
Primitive Element

Abstract Generalized synchronization (GS) in nonlinear systems appears when
the states of one system are equal through a functional mapping to the states of
another. This mapping can be obtained if there exists a differential primitive element
that generates a differential transcendence basis. We introduce a new definition
of GS in nonlinear systems using the concept of differential primitive element.
In this chapter, we investigate the GS problem when we have strictly different
nonlinear systems, and we consider that for both the slave and master systems,
only some states are available from measurements. The first component of the
mapping is called a differential primitive element, which in general, is defined by
means of a linear combination of the known states and the inputs of the system.
Furthermore, we design a new dynamical feedback controller able to achieve
complete synchronization in the coordinate transformation systems and GS in the
original coordinates. These particular forms of GS are illustrated with numerical
results of well-known chaotic benchmark systems.

10.1 Introduction

One of the current challenges is to achieve and explain synchronization of strictly
different chaotic systems. The generalized synchronization (GS) concept was
introduced in [1], and a new definition is given in this chapter to describe the
onset of synchronization in directionally coupled chaotic systems. Generalized syn-
chronization is one of the fundamental phenomena, widely studied recently, having
both theoretical and applied significance [2–9]. It occurs when the trajectories of
one system are equal through a functional mapping to the trajectories of another.
In an equivalent form, GS appears if there exists a differential primitive element
that generates a mapping Hms from the trajectories xm.t/ of the attractor in the
master algebraic manifold M to the trajectories xs.t/ in the slave space Rns , i.e.,
Hms.xs.t// D xm.t/ (see Definition 10.2). For identical systems, the functional
mapping corresponds to the identity [10].

Two problems in GS can be mentioned: determining whether there exists a
functional mapping relating the slave with the master, and determining the form
of that function. Some methods require that the form of the functional mapping
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164 10 Generalized Synchronization via the Differential PrimitiveElement

be known beforehand to establish the presence of GS, while other methods do not
require such knowledge.

In this chapter, we propose a method for GS in nonlinear systems, where it is
sufficient to know the output1 of the system to generate this transformation, which
is represented by means of a differential transcendence basis, that is, there exists
an element Ny, and let n � 0 be the minimum integer such that Ny.n/ is analytically
dependent on Ny; Ny.1/; : : : ; Ny.n�1/ such that

NH. Ny; Ny.1/; : : : ; Ny.n�1/; Ny.n/; u; u.1/; : : : ; u.
// D 0: (10.1)

The main idea is to find a dynamical control signal such that it is possible
to synchronize the coordinate transformation system, that is, the original system
is converted to a triangular form through an adequate choice of the differential
primitive element given normally as a linear combination of the known states and the
inputs of the system, where the coefficients belong to the differential field generated
by the field K and the control input u. As far as we know, the GS problem has
been tackled with a static feedback using differential geometry. The remainder of
this chapter proceeds as follows. In Sect. 10.2, we mention some basic definitions
and important results. In Sect. 10.3, we present some numerical simulations, and
Sect. 10.4 closes the chapter with some concluding remarks.

10.2 Statement of the Problem and Main Results

Let us consider the following basic definition, along with the definitions given in the
introductory chapter (see [11, 12]).

Definition 10.1 A system is Picard–Vessiot (PV) if the khui-vector space generated
by the derivatives of the set fy.�/, � � 0g, has finite dimension.

System (10.1) can be solved locally as

Ny.n/ D �L . Ny; : : : ; Ny.n�1/; u; u.1/; : : : ; u.
�1//;Cu.
/

where we recall that �i D Ny.i�1/, 1 � i � n. Then a local form is obtained that can
be viewed as a generalized observability canonical form (GOCF),

P�1 D �2;

P�2 D �3;

:::

1We consider the synchronization when only some states are available from measurements.
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P�n�1 D �n;

P�n D �L .�1; : : : ; �n; u; u
.1/; : : : ; u.
�1//C u.
/;

Ny D �1:

(10.2)

Let us now consider the following nonlinear class of systems:

Px D F.x; u/;

y D Cx;
(10.3)

where x 2 R
n is the state vector, F.�/ is a nonlinear vectorial function, u is the

input, y is the output, and C is a real matrix of appropriate size.
The next lemma is an important technical result.

Lemma 10.1 A nonlinear system (10.3) is transformable to a GOCF if and only if
it is PV.

Proof Let the set f�; �.1/; : : : ; �.n�1/g be a finite differential transcendence basis with
�.i�1/ D y.i�1/, 1 � i � n, where n � 0 is the minimum integer such that y.n/ is
dependent on y; y.1/; : : : ; y.n�1/; u; : : :. Redefining �i D �.i�1/, 1 � i � n, this
yields

P�j D �jC1 1 � j � n � 1;

P�n D �L .�1; : : : ; �n; u; Pu; : : : ; u.
�1//C u.
/;

y D �1:

(10.4)

ut
We discuss the GS of nonlinear systems that are completely triangularizable

(GOCF). For this class of systems, the GS problem is solvable in the sense of [1, 13]
using a dynamic feedback that stabilizes the synchronization error dynamics. The
GS problem is stated as follows: consider two nonlinear systems in a master–slave
configuration, where the master system is given by

Pxm D Fm.xm; um/;

ym D hm.xm/;
(10.5)

and the slave by

Pxs D Fs.xs; us.xs; ym//;

ys D hs.xs/;
(10.6)
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where xs D .x1s ; : : : ; xns / 2 R
ns , xm D .x1m ; : : : ; xnm/ 2 R

nm , hs W R
ns ! R,

hm W Rnm ! R, um D .u1m; : : : ; u Nmn/ 2 R
Nmn , us W Rns 	 R ! R, ym, ys 2 R, Fs ,

Fm, hs , hm are assumed to be polynomial in their arguments.
It should be noted that systems (10.5) and (10.6) are not necessarily affine

nonlinear systems [12]. Indeed, the dynamics of the slave system does not need
to be expressed as a linear part and a nonlinear part as in [14], where the nonlinear
vector function is restricted to satisfy a Lipschitz condition.

Definition 10.2 (Generalized Synchronization (GS)) Slave and master systems
are said to be in a state of GS if there exists a differential primitive element that
generates a mappingHms W Rns ! R

nm withHms D ��1
m ı�s as well as an algebraic

manifold M D f.xs; xm/ j xm D Hms.xs/g and a compact set B � R
nm 	 R

ns

with M � B such that their trajectories with initial condition in B approach M as
t ! 1.

Definition 10.2 leads to the following criterion:

limt!1kHms.xs/ � xmk D 0: (10.7)

Remark 10.1 It should be noted that identical or complete synchronization is a
particular case of GS, that is, the transformationHms is the identity.

The following remark is related to the general form in which one can choose the
differential primitive element.

Remark 10.2 The differential primitive element is chosen as

y D
X

i

˛ixi C
X

j

ˇj uj ˛i ; ˇj 2 Khui; (10.8)

whereKhui is a differential field generated byK , u, and their differential quantities.

Proposition 10.1 Let systems (10.5) and (10.6) be transformable to a GOCF. Let
us define zm D .zm1; : : : ; zmn/

0 and zm D .zs1 ; : : : ; zsn /
0 as the trajectories of master

and slave systems in the coordinate transformation, respectively, with zmi D y
.i�1/
m

and zsi D y
.i�1/
s , for 1 � i � n. Then

limt!1kzm � zsk D 0; (10.9)

which implies that2

limt!1kHms.xs/� xmk D 0; (10.10)

2In other words, the complete synchronization in the coordinate transformation system is achieved,
and consequently, GS is obtained in the original coordinates.



10.2 Statement of the Problem and Main Results 167

where ym and ys are the differential primitive elements for the master and slave
systems, respectively.

Proof Without loss of generality, we can choose um D 0 2 R Nmn . Then the
differential primitive element for the master is taken as

ym D
X

i

˛mi xmi ˛mi 2 Rhumi; (10.11)

and for the slave system,

ys D
X

i

˛si xsi C
X

j

ˇsj usj ˛si ; ˇsj 2 Rhusi; (10.12)

which leads to

Pzmj D zmjC1
1 � j � n � 1;

Pzmn D �Lm.zm1; : : : ; zmn/;
(10.13)

and

Pzsj D zsjC1
1 � j � n � 1;

Pzsn D �Ls.zs1 ; : : : ; zsn ; us; Pus; : : : ; u.
�1/
s /C u.
/s :

(10.14)

Let us define the control signals as u1 D u, u2 D Pus, . . . , u
 D u.
�1/
s . Then we

propose the following dynamical system:

Puj D ujC1 1 � j � 
 � 1;
Pu
 D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; : : : ; u
/C �.zm � zs/;

(10.15)

where zm D .zm1; : : : ; zmn/
0, zs D .zs1 ; : : : ; zsn /

0, and � D .�1; : : : ; �n/.
Then the closed-loop dynamics of the synchronization error e D zm � zs is given

by the augmented system

Pezj D ezjC1
1 � j � n � 1;

Pezn D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; : : : ; u
/ � Pu
 ;
Puj D ujC1 1 � j � 
 � 1;
Pu
 D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; : : : ; u
/C �ez:

(10.16)
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Finally, we have that Pez D Aez with

A D

2

6
6
6
6
6
6
6
6
4

0 1 0 0 � � � 0

0 0 1 0 � � � 0
:::

:::
:::

: : : � � � 0

0 0 0 0 1 0

0 0 0 0 0 1

��1 ��2 ��3 ��4 � � � ��n

3

7
7
7
7
7
7
7
7
5

; (10.17)

where the control gains .�1; : : : ; �n/ are chosen such that the spectrum of A 2 R
n�n

has only negative real parts. ut
From Lemma 10.1 and Proposition 10.1, we establish the following important

result.

Corollary 10.1 A system is in a state of GS if and only if it is PV.

Proof The proof is trivial and is omitted. ut

10.3 Numerical Example

Consider the Lorenz chaotic system

Px1L D aL.x2L � x1L/;

Px2L D bLx1L � x2L � x1Lx3L ;

Px3L D �cLx3L C x1Lx2L ;

(10.18)

as the master, where aL, bL, and cL are chosen such that (10.18) is chaotic. Let the
differential primitive element be the output of system (10.18) as yL D x1L .

Then we propose a coordinate transformation system

2

4
z1L
z2L
z3L

3

5 D
2

4
yL
PyL
RyL

3

5 D
2

4
x1L

aL.x2L � x1L/

aL.bLx1L � x2L � x3Lx1L � aL.x2L � x1L//

3

5 D ˚L.xL/:

(10.19)

In the transformed coordinates (10.19), the Lorenz system (10.18) can be rewrit-
ten as

Pz1L D z2L;

Pz2L D z3L;

Pz3L D �L.xL/;

(10.20)

where �L.xL/ D .a2L C aLbL � aLx3L/ Px1L � .a2L C aL/ Px2L � aLx1L Px3L .
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Suppose Chua’s chaotic system [15] is the controlled slave system,

Px1c D ac.x2c � x1c � �x/;
Px2c D x1c � x2c C x3c ;

Px3c D �bcx2c ;
(10.21)

where �x D mox1c C 1

2
.m1 �mo/.jx1c C 1j � jx1c � 1j/ 2 R, and the parameters

ac , bc , mo, andm1 are chosen such that (10.21) is chaotic.
In this case, we assume the differential primitive element as the output of

system (10.21) along with the control input yc D x3c C u1.
Using Proposition 10.1, the controlled coordinate transformation system (10.21)

can be rewritten as

2

4
z1c
z2c
z3c

3

5 D
2

4
yc

Pyc
Ryc

3

5 D
2

4
x3c C u1

�bcx2c C u2
�bc.x1c � x2c C x3c /C u3

3

5 D ˚c.xc/; (10.22)

where u1 D u, u2 D Pu, and u3 D Ru are control signals that need to be designed in
order to achieve synchronization between trajectories of coordinate transformation
systems (10.19) and (10.22). The augmented controlled system in the transformed
coordinates (10.22) is represented as

Pz1c D z2c ;

Pz2c D z3c ;

Pz3c D �.xc/C Nu;
Pu1 D u2;

Pu2 D u3;

Pu3 D Nu;

(10.23)

where �c.xc/ D �b. Px1c � Px2c C Px3c /.
Then the control objective is to find Nu such that the trajectories of slave

system (10.23) follows the trajectories of master system (10.20). In other words,
we need to find Nu of system (10.23) such that .z1c ; z2c ; z3c / ! .z1L; z2L ; z3L/ as
t ! 1.

Defining the synchronization error in the transformed coordinates as ez D zL�zc ,
the error dynamics is given by

Pe1 D e2;

Pe2 D e3;

Pe3 D �L.xL/� �c.xc/� Nuc.xc; yc/:
(10.24)
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10.3.1 Stability Analysis

If the control input Nu is defined as

Nuc.xc; yL/ D Pu3 D �L.xL/� �c.xc/C �ez;

then � D Œ�1; �2; �3� is the vector of gains. With the selected control input, the
closed-loop dynamics is given by Pez D Aez, where A 2 R

3�3:

A D
2

4
0 1 0

0 0 1

��1 ��2 ��3

3

5 :

By means of the Routh–Hurwitz criterion, we conclude that kezk ! 0 as t ! 1 if

�1 > 0, �3 > 0, and �2 >
�1

�3
.

10.3.2 Simulation Results

Figure 10.1 shows the generalized synchronization of master and slave systems in
the coordinate transformation, with aL D 10, bL D 28, cL D 8=3, ac D 15,
bc D 25:58,mo D �5=7, m1 D �8=7, �1 D 130, �2 D 790, and �3 D 130.

The inverse transformations leads to

2

4
x1L
x2L
x3L

3

5 D

2

6
6
6
4

z1L
z1L C z2L

aL

� z3L
aLz1L

� .1C 1

aL
/
z2L
z1L

C bL � 1

3

7
7
7
5

D ˚�1
L .zL/ (10.25)

and

2

4
x1c
x2c
x3c

3

5 D

2

6
6
6
4

� 1

bc
.z3c � u3/ � 1

bc
.z2c � u2/� .z1c � u1/

� 1

bc
.z2c � u2/

z1c � u1

3

7
7
7
5

D ˚�1
c .zc/: (10.26)

Figure 10.2 gives the corresponding synchronization errors in the transformed
coordinates, illustrating the performance of the proposed approach. Finally, the
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Fig. 10.1 Generalized synchronization in the transformed variables .z1L ; z2L ; z3L/ and
.z1c ; z2c ; z3c /: (a) master system, (b) slave system

transformation that satisfies Definition 10.2 is given by

HLc D ˚�1
L ı ˚c D

2

6
6
6
4

� 1

bc
ŒaL Px2L � .aL � 1/ Px1L� � x1L C 1

bc
.u2 C u3/C u1

� 1

bc
. Px1L � u2/

x1L � u1

3

7
7
7
5
:

Then GS is achieved, and Fig. 10.3 shows that kHcL.xc/� xLk ! 0 as t ! 1.
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Fig. 10.2 Synchronization errors in the transformed coordinates: (a) phase portrait, (b) time scale



References 173

1

0.5

– 0.5

-1

– 1.5

-2

– 2.5

– 3
0 5 10 15 20 25

t
30 35 40 45 50

0

Fig. 10.3 Generalized synchronization errors in the original coordinates

10.4 Concluding Remarks

This chapter tackled the generalized synchronization problem in strictly different
nonlinear systems by means of dynamical feedback control signals. To overcome
this problem, we employed the differential primitive element given in general
form as a linear combination of measurements and control inputs. We have also
introduced a new definition using the concept of differential primitive element.
Indeed, we have designed a dynamical feedback controller able to achieve identical
synchronization in the coordinate transformation systems, and then GS in the
original coordinates was obtained. Finally, some numerical results illustrated the
effectiveness of the proposed methodology.
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Chapter 11
Generalized Synchronization for a Class
of Nondifferentially Flat and Liouvillian Chaotic
Systems

Abstract In this chapter, we study the problem of generalized synchronization
(GS) for a class of nondifferentially flat and Liouvillian systems. In nonlinear
systems, the GS of a state exists if it is possible to define a mapping such that
the states of one system are equal to those of another. From the point of view of
differential algebra, we propose a very special transformation in order to achieve GS
for this class of systems that have a nonflat output. The transformation is generated
via the differential primitive element, which is a linear combination of states and
inputs of the system with coefficients in a differential field. Finally, we construct
a dynamical control obtained through a chain of integrators to reach the GS. This
is illustrated by means of numerical simulations to show the effectiveness of the
methodology proposed.

11.1 Introduction

The problem of synchronization between chaotic systems has been studied for
many years. Among the pioneering works are those of Pecora–Carroll [8], who
tackle the problem of complete or identical synchronization. In this case, the
synchronization happens between two systems with the same dynamics but different
initial conditions or parameters. Rulkov [9] studied the case of synchronization
called generalized synchronization (GS), which considers systems with different
dynamics, and [10] presents some possible applications of generalized synchroniza-
tion of chaotic systems to communications.

The synchronization problem from a control theory point of view has been
studied by various techniques, including differential geometry [1] and differential
algebra [5]. The differential geometry approach employs Lie derivatives as tools,
while differential algebra uses differential rings and fields as well as some elements
of algebraic geometry. Using tools of differential algebra, the generalized syn-
chronization problem can be solved if the system satisfies an alternative definition
related to the algebraic observability condition (AOC) [7] for nondifferentially flat
and Liouvillian systems, which is introduced in this chapter. If it is satisfied, we
can construct a coordinate transformation using the differential primitive element
theorem [5] to bring the system into so-called generalized observability canonical

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
Chaotic Systems, Understanding Complex Systems,
DOI 10.1007/978-3-319-15284-4_11
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form (GOCF). And finally, generalized synchronization is achieved via a dynamical
feedback controller obtained through a chain of integrators in the transformed space;
as far as we know, the generalized synchronization problem has not previously been
attacked from this standpoint.

Here we address the generalized synchronization problem to those systems
that are nondifferentially flat and Liouvillian, that is, the output is nonflat, or in
other words, there exist system variables that cannot be expressed as a differential
algebraic function of the output (the algebraic defect is not zero [4, 6]) and can be
obtained by an adjunction of integrals or exponential of an integral of elements of
the flat field.

In this chapter, we attack the generalized synchronization problem by means of
differential-algebra techniques for a class of nondifferentially flat and Liouvillian
systems [3]. Later, we will show that it is possible to obtain a very special
transformation whose the first component is the integral of the nonflat output
system (differential primitive element). The rest of this chapter is organized as
follows: In Sect. 11.2, we present some basic definitions. The problem statement
and methodology for generalized synchronization are presented in Sect. 11.3, while
numerical simulations are described in Sect. 11.4. Finally, Sect. 11.5 contains some
concluding remarks.

11.2 Definitions

This section begins with some basic definitions of differential algebra, and we recall
the Definitions given in Chap. 1. Here H can be considered a Hardy field [6].

Definition 11.1 A differential field extensionH=k is given by the differential fields
H and k such that:

(i) k is a subfield of H .
(ii) The usual rules of derivation of k are the restrictions of the rules of derivation

of H .

Definition 11.2 An element ˛ 2 H is said to be differentially algebraic over k if it
satisfies a differential equation defined by the polynomial over k in ˛ and its time
derivatives, P.˛; P̨ ; : : : ; ˛.n// D 0.

Definition 11.3 An element ˛ 2 H is said to be differentially transcendental over
k if it is not differentially algebraic over k.

In accordance with the theorem of the differential primitive element [5], there
exists a differential primitive element ı 2 H such that H D khıi, i.e., H is
differentially generated by H and ı.

Definition 11.4 A dynamics is defined as a finitely generated differential algebraic
extensionH=khui of the differential field khui, where khui denotes the differential
field generated by k and a finite set of differential quantities u D .u1; u2; : : : ; um/.
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Before giving the definition of a Liouvillian system that considers the concept
of flat subsystem, we present the following nonlinear systems in order to motivate
such a definition.

Example 11.1 We pick out the following nonlinear system (see Example 8.1):

Px1 D x2 C x23 ;

Px2 D x3;

Px3 D u:

(11.1)

Let the output be given by y D x2. Then we have

x2 D y;

x3 D Py;
u D Ry;
Px1 D y C Py2:

(11.2)

We can see that x1 is the only variable of the system (11.1) that cannot be expressed
as a differential algebraic function of the output y (see [7]).

Now we consider one more example.

Example 11.2 Consider the following chaotic system, which is the model of a
Colpitts oscillator:

Px1 D �ae�x2 C ax3 C a;

Px2 D bx3;

Px3 D �cx1 � cx2 � dx3:

(11.3)

Let y D x3 be the system output of (11.3). Then the system’s variables can be
written as

x3 D y;

Px2 D by;

x1 D 1

c
Œ� Py � dy � cx2�:

(11.4)

It can be seen that x1 and x2 are not differentially algebraic, because neither state
satisfies Definition 11.2, i.e., we cannot express them as a differential algebraic
polynomial in y. By virtue of (11.2) and (11.4), we introduce the concept of
Liouvillian system:
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Definition 11.5 ([3, 6]) Let the system H=k and M be such that k � M � H .
Moreover, we assume thatM=k is the flat subsystem ofH=k. Then we will say that
H=k is Liouvillian if the elements of H �M can be obtained by an adjunction of
an integral or exponential of an integral of elements of the flat field M .

Definition 11.6 ([4, 6]) A systemH=k is differentially flat if its algebraic defect is
zero. If its algebraic defect is nonzero, then the systemH=k is said nondifferentially
flat.

An example that illustrates Definition 11.6 is the following:

Example 11.3 Let H=k be as in Example 11.1, but let the output be given by
y D x1, called a linearizing output. Then we obtain the following relationships:

x1 D y;

x2 D Py � y2

x3 D Ry � 2y Py;
u D y.3/ � 2 Py2 � 2y Ry:

(11.5)

It is clear that all variables of system (11.1) for the output y D x1 can be expressed
as a differential algebraic function of the output y.

We then say that the defect of the system is zero, because all variables of
system (11.1) for y D x1 can be written as a differential algebraic function of the
output y (see Definition 11.2). Otherwise, the defect is different from zero, and its
cardinality depends on the number of expressions that do not appear as differentially
algebraic functions.

Taking Examples 11.1 and 11.2, we state that the defect for Example 11.1 is
nonzero and equal to 1 and that the defect for Example 11.2 is equal to 2, that is, the
systems of Examples 11.1 and 11.2 are nondifferentially flat.

Example 11.4 We continue with Examples 11.1 and 11.2, but now we consider
Definition 11.5. For the system (11.1), x1 can be obtained as

x1 D
Z

.y C Py2/: (11.6)

Now consider system (11.3). Then x1 and x2 can be obtained as

x2 D b

Z

y;

x1 D 1

c

�

� Py � dy � cb
Z

y

�

:

(11.7)
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We conclude that the systems (11.1) and (11.3) with outputs y D x2 and y D x3
respectively are Liouvillian and that the state variables can be obtained by means of
the output, its derivatives, and its integrals.

11.3 Problem Statement and Methodology to Generalized
Synchronization (GS)

Under the master–slave configuration, we can solve the problem of GS if there exists
a mapping Hms from the master trajectories xm.t/ in an algebraic manifold M to
the slave trajectories xs.t/ in the slave space, i.e., Hms.xs/ D xm. In order to find
such mapping, we look for a transformation for both the master system and the
slave system. Such transformations can be obtained via the differential primitive
element, and they allow us to construct a dynamical feedback, which we propose
as a tool for the generalized synchronization problem. The transformation will be
dependent on the primitive element Ny and its derivatives such that Ny.n/ is dependent
on . Ny; : : : ; Ny.n�1// D .

R
y; y; Py; : : : ; y.n�2//:

NT . Ny; : : : ; Ny.n�1/; Ny.n/; u; u.1/; : : : ; u.
// D 0: (11.8)

In a local way, the system (11.8) can be solved as

Ny.n/ D �F . Ny; : : : ; Ny.n�1/; u; u.1/; : : : ; u.
�1//C u.
/; (11.9)

and recalling zi D Ny.i�1/; 1 � i � n, we achieve a local form, which can be seen
as a generalized observability canonical form (GOCF):

Pz1 D z2;

Pz2 D z3;

:::

Pzn�1 D zn;

Pzn D �F .z1; : : : ; zn; u; u
.1/; : : : ; u.
�1//C u.
/;

yz D z2;

(11.10)

where y D z2 is the output in new coordinates. Now we consider a nondifferentially
flat and Liouvillian system class in general as

Px D F.x; u/;

y D Cx;
(11.11)
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where x 2 R
n is the state vector, F.x; u/ is a nonlinear vectorial function, u is the

input, y is the output, and C is a real matrix of appropriate size.
The next lemma is an important result.

Lemma 11.1 A nondifferentially flat and Liouvillian system class (11.11) is trans-
formable to a GOCF if and only if it is PV.

Proof Let the set f�; �.1/; : : : ; �.n�1/g be a finite differential transcendence basis with
� D R

y, �.i�1/ D y.i�2/, 2 � i � n, where n � 0 is the minimum integer such that
y.n�1/ is dependent on

R
y; y; y.1/; : : : ; y.n�2/; u; : : :.

If we redefine z1 D � D R
y, then zi D �.i�1/ D y.i�2/, 2 � i � n yields

Pzj D zjC1 1 � j � n � 1;

Pzn D �F .z1; : : : ; zn; u; Pu; : : : ; u.
�1//C u.
/;

yz D z2:

ut
Remark 11.1 PV systems are defined in Chap. 10.

We now study the problem of GS. First, we consider the master–slave config-
uration whereby both systems are nondifferentially flat and Liouvillian. Such a
configuration is given as follows: The master system is given by

Pxm D Fm.xm; um/;

ym D hm.xm/;
(11.12)

and we represent the slave system as

Pxs D Fs.xs; us.xs; ym//;

ys D hs.xs/;
(11.13)

where xs D .x1s ; : : : ; xns / 2 R
ns , xm D .x1m ; : : : ; xnm/ 2 R

nm , hs W R
ns ! R,

hm W Rnm ! R, um D .u1m; : : : ; u Nmn/ 2 R
Nmn , us W Rns 	R ! R, ym, ys 2 R, Fm.�/,

Fs.�/, hm.�/, hs.�/ are assumed to be polynomial in their arguments.
We establish the following important result.

Lemma 11.2 A nondifferentially flat and Liouvillian system class that is a PV
system is in a state of generalized synchronization.

Proof The proof is followed immediately and is omitted (transitivity).

In what follows, we give an example of generalized synchronization of two
systems that are nondifferentially flat and Liouvillian (Rössler and Chua).
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11.4 Generalized Synchronization of Rössler
and Chua Systems

In this section, we consider a Rössler’s system [2] that is nondifferentially flat and
Liouvilian when the output is chosen as ym D xm1 . The master system has the
following dynamics:

Pxm1 D �xm2 � xm3;
Pxm2 D xm1;

Pxm3 D am.xm2 � x2m2/ � bmxm3;
ym D xm1:

(11.14)

So by choosing the differential primitive element as zm1 D Nym D R
ym D xm2 , the

coordinate transformation constructed is given by

2

4
zm1
zm2
zm3

3

5 D
2

4
xm2
Pxm2
Rxm2

3

5 D
2

4

R
ym
ym
Pym

3

5 D
2

4
xm2
xm1

�xm2 � xm3

3

5 D ˚m.xm/: (11.15)

In the new coordinates, the system (11.14) is rewritten as

Pzm1 D zm2;

Pzm2 D zm3;

Pzm3 D �m.xm/;

(11.16)

where �m.xm/ D � Pxm2 � Pxm3 .
As slave system, we select the Chua chaotic system [7], which is nondifferen-

tially flat and Liouvillian if its output is chosen as ys D xs2 , and its dynamics is
given by the following relationship:

Pxs1 D as.xs2 � xs1 �m0sxs1 �m1sx
3
s1
/;

Pxs2 D xs1 � xs2 C xs3 ;

Pxs3 D bsxs2 ;

ys D xs2 :

(11.17)
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We can choose Nys D bs
R
ys C u1 D xs3 C u1. Then the controlled coordinate

transformation is defined as

2

4
zs1
zs2
zs3

3

5 D
2

4
xs3 C u1
Pxs3 C u2
Rxs3 C u3

3

5 D
2

4

R
ys C u1
ys C u2
Pys C u3

3

5 D
2

4
xs3 C u1

�bsxs2 C u2
�bs.xs1 � xs2 C xs3 /C u3

3

5 D ˚s.xs/;

(11.18)

where u1 D us , u2 D Pus , and u3 D Rus are control signals, which will be used to
achieve GS in the transformed space. The slave system with the control is given by
the augmented controlled system

Pzs1 D zs2 ;

Pzs2 D zs3 ;

Pzs3 D �.xs/C Nus;
Pu1 D u2;

Pu2 D u3;

Pu3 D Nus;

(11.19)

where �s.xs/ D �bm. Pxs1 � Pxs2 C Pxs3 /. Now we just need to define Nus in such
a way that the trajectories of the slave system (11.19) follow the trajectories of
the master system (11.16), i.e., .zm1; zm2; zm3/ ! .zs1 ; zs2 ; zs3 / as t ! 1. To
choose an appropriate control that satisfies the control objective, first we define the
synchronization error in the transformed coordinates as ez D zm � zs , and the error
dynamics is given by

Pe1 D e2;

Pe2 D e3;

Pe3 D �m.xm/ � �s.xs/� Nus.xs; ys/;
(11.20)

and the control signal is chosen as

Nus.xs; ys/ D Pu3 D �m.xm/� �s.xs/C �ez: (11.21)

Here � D Œ�1; �2; �3� is the vector of gains. With the selected control input, the
closed-loop dynamics is given by Pez D Aez, where A 2 R

3�3:

A D
2

4
0 1 0

0 0 1

��1 ��2 ��3

3

5 : (11.22)
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Finally, we choose .�1; �2; �3/ such that A is a Hurwitz matrix. Then we conclude
that kezk ! 0 as t ! 1.

The inverse transformations are given by the following relationships:

2

4
xm1
xm2
xm3

3

5 D
2

4
zm2
zm1

�zm1 � zm3

3

5 D ˚�1
m .zm/ (11.23)

and

2

4
xs1
xs2
xs3

3

5 D

2

6
6
6
4

� 1

bs
.zs3 � u3/� 1

bs
.zs2 � u2/ � .zs1 � u1/

� 1

bs
.zs2 � u2/

zs1 � u1

3

7
7
7
5

D ˚�1
s .zs/: (11.24)

To end this section, we verify the effectiveness of the proposed scheme by means
of numerical simulations. The data for the simulations are am D 0:386, bm D 0:2,
m0s D �8=7, m1s D 4=63, as D 9:5 and bs D 100=7, the gains vector is � D
Œ15; 15; 15� and initial conditions are x0m D Œ0:7;�0:6; 0:7� for the master and x0s D
Œ0:2;�0:1;�0:3� for the slave.

Figures 11.1 and 11.2 show the generalized synchronization in transformed coor-
dinates, while Figs. 11.3 and 11.4 show the generalized synchronization obtained
via inverse transformations [see (11.23) and (11.24)]. Finally, Fig. 11.5 describes
the synchronization error in the transformed coordinates.
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Fig. 11.1 Rössler system in transformed coordinates
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Fig. 11.3 Rössler system in original coordinates
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Fig. 11.4 Chua system in original coordinates, GS
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Fig. 11.5 Synchronization errors in transformed coordinates

11.5 Concluding Remarks

In this chapter, we have studied the problem of generalized synchronization between
nondifferentially flat and Liouvillian systems. From the differential-algebraic point
of view, this class of systems gave us a chance to extend the results in GS to a class
of nondifferentially flat and Liouvillian systems. A dynamic control was constructed
to achieve generalized synchronization, and it was generated by means of the
differential primitive element, which is a linear combination of inputs and states
of the system with coefficients in a differential field. In short, we have designed a
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dynamical feedback controller as a chain of integrators, and we presented the GS
between the Rössler and Chua systems. Finally the effectiveness of the proposed
scheme was proven via numerical simulations.
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Chapter 12
Generalized Multisynchronization by Means
of a Family of Dynamical Feedbacks

Abstract In this chapter, we study the problem of generalized multisynchro-
nization (GMS) of multiple decoupled chaotic systems under the master–slave
configuration. From the viewpoint of differential algebra, we propose a family of
transformations in order to achieve GMS for the whole slave family. The family of
transformations is generated via the family of differential primitive elements, which
are linear combinations of states and inputs of the families of master systems and
slave systems with coefficients in a differential field. Finally, we construct multiple
dynamical controls to reach the GMS. The effectiveness of the methodology
proposed is illustrated by means of numerical simulations.

12.1 Introduction

A current challenge is to achieve and explain synchronization of strictly different
chaotic systems. Synchronization was first initiated and recorded by Pecora and
Carroll [1]. The generalized synchronization (GS) concept was introduced in [2],
and a new definition is given in this chapter (Definition 12.2) for generalized
multisynchronization (GMS) using concepts of differential algebra such as a family
of differential primitive elements. GS is a fundamental phenomenon that has been
widely studied recently, having both theoretical and applied significance [3].

In this chapter, we propose a method for synchronization of multiple decoupled
chaotic nonlinear systems. It is sufficient to know the output of each system to
generate a family of transformations that are represented by means of a differential
transcendence basis. Such a family gives us the possibility to synchronize multiple
chaotic systems. These transformations are obtained from a family of differential
primitive elements given by Nyj with 1 � j � p (p outputs), and we let

nj � 0 be the minimum integers such that Ny.nj /j are analytically dependent on

. Nyj ; Ny.1/j ; : : : ; Ny.nj�1/
j / such that

NHj . Nyj ; Ny.1/j ; : : : ; Ny.nj�1/
j ; Ny.nj /j ; uj ; u

.1/
j ; : : : ; u

.˛j /

j / D 0: (12.1)
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The main idea is to find a family of dynamical control signals through a chain
of integrators such that it is possible to synchronize the coordinate transformation
system; that is, the original system is carried out to a generalized observability
canonical form multioutput (GOCFM) for multisystems through an adequate choice
of a family of differential primitive elements given normally as a linear combination
of the known states and the inputs of the system, where the coefficients belong to
a differential field. The rest of this chapter is organized as follows: In Sect. 12.2,
we present some basic definitions, the problem statement, and methodology for
generalized synchronization of multiple decoupled systems. Numerical simulations
are described in Sect. 12.3, and finally, Sect. 12.4 presents some concluding remarks.

12.2 Problem Formulation and Main Results

Before beginning the problem formulation, we consider an elementary definition.

Definition 12.1 A family of systems is Picard–Vessiot (PV) if the kj hui-vector

spaces generated by the derivatives of the family f Ny.nj /j ; nj � 0, 1 � j � pg,
have finite dimension.

The system (12.1) can be solved locally as

Ny.nj /j D �Lj . Nyj ; Ny.1/j ; : : : ; Ny.nj�1/
j ; uj ; u

.1/
j ; : : : ; u

.˛j�1/
j /C u

.˛j /

j :

Let �
.nj /

i D Ny.i�l/j , l D 1; n1 C 1; n1 C n2 C 1; : : : ; n1 C n2 C � � � C np�1 C 1;
1 � i � P

1�j�p nj D n, where the index j gives the j th system, and the nj
are the so-called indices of algebraic observability, whereby each index coincides
with the system’s dimension when it is flat [4]. Then it is possible to achieve a local
representation for a set of p decoupled systems. That representation can be seen as
a GOCFM:

P�n11 D �
n1
2 ;

P�n12 D �
n1
3 ;

:::

P�n1n1�1 D �n1n1 ;

P�n1n1 D �L1.�
n1
1 ; �

n1
2 ; : : : ; �

n1
n1
; u1; u

.1/
1 ; : : : ; u

.˛1�1/
1 /C u˛11 ;
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P�n2n1C1 D �
n2
n1C2;

P�n2n1C2 D �
n2
n1C3;

:::

P�n2n1Cn2�1 D �
n2
n1Cn2;

P�n2n1Cn2 D �L2.�
n2
n1C1; �

n2
n1C2; : : : ; �

n2
n1Cn2; u2; u

.1/
2 ; : : : ; u

.˛2�1/
2 /C u˛22 ;

:::

P�npn1Cn2C���Cnp�1C1 D �
np
n1Cn2C���Cnp�1C2;

P�npn1Cn2C���Cnp�1C2 D �
np
n1Cn2C���Cnp�1C3;

:::

P�npn1Cn2C���Cnp�1Cnp�1 D �
np
n1Cn2C���Cnp�1Cnp ;

P�npn1Cn2C���Cnp�1Cnp D �Lp.�
np
n1Cn2C���Cnp�1C1; �

np
n1Cn2C���Cnp�1C2; : : : ;

�
np
n1Cn2C���Cnp�1Cnp ; up; u

.1/
p ; : : : ; u

.˛p�1/
p /C u

˛p
p ;

yj D �
nj
l :

(12.2)
In compact form, the new system (12.2) can be represented as

P� D A � � ˚.L1; : : : ;Lp/C U .u.˛1/1 ; : : : ; u
.˛p/
p /;

Y D C �;
(12.3)

where �; ˚;U 2 R
n, A 2 R

n�n, Y 2 R
p, and the matrices of (12.3) are defined

as follows:

A D

2

6
4

A1 0
: : :

0 Ap

3

7
5 (12.4)

Aj D

2

6
6
6
6
6
6
6
6
4

0 1 0 0 � � � 0
0 0 1 0 � � � 0
:::
:::
:::
: : : � � � 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

1 � j � p (12.5)
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˚.L1; : : : ;Lp/ D

2

6
6
6
4

�1.L1/

�2.L2/
:::

�p.Lp/

3

7
7
7
5

I

�j .Lj / D

2

6
6
6
6
6
6
4

0

0
:::

0

�Lj .�
nj
n1Cn2C���Cnj�1C1; : : : ; �

np
n1Cn2C���Cnj ; uj ; u

.1/
j ; : : : ; u

.˛j�1/
j /

3

7
7
7
7
7
7
5

(12.6)

U .u.˛1/1 ; : : : ; u
.˛p/
p // D

2

6
6
6
6
4

u1.u.˛1/1 /

u2.u.˛2/2 /
:::

up.u.˛p/p /

3

7
7
7
7
5

I uj .u.˛j /j / D

2

6
6
6
6
6
6
4

0

0
:::

0

u
.˛j /

j

3

7
7
7
7
7
7
5

(12.7)

C D

2

6
4

C1 0
: : :

0 Cp

3

7
5 I Cj D �

1 0 � � � 0 : (12.8)

Let us now consider the following family of chaotic nonlinear systems:

Pxj D Fj .xj ; uj /;

yj D Cjxj ;
(12.9)

where 1 � j � p denotes the j th system, xj 2 R
nj is the state vector, Fj .�/ is

a nonlinear vector function, uj is the input, yj is the output, and Cj is a matrix of
appropriate size.

We establish the following important result.

Lemma 12.1 Consider the family of nonlinear systems (12.9). If the differential
primitive element is chosen as

yj D
nX

iDn�njC1

ixi C

mX

k

ˇkuk; 
i ; ˇk 2 Khui; (12.10)

where khui is a differential field generated by k, u, and differential quantities, then
the nonlinear system (12.9) is transformable to a GOCFM if and only if it is a PV
family.
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Proof Let the set f�j ; �.1/j ; : : : ; �.nj�1/
j g; 1 � j � p be a family of differential

transcendence bases with �.i�l/j D y
.i�l/
j , 1 � i � Pp

jD1 nj , where nj � 0 is the

minimum integer such that y
.nj /

j is dependent on yj ; y
.1/
j ; : : : ; y

.nj�1/
j ; uj ; : : :. If we

now redefine �
nj
i D �

.i�l/
j , 1 � i � Pp

jD1 nj , we obtain

P�n1i D �
n1
iC1; 1 � i � n1 � 1;

P�n1n1 D �L1.�
n1
1 ; : : : ; �

n1
n1
; u1; u

.1/
1 ; : : : ; u

.˛1�1/
1 /C u.˛1/1 ;

P�n2i D �
n2
iC1; n1 C 1 � i � n1 C n2 � 1;

P�n2n1Cn2 D �L2.�
n2
n1C1; : : : ; �

n2
n1Cn2; u2; u

.1/
2 ; : : : ; u

.˛2�1/
2 /C u.˛2/2 ;

:::

P�npi D �
np
iC1; n1 C � � � C np�1 C 1 � i � n1 C � � � C np � 1;

P�npn1C���Cnp D �Lp.�
np
n1C���Cnp�1C1; : : : ; �

np
n1C���Cnp ; up; u

.1/
p ; : : : ; u

.˛p�1/
p /C u

.˛p/
p :

(12.11)

ut
We discuss the problem of generalized synchronization for a class of systems

called flat systems. Within this class, we can find some chaotic systems. In this case,
we consider the master–slave configuration. We define a master system family as

Pxm� D Fm�.xm�; um�/;

ym� D hm�.xm�/;
(12.12)

and the slave system family

Pxs� D Fs� .xs� ; us� /;

ys� D hs� .xs� /;
(12.13)

where xs� D .x1;s� ; : : : ; xns� ;s� / 2 R
ns� , xm� D .x1;m� ; : : : ; xnm� ;m�/ 2 R

nm� ,
hs� W R

ns� ! R, hm� W R
nm� ! R, um� D .u1;m�; : : : ; u˛m� ;m�/ 2 R

˛m� ,
us� D .u1;s� ; : : : ; u˛s� ;s� / 2 R

˛s� , 1 � � � p � 1, 1 � � � p � �. These conditions
tell us that we can consider one or more slave systems associated with one master,
but we cannot have a slave with more than one master. One slave is associated with
one master when the number of slaves is equal to the number of masters, on the
other hand it is possible to consider a case in which the number of slaves is greater
than the number of masters, which means that a master system interacts with more
than one slave system.
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Definition 12.2 Let the vectors Xm D .xm1; : : : ; xnm/ 2 R
nm and Xs D

.xs1 ; : : : ; xns / 2 R
ns be families of master and slave state vectors respectively. Then

the family of slave systems is in a state of generalized multisynchronization (GMS)
with their master systems family if there exist a family of differential primitive
elements that generates a transformationHms W Rns ! R

nm with Hms D ˚�1
m ı ˚s ,

an algebraic manifold M D f.Xs;Xm/ j Xm D Hms.Xs/g, and a compact set
B � R

nm 	 R
ns with M � B such that the trajectories with initial condition in B

tend to M as t ! 1.

From Definition 12.2, we can say that GMS is achieved when limt!1kHms.Xs/�
Xmk D 0.

Theorem 12.1 Let a set of systems such as (12.12) and (12.13) be transformable
to a GOCFM. Then limt!1k�m � �sk D 0, where �m and �s are respectively the
trajectories in the transformed space of families of master and slave systems.

Proof Without loss of generality, we consider that um� D 0. The set of master
systems has the following family of differential primitive elements:

ymj D
nX

iDn�njC1

ixi;mj D �

nmj
i ; .i D l/; 
i 2 Rhumi; (12.14)

and the family of differential primitive elements for the slave systems is

ysj D
nX

iDn�njC1

ixi;sj C

X

k

ˇkuk;mj D �
nsj
i ; 
i ; .i D l/; ˇk 2 Rhusi;

(12.15)

which leads to

P�nm1i D �
nm1
iC1; 1 � i � nm1 � 1

P�nm1nm1
D �Lm1.�

nm1
1 ; : : : ; �

nm1
nm1
/;

P�nm2i D �
nm2
iC1; nm1 C 1 � i � nm1 C nm2 � 1;

P�nm2nm1Cnm2 D �Lm2.�
nm2
nm1C1; : : : ; �

nm2
nm1Cnm2 /;

:::

P�nmpi D �
nmp
iC1 ; nm1 C � � � C nmp�1 C 1 � i � nm1 C � � � C nmp � 1;

P�nmpnm1C���Cnmp D �Lmp.�
nmp
nm1C���Cnmp�1C1; : : : ; �

nmp
nm1C���Cnmp /:

(12.16)
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In compact form, (12.16) can be expressed as

P�m D A �m � ˚m.Lm1; : : : ;Lmp/: (12.17)

Now let us define the following extended system, which represents the family of
slave systems with its set of dynamical feedbacks:

P�ns1i D �
ns1
iC1; 1 � i � ns1 � 1

P�ns1ns1 D �Ls1 .�
ns1
1 ; : : : ; �

ns1
ns1
; us1 ; u

.1/
s1
; : : : ; u

.˛s1�1/
s1 /C u

˛s1
s1

P�ns2i D �
ns2
iC1; ns1 C 1 � i � ns1 C ns2 � 1

P�ns2ns1Cns2 D �Ls2 .�
ns2
ns1C1; : : : ; �

ns2
ns1Cns2 ; us2 ; u

.1/
s2
; : : : ; u

.˛s2�1/
s2 /C u

˛s2
s2

:::

P�nspi D �
nsp
iC1; ns1 C � � � C nsp�1 C 1 � i � ns1 C � � � C nsp � 1

P�nspns1C���Cnsp D �Lsp .�
nsp
ns1C���Cnsp�1C1; : : : ; �

nsp
ns1C���Cnsp ; usp ; u

.1/
sp
; : : : ; u

.˛sp�1/
sp /C u

˛sp
sp

Puns1i D u
ns1
iC1; 1 � i � ˛s1 � 1

Puns1˛s1 D �Lm1.�
nm1
1 ; : : : ; �

nm1
nm1
/C Ls1 .�

ns1
1 ; : : : ; �

ns1
ns1
; us1 ; u

.1/
s1
; : : : ; u

.˛s1�1/
s1 /

CK1.�
nm1 � �ns1 /

Puns2i D u
ns2
iC1; ˛s1 C 1 � i � ˛s1 C ˛s2 � 1

Puns2˛s1C˛s2 D �Lm2.�
nm2
nm1C1; : : : ; �

nm2
nm1Cnm2 /C Ls2 .�

ns2
ns1C1; : : : ; �

ns2
ns1Cns2 ; us2 ;

u.1/s2 ; : : : ; u
.˛s2�1/
s2 / CK2.�

nm2 � �ns2 /
:::

Punspi D u
nsp
iC1; ˛s1 C � � � C ˛sp�1 C 1 � i � ˛s1 C � � � C ˛sp � 1

Punsp˛s1C���C˛sp D �Lmp.�
nmp /C Lsp .�

nsp ; usp ; u
.1/
sp
; : : : ; u

.˛sp�1/
sp /CKp.�

nmp � �nsp /

(12.18)

P�s D A �s �˚s.Ls1 ; : : : ;Lsp /C U .u
.˛s1 /
s1 ; : : : ; u

.˛sp /

sp /

PNU D M NU C K .�m � �s/ �˚m.Lm1; : : : ;Lmp/C ˚s.Ls1 ; : : : ;Lsp /;

(12.19)
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where the control signals are u
nsj
1 D usj ; u

nsj
2 D Pusj ; : : : ; u

nsj
˛sj

D u
˛sj �1
sj , �nsj D

Œ�
nsj
ns1C���Cnsj�1C1; : : : ; �

nsj
ns1C���Cnsj �

T , �nmj D Œ�
nmj
ms1C���Cnmj�1C1; : : : ; �

nmj
nm1C���Cnmj �

T

andKj D Œk1;j ; : : : ; knj ;j �, where the matrix M is defined as

M D

2

6
4

NM1 0

: : :

0 NMp

3

7
5 (12.20)

NMj D

2

6
6
6
6
6
6
6
6
4

0 1 0 0 � � � 0
0 0 1 0 � � � 0
:::
:::
:::
: : : � � � 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

: (12.21)

Finally, we consider the error of synchronization e� D �m � �s , which has a
dynamics given by

Pe� D A �m � ˚m.Lm1; : : : ;Lmp/� A �s C ˚s.Ls1 ; : : : ;Lsp /� U

PNU D M NU C K .�m � �s/ �˚m.Lm1; : : : ;Lmp/C ˚s.Ls1 ; : : : ;Lsp /;
(12.22)

and after some algebraic operations, we have that

Pe� D .A � K /e� : (12.23)

Then the synchronization error converges to zero if the matrix A � K D
diag. NA1; : : : ; NAp/ is Hurwitz:

NAj D

2

6
6
6
6
6
6
6
6
4

0 1 0 0 � � � 0

0 0 1 0 � � � 0
:::

:::
:::

: : : � � � 0

0 0 0 0 1 0

0 0 0 0 0 1

�k1;j �k2;j �k3;j �k4;j � � � �knj ;j

3

7
7
7
7
7
7
7
7
5

: (12.24)

ut
Corollary 12.1 All family of systems transformable to a GOCFM is in a state of
GMS if and only if it is a PV family.

Proof The result is immediate, and so the proof is omitted. ut
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12.3 Generalized Synchronization of Multiple Decoupled
Systems

In this section, we consider a set of Colpitts oscillators as the family of slaves, while
the master family consists of two systems: a Colpitts system and a Lorenz system.
The first of these is chosen in order to show complete or identical synchronization,
which is a special case of GS. The second system is chosen to show GS. Figure 12.1
shows the kind of interaction to be considered.

The dynamics of a family of master systems is given by

Px1;m1 D �am1exp.�x2;m1 /C am1x3;m1 C am1;

Px2;m1 D bm1x
m1
3 ;

Px3;m1 D �cm1x1;m1 � cm1x2;m1 � dm1x3;m1 ;
Px4;m2 D am2.x5;m2 � x4;m2/;

Px5;m2 D bm2x4;m2 � x5;m2 � x4;m2x6;m2 ;

Px6;m2 D �cm2x6;m2 C x4;m2x5;m2 :

(12.25)

Fig. 12.1 Interaction
between oscillators; m1, m2

are master systems, while sj ,
1 � j � 5, are slave systems

s1

m1

m2

s2

s3

s4

s5
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For each slave system, we define the dynamics as follows:

Px1;sj D �asexp.�x2;sj /C asx3;sj C as;

Px2;sj D bsx3;sj ;

Px3;sj D �csx1;sj � csx2;sj � dsx3;sj :

(12.26)

In this case, 1 � j � 5. The transformed families of master and slave systems are
given by (12.27) and (12.28) respectively:

P�m11 D �
m1
2 ;

P�m12 D �
m1
3 ;

P�m13 D �m1.�bmcm Px1;m1 � bmcm Px2;m1 � bmdm Px3;m1/;
P�m24 D �

m2
5 ;

P�m25 D �
m2
6 ;

P�m26 D �m2.Œa
2
m2

C am2bm2 � am2x
m2
6 � Px4;m2

�Œa2m2 C am2� Px5;m2 � am2x
m2
4 Px6;m2 / (12.27)

P�s11 D �
s1
2 ;

P�s12 D �
s1
3 ;

P�s13 D �s1.�bscs Px1;s1 � bscs Px2;s1 � bsds Px3;s1 /C Pus13 ;
P�s24 D �

s2
5 ;

P�s25 D �
s2
6 ;

P�s26 D �s2.�bscs Px1;s2 � bscs Px2;s2 � bsds Px3;s2 /C Pus26 ;
P�s37 D �

s3
8 ;

P�s38 D �
s3
9 ;

P�s39 D �s3.�bscs Px1;s3 � bscs Px2;s3 � bsds Px3;s3 /C Pus39 ;
P�s410 D �

s4
11;

P�s411 D �
s4
12;

P�s412 D �s4.�bscs Px1;s4 � bscs Px2;s4 � bsds Px3;s4 /C Pus412;
P�s513 D �

s5
14;

P�s514 D �
s5
15

P�s515 D �s5.�bscs Px1;s5 � bscs Px2;s5 � bsds Px3;s5 /C Pus515;
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Pus11 D us12 ;

Pus12 D us13 ;

Pus13 D Nus1 ;
Pus24 D us25 ;

Pus25 D us26 ;

Pus26 D Nus2 ;
Pus37 D us38 ;

Pus38 D us39 ;

Pus39 D Nus3 ;
Pus410 D us411;

Pus411 D us412;

Pus412 D Nus4 ;
Pus513 D us514;

Pus514 D us515;

Pus515 D Nus5 : (12.28)

Remark 12.1 Since the number of master systems is less than the number of slave
systems, to obtain the dynamical control feedbacks from the closed-loop dynamics
of the synchronization error e� D �m � �s , we extend the dimension of the master
systems using virtual master systems, which will have the same dynamics as the
original master system associated with the corresponding slave system. The closed-
loop dynamics of the synchronization error e� D �m � �s is given by

Pes11 Des12 ;
Pes12 Des13 ;
Pes13 D�m1.�bmcm Px1;m1 � bmcm Px2;m1 � bmdm Px3;m1/

� �s1 .�bscs Px1;s1 � bscs Px2;s1 � bsds Px3;s1 /� Pus13 ;
Pes24 Des25 ;
Pes25 Des26 ;
Pes26 D�m1.�bmcm Px1;m1 � bmcm Px2;m1 � bmdm Px3;m1/

� �s2 .�bscs Px1;s2 � bscs Px2;s2 � bsds Px3;s2 /� Pus26 ;
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Pes37 Des38 ;
Pes38 Des39 ;
Pes39 D�m2.Œa2m2 C am2bm2 � am2x6;m2 � Px4;m2;

� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/
� �s3 .�bscs Px1;s3 � bscs Px2;s3 � bsds Px3;s3/� Pus39 ;

Pes410 Des411;
Pes411 Des412;
Pes412 D�m2.Œa2m2 C am2bm2 � am2x6;m2 � Px4;m2;

� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/
� �s4 .�bscs Px1;s4 � bscs Px2;s4 � bsds Px3;s4/� Pus412

Pes513 Des514;
Pes514 Des515;
Pes515 D�m2.Œa2m2 C am2bm2 � am2x6;m2 � Px4;m2;

� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/
� �s5 .�bscs Px1;s5 � bscs Px2;s5 � bsds Px3;s5/� Pus515

Pus11 Dus12 ;

Pus12 Dus13 ;

Pus13 D � �m1.�bmcm Px1;m1 � bmcm Px2;m1 � bmdm Px3;m1/
C �s1 .�bscs Px1;s1 � bscs Px2;s1 � bsds Px3;s1/C ks1e

s1
� ;

Pus24 Dus25 ;

Pus25 Dus26 ;

Pus26 D � �m1.�bmcm Px1;m1 � bmcm Px2;m1 � bmdm Px3;m1/
C �s2 .�bscs Px1;s2 � bscs Px2;s2 � bsds Px3;s2/C ks2e

s2
� ;

Pus37 Dus38 ;

Pus38 Dus39 ;

Pus39 D � �m2.Œa
2
m2

C am2bm2 � am2x6;m2� Px4;m2
� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/;
C �s3 .�bscs Px1;s3 � bscs Px2;s3 � bsds Px3;s3/C ks3e

s3
� ;
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Pus410 Dus411;

Pus411 Dus412;

Pus412 D � �m2.Œa
2
m2

C am2bm2 � am2x6;m2 � Px4;m2
� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/
C �s4 .�bscs Px1;s4 � bscs Px2;s4 � bsds Px3;s4 /C ks4e

s4
�

Pus513 Dus514;

Pus514 Dus515;

Pus515 D � �m2.Œa
2
m2

C am2bm2 � am2x6;m2 � Px4;m2
� Œa2m2 C am2 � Px5;m2 � am2x4;m2 Px6;m2/
C �s5 .�bscs Px1;s5 � bscs Px2;s5 � bsds Px3;s5 /C ks5e

s5
� ;

(12.29)

and after some algebraic operations, we have that Pe� D .A � K /e� .
Then the synchronization error converges to zero if the matrix A � K D
diag. NA1; NA2; NA3; NA4; NA5/ is Hurwitz:

NAj D
2

4
0 1 0

0 0 1

�k1;j �k2;j �k3;j

3

5 1 � j � 5: (12.30)

The parameters for master and slave systems are am1 D asj D 6:2723, bm1 D
bsj D 6:2723, cm1 D csj D 0:0797, dm1 D dsj D 0:6898, am2 D 10, bm2 D
28, cm2 D 8=3, and �sj D .10; 10; 10/ for 1 � j � 5. Table 12.1 shows initial
conditions for untransformed master and slave systems. The mapping Hms.Xs/ is
given in Eq. (12.31).

Table 12.1 Initial conditions
for master and slave systems
(original coordinates)

Initial conditions

Master 1 .0:2;�0:1;�0:3/T
Master 2 .�1;�2; 0:8/T
Slave 1 .�1:1;�1:3;�1:8/T
Slave 2 .�1;�1;�1:5/T
Slave 3 .0:05;�2:23;�2:89/T
Slave 4 .1;�2;�0:5/T
Slave 5 .0:2;�0:1;�0:3/T
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Hms D
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x1;s1�us11 � ds1
cs1bs1

us12 � us13
cs1bs1

x2;s1Cus11
x3;s1Cus12

x1;s2�us24 � ds2
cs2bs2

us25 � us26
cs2bs2

x2;s2Cus24
x3;s2Cus25
x2;s3Cus37

bs3
am2

x3;s3C
us38
am2

Cx2;s3Cus37

bm2�1�.1C1=am2/
bs3x3;s3Cus38
x2;s3Cus37

Cbs3cs3x1;s3Cbs3cs3x2;s3Cbs3ds3x3;s3�us39
am2.x2;s3Cus37 /

x2;s4Cus410
bs4
am2

x3;s4C
us411
am2

Cx2;s4Cus410

bm2�1�.1C1=am2/
bs4x3;s4Cus411
x2;s4Cus410

Cbs4cs4x1;s4Cbs4cs4x2;s4Cbs4ds4x3;s4�us412
am2.x2;s4Cus410/

x2;s5Cus513
bs5
am2

x3;s5C
us514
am2

Cx2;s5Cus513

bm2�1�.1C1=am2/
bs5x3;s5Cus514
x2;s5Cus513

Cbs5cs5x1;s5Cbs5cs5x2;s5Cbs5ds5x3;s5�us515
am2.x2;s5Cus513/

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

(12.31)

Figure 12.2 shows states without synchronization, while Fig. 12.3 illustrates the
synchronization-transformed coordinates. Finally, Fig. 12.4 shows the synchroniza-
tion error in transformed space.
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Fig. 12.2 Generalized synchronization in transformed coordinates: (a), (c), and (e) correspond
to synchronization with a Lorenz system, while (b), (d), and (f) show the synchronization related
to a Colpitts system
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Fig. 12.3 Master and slave states out of synchronization
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Fig. 12.4 Synchronization errors in transformed coordinates

12.4 Concluding Remarks

In this chapter, we have proposed a methodology for GMS via multiple dynamical
feedbacks through a chain of integrators using differential-algebra techniques. We
have designed a family of transformations by means of a family of differential
primitive elements to carry out the master and slave families to a GOCFM. Then
generalized synchronization is achieved for a family of decoupled systems. The
effectiveness of this methodology was shown via numerical simulations.
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Chapter 13
Fractional Generalized Synchronization
in Nonlinear Fractional-Order Systems via
Dynamical Feedback

Abstract Generalized synchronization for nonlinear fractional-order systems
occurs when the states of one system are identical to states of another by
means of a functional mapping. This mapping can be obtained if there exists
a fractional differential primitive element, whose elements are fractional
derivatives that generate a differential transcendence basis. In this chapter, we
investigate the fractional generalized synchronization (FGS) problem for strictly
different nonlinear fractional-order systems, and we consider the master–slave
synchronization scheme. Moreover, we construct in a natural manner a fractional
generalized observability canonical form (FGOCF), and we introduce a fractional
algebraic observability (FAO) property and we design a fractional dynamical
controller able to achieve synchronization. These particular forms of FGS are
illustrated with numerical results.

13.1 Introduction

The generalized synchronization (GS) concept was introduced in [15], and it is used
to describe the onset of synchronization in directionally coupled chaotic systems.
GS is a fundamental phenomenon, widely studied recently, having both theoretical
and applied significance [2, 4, 7, 12, 16, 17]. GS occurs when the trajectories of one
system are equal through a functional mapping to trajectories of another. In GS, two
problems can be mentioned: determining whether there exists a functional mapping
relating the slave with the master, and determining the form of that function.

In recent years, the applications of fractional calculus to physics, engineering,
and control processing have become more interesting, and fractional dynamics is an
attractive framework for understanding complex phenomena.

The synchronization problem is an interesting topic in fractional chaotic systems
[18]. Synchronization of fractional-order chaotic systems was studied in [1], in
which synchronization was carried out in the case of fractional Lü systems.
In [6], it was shown by means of a control law that fractional-order chaotic
systems can be synchronized using a similar scheme to that of their integer-order
counterparts. In [9], a master–slave synchronization scheme for partially known

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
Chaotic Systems, Understanding Complex Systems,
DOI 10.1007/978-3-319-15284-4_13
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nonlinear fractional-order systems was proposed, where the unknown dynamics
is considered as the master system, and the slave system structure estimates the
unknown state variables.

In this chapter, we propose a method for fractional generalized synchronization
(FGS), In this case, we only need to know the output of the system to generate a
mapping represented by a differential transcendence basis [8].

The main goal is to find a fractional dynamical synchronization control signal
such that it is possible to synchronize the coordinate transformation system,
that is, the original system is transformed into a so-called fractional generalized
observability canonical form (FGOCF). This is achieved with an adequate choice of
the fractional differential primitive element, given naturally as a linear combination
of the states and the inputs of the system, where the coefficients belong to the
differential field generated by the field K and the control input u.

The rest of this chapter is organized as follows. Section 13.2 includes some
basic concepts about fractional-order systems as well as a description of the FGS
problem and its solution. In Sect. 13.3, the proposed methodology is applied to an
FGS between a fractional-order Chua system and a Rössler system. Finally, we give
some concluding remarks in Sect. 13.4.

13.2 Main Result

There are several definitions of a fractional derivative of order ˛ [11, 13, 14]. We
will use the Caputo fractional operator in the definition of fractional-order systems
(see Chap. 9), because the meaning of the initial conditions for systems described
using this operator is the same as that for integer-order systems.

We take the initial condition problem for a fractional-order nonlinear system,
with 0 < ˛ < 1:

x.˛/ D f .x; u/; x.0/ D x0;

y D h.x/;
(13.1)

where x 2 ˝ � R
n is the state vector, f W Rn	R

m ! R
n is a Lipschitz continuous

function with x0 2 ˝ � R
n. In this case, y 2 R

p denotes the available output of
the system, h W Rn ! R

p is a continuous function, and u 2 R
m is the vector input.

We extend the definition about the fractional algebraic observability property of
system (13.1) given in Chap. 9.

Definition 13.1 (FAO) A state variable xi 2 R satisfies the fractional algebraic
observability (FAO) property if it is a function of the first r1; r2 2 N sequential
derivatives of the available output y and the input u, i.e.,

xi D �i
	
y; y.˛/;D .2˛/y; : : : ;D .r1˛/y; u; u.˛/;D .2˛/u; : : : ;D .r2˛/u



; (13.2)

where �i W R.r1C1/p 	 R
.r2C1/m ! R.
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We introduce a new definition about fractional differential primitive element,
which states that there exists a single element ı 2 L, which is a differential primitive
element, such thatL D Khıi, that is,L is differentially generated byK and ı, where
K is a differential field.

Definition 13.2 A dynamics is defined as a finitely generated differentially alge-
braic extension L=Khui of the differential field Khui, where Khui denotes the
differential field generated byK and the elements of a finite set u D .u1; u2; : : : ; um/
of differential quantities.

Definition 13.3 The fractional-order system (13.1) is Picard–Vessiot (PV) if the
khui-vector space generated by the derivatives of the set fD .�˛/ Ny; � 2 N [ f0gg
has finite dimension, where Ny is the fractional differential primitive element.

That is, there exists an element Ny 2 R, and let n 2 N [ f0g be the minimum
integer such that D .n˛/ Ny is analytically dependent on

˚ Ny; Ny.˛/;D .2˛/ Ny; : : : ;D .Œn�1�˛/ Ny� :

Then

D .n˛/ Ny D �L
	 Ny; Ny.˛/;D .2˛/ Ny; : : : ;D .Œn�1�˛/ Ny; u; u.˛/;D .2˛/u; : : : ;D .Œ
�1�˛/u


C D .
˛/u;

with n; 
 2 N [ f0g.
Defining

�i D D ..i�1/˛/ Ny ; 1 � i � n;

we obtain the FGOCF of system (13.1):

�
.˛/
1 D �2;

�
.˛/
2 D �3;

:::

�
.˛/
n�1 D �n;

�
.˛/
n D �L

	
�1; : : : ; �n; u; u.˛/;D .2˛/u; : : : ;D .Œ
�1�˛/u


C D .
˛/u;
Ny D �1:

(13.3)

This enables us to establish the following lemma, which is proved as above.

Lemma 13.1 A nonlinear fractional-order system (13.1) is transformable to an
FGOCF if and only if it is PV. ut



206 13 Fractional Generalized Synchronization in Nonlinear Fractional-Order Systems. . .

Let us consider two fractional-order nonlinear systems in a master–slave config-
uration, where the master system is given by

x
.˛/
m D Fm.xm; um/;
ym D hm.xm/;

(13.4)

and the slave by

x
.˛/
s D Fs.xs; us.xs; ym//;
ys D hs.xs/;

(13.5)

where xs 2 ˝ � R
n, Fs 2 ˝ � R

n, Fm 2 ˝ � R
n, xm 2 ˝ � R

n, hs W ˝ ! R,
hm W ˝ ! R, um 2 R

Nmm , us 2 R
Nms , ym; ys 2 R, Fs , Fm, hs , hm are assumed to be

polynomial in their arguments, with initial conditions xm0 D xm.0/ and xs0 D xs.0/.

Definition 13.4 (Fractional Generalized Synchronization (FGS)) Slave and
master systems are said to be in a state of fractional generalized synchronization
(FGS) if there exists a fractional differential primitive element that generates a
transformation Hms W Rns ! R

nm with Hms D ˚�1
s ı ˚m as well as an algebraic

manifold M D f.xs; xm/jxm D Hms.xs/g and a compact set B � R
ns 	 R

nm with
M � B such that their trajectories with initial conditions in B approach M as
t ! 1.

From Definition 13.4, we obtain the following result.

Corollary 13.1 Every fractional-order system is in a state of FGS if and only if is
PV.

Proof The proof is trivial and is omitted. ut
FGS is taken to occur if there exists a fractional differential primitive element

that generates a mapping Hms from the trajectories xm.t/ of the attractor in the
master algebraic manifold M to the trajectories xs.t/ in the slave space R

ns , i.e.,
Hms.xs.t// D xm.t/ (see Definition 13.4). For identical systems, the functional
mapping corresponds to the identity [5]. For nonidentical master and slave systems,
the map differs from the identity, which complicates detection of FGS. In fact, the
attractors in the variables xm and xs seem to be unsynchronized.

Definition 13.4 leads to the following criterion:

lim
t!1 kHms.xs/� xmk D 0:

Remark 13.1 It should be noted that identical or complete synchronization is a
particular case of FGS, that is, the transformationHms is the identity.

The following remark is related to the general form in which one can choose the
fractional differential primitive element.
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Remark 13.2 The fractional differential primitive element is chosen as

y D
X

i

˛ixi C
X

j

ˇj uj ; ˛i ; ˇj 2 Khui;

whereKhui is a differential field generated byK , u, and their differential quantities.

Theorem 13.1 Let systems (13.4) and (13.5) be transformable to an FGOCF. Let
us define zm D .zm1; zm2 : : : ; zmn/

0 and zs D .zs1 ; zs2 : : : ; zsn /
0 as the trajectories of

the master and slave systems in the coordinate transformation, respectively, with
zmi D D ..i�1/˛/ Nym and zsi D D ..i�1/˛/ Nys , for 1 � i � n. Then

lim
t!1 kzm � zsk D 0:

In other words, complete synchronization in the coordinate transformation system
is achieved, and consequently, FGS is obtained in the original coordinates, that is,

lim
t!1 kHms.xs/� xmk D 0;

where Nym and Nys are the fractional differential primitive elements for the master and
slave systems, respectively.

Proof Without loss of generality, we can choose um D 0 2 R
Nmm . Then the fractional

differential primitive element for the master is taken as

Nym D
X

i

˛mi xmi D zm1 ; ˛mi 2 R;

and for the slave,

Nys D
X

i

˛si xsi C
X

j

ˇsj usj D zs1 ; ˛si ; ˇsj 2 R;

which leads to the following FGOCF of system (13.4),

z.˛/mj D zmjC1
;

z.˛/mn D �Lm.zm1; : : : ; zmn/;

and the FGOCF of system (13.5),

z.˛/sj D zsjC1
; 1 � j � n � 1;

z.˛/sn D �Ls

	
zs1 ; : : : ; zsn ; u1; u2; : : : ; u



C u.˛/
 ;
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where

u1 D us;

u2 D u.˛/s ;

:::

u
 D D ..
�1/˛/us:

Then we propose the following dynamical system:

u.˛/j D ujC1; 1 � j � 
 � 1;

u.˛/
 D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; u2; : : : ; u
 /C �.zm � zs/;

where zm D .zm1; zm2 : : : ; zmn/
0, zs D .zs1 ; zs2 : : : ; zsn /

0 and � D .k1; k2; : : : ; kn/.
Then the dynamics of the synchronization error ez D zm � zs is given by the

augmented system

e.˛/zj
D ezjC1

; 1 � j � n � 1;
e.˛/zn

D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; u2; : : : ; u
 / � u.˛/
 ;

u.˛/i D uiC1; 1 � i � 
 � 1;
u.˛/
 D �Lm.zm1; : : : ; zmn/C Ls.zs1 ; : : : ; zsn ; u1; u2; : : : ; u
 /C � ez:

Then we have that

e.˛/z D A ez (13.6)

with

A D

2

6
6
6
6
6
6
6
6
4

0 1 0 � � � 0

0 0 1 0 � � � 0
:::

: : :
:::

0 0 � � � 0 1 0

0 0 � � � 0 1

�k1 �k2 � � � �kn�1 �kn

3

7
7
7
7
7
7
7
7
5

:

The stability of Eq. (13.6) is determined from the following result for linear
fractional-order systems.

Theorem 13.2 (Matignon [10]) Let ˛ < 2 andA 2 C
n�n. The autonomous system

x.˛/ D Ax with x.0/ D x0
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is asymptotically stable if and only if jarg.�i .A//j > ˛	=2, where �i.A/ is the i th
eigenvalue of matrix A. ut

Then, applying Theorem 13.2, we have that Eq. (13.6) is asymptotically stable if
the gains � D .k1; k2; : : : ; kn/ are chosen such that

jarg.�i .A//j > ˛	

2
:

ut
Remark 13.3 As a particular case of Theorem 13.2, for 0 < ˛ < 1, every Hurwitz
matrix satisfies the condition

jarg.�i .A//j > 	

2
>
˛	

2
:

13.3 Fractional Generalized Synchronization Between Chua
and Rössler Systems

Consider the fractional-order Chua system [3]

x
.˛/
1c

D a

 

x2c C x1c � 2x31c
7

!

;

x
.˛/
2c

D x1c � x2c C x3c ;

x
.˛/
3c

D �ˇx2c :
yc D x3c

(13.7)

With a D 12:75, ˇ D 100=7, and ˛ D 0:9, the system (13.7) presents chaotic
behavior (see Fig. 13.1).

In this case, system (13.7) is considered the master system. The fractional
differential primitive element is chosen as the output of system (13.7),

yc D x3c :

We propose the coordinate transformation

0

@
z1c
z2c
z3c

1

A D
0

@
yc

y
.˛/
c

D .2˛/yc

1

A D
0

@
x3c

�ˇx2c
�ˇ.x1c � x2c C x3c /

1

A

D ˚c.xc/:

(13.8)



210 13 Fractional Generalized Synchronization in Nonlinear Fractional-Order Systems. . .

0.15

a b

c

0.05

– 0.05

x 3c x 3c

x1c

x 3c

x1c

x2c

x2c

– 0.1

– 0.15

– 1.5 – 1 – 0.5 0 0.5 1
– 0.2

2

1

0

– 1

– 2
0.2

0

– 0.2 – 2

0

1

– 1

0

0.1

1.5

0.5

– 0.5

– 1

– 1.5
– 0.2 – 0.15 – 0.1 – 0.05 0 0.05 0.1 0.15

0

1

Fig. 13.1 Chua chaotic system of fractional order. (a) Variables x1c and x2c , (b) variables x2c and
x3c , (c) variables x1c , x2c , and x3c

With the coordinate transformation (13.8), the Chua system (13.7) is expressed in
terms of the FGOCF

0

B
@

z.˛/1c
z.˛/2c
z.˛/3c

1

C
A D

0

@
z2c
z3c

�c.xc/

1

A ; (13.9)

where �c.xc/ D �ˇ.x�
1c

� x�
2c

C x�
3c
/ , x�

1c
D a

 

x2c C x1c � 2x31c
7

!

, x�
2c

D x1c �

x2c C x3c , x
�
3c

D �ˇx2c , x1c D � 1
ˇ

z3c � z2c
ˇ

� z1c , x2c D � z2c
ˇ

y x3c D z1c .

Figure 13.2 shows the behavior of the transformed system (13.9).
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Fig. 13.2 Chua chaotic system of fractional order in the FGOCF. (a) Variables z1c and z2c ,
(b) variables z2c and z3c , (c) variables z1c , z2c , and z3c

As slave system, we consider the fractional order Rössler system given by

x
.˛/
1r

D �.x2r C x3r /;

x
.˛/
2r

D x1r C ax2r ;

x
.˛/
3r

D 0:2C x3r .x1r � 10/;
yr D x2r :

(13.10)

For a D 0:4 and ˛ D 0:9, system (13.10) exhibits chaotic behavior (see Fig. 13.3).
Consider the change of variables

0

@
z1r
z2r
z3r

1

A D
0

@
yr

y
.˛/
r

D .2˛/yr

1

A D

0

B
@

x2r C u1
x1r C ax2r C u2
x
.˛/
1r

C ax.˛/2r C u3

1

C
A

D ˚r.xr/;

(13.11)

where u2 D u.˛/1 and u3 D u.˛/2 .
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Fig. 13.3 Rössler chaotic system of fractional order. (a) Variables x1r and x2r , (b) variables x2r
and x3r , (c) variables x1r , x2r , and x3r

Then the FGOCF of system (13.10) is

0

B
@

z.˛/1r
z.˛/2r
z.˛/3r

1

C
A D

0

@
z2r
z3r

�r.xr /

1

A ; (13.12)

where �r.xr / D .a2 � 1/x�
2r

� x�
3r

C ax�
1r

C u.˛/3 , x�
1r

D �.x2r Cx3r /, x�
2r

D x1r C
ax2r , x

�
3r

D 0:2C x3r .x1r � 10/, x1r D z2r � az1r C au1 � u2, x2r D z1r � u1 and
x3r D �z3r C az2r � z1r C u1 C u3 � a.u2 C au1/.

The idea is that by means of the control signals, the trajectories of the transformed
Rössler system z1r , z2r , z3r follow the trajectories of the transformed Chua system
z1c , z2c , z3c , respectively. It should be noted from Figs. 13.2 and 13.4 (autonomous
Rössler system) that the chaotic attractors of the systems to be synchronized are
totally different (Fig. 13.5).
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Fig. 13.4 Autonomous Rössler chaotic system of fractional order in FGOCF. (a) Variables z1r and
z2r , (b) variables z2r and z3r , (c) variables z1r , z2r , and z3r

From Theorem 13.1, we propose the following controlled slave system:

0

B
B
B
B
B
B
B
B
@

z.˛/1r
z.˛/2r
z.˛/3r
u.˛/1
u.˛/2
u.˛/3

1

C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
@

z2r
z3r

�r .xr /

u2
u3

�c � �r C kez

1

C
C
C
C
C
C
C
A

; (13.13)

where k D .k1; k2; k3/ y ez D .z1c � z1r ; z2c � z2r ; z3c � z3r /
T .

The synchronization between Chua and Rössler systems expressed in the FGOCF
is presented in Fig. 13.6. The synchronization errors are shown in Fig. 13.5, with
k1 D 1, k2 D 2, and k3 D 1.
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Fig. 13.5 Synchronization errors: (a) z1c–z1r , (b) z2c–z2r , (c) z3c –z3r

The original variables can be obtained with the response of the transformed
systems, since they satisfy the FAO condition. That is,

8
ˆ̂
<̂

ˆ̂
:̂

x1c D � 1
ˇ

z3c � z2c
ˇ

� z1c ;

x2c D � z2c
ˇ
;

x3c D z1c ;
8
<

:

x1r D z2r � az1r C au1 � u2;
x2r D z1r � u1;
x3r D �z3r C az2r � z1r C u1 C u3 � a.u2 C au1/:

Figure 13.7 shows the original reconstructed trajectories of the Chua and Rössler
systems.
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Fig. 13.6 Synchronization between Chua and Rössler systems expressed in the FGOCF. (a) Vari-
ables z1c and z2c , (b) variables z1r and z2r , (c) variables z1c and z3c , (d) variables z1r and z3r ,
(e) variables z2c and z3c , (f) variables z2r and z3r , (g) variables z1c , z2c , and z3c , (h) variables z1r ,
z2r , and z3r



216 13 Fractional Generalized Synchronization in Nonlinear Fractional-Order Systems. . .

Fig. 13.7 Original coordinates. (a) Variables x1c and x2c , (b) variables x1r and x2r , (c) variables
x1c and x3c , (d) variables x1r and x3r , (e) variables x2c and x3c , (f) variables x2r and x3r ,
(g) variables x1c , x2c , and x3c , (h) variables x1r , x2r , and x3r
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13.4 Concluding Remarks

This chapter tackled the fractional generalized synchronization problem in strictly
different nonlinear systems by means of fractional dynamical feedback control
signals. To solve this problem, we employed the fractional differential primitive
element given in general form as a linear combination of measurements and
control inputs. We introduced some new concepts such as the fractional differential
primitive element, the FAO, the FGOCF, and the FGS. Indeed, we designed a
fractional dynamical feedback controller able to achieve identical synchronization
in the coordinate transformation systems, and then FGS in the original coordinates
was obtained. Finally, some numerical results illustrated the effectiveness of the
proposed methodology.
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Chapter 14
An Observer for a Class of Incommensurate
Fractional-Order Systems

Abstract In this chapter, we present a new observer-model-free type of
synchronization for a certain class of incommensurate fractional-order systems.
We apply our proposals to the master–slave synchronization scheme, where the
unknown dynamics are considered the master system, and we propose an observer
structure as a slave system that estimates the unknown state variables. For solving
this problem, we introduce a new incommensurate fractional algebraic observability
(IFAO) property, which is used as the main ingredient in the design of the slave
system. Some numerical results show the effectiveness of the suggested approach.

14.1 Introduction

The synchronization problem is an interesting topic in fractional chaotic systems
[1]. The synchronization of integer-order chaotic systems has been a subject of
investigation since its introduction by Pecora and Caroll [2].

Some techniques related to chaos synchronization in fractional systems have
been reported. For instance, we mention the works [3], in which the authors
propose the employment of a feedback controller, which allows one to achieve
synchronization between two identical fractional-order chaotic systems; in [4],
a classical Luenberger observer design is presented for the synchronization of
fractional-order chaotic systems, i.e., the observer structure requires a copy of
the system, and the application is restricted to incommensurate fractional-order
systems.

The main contribution of this chapter is to present a new observer for the syn-
chronization problem in partially known nonlinear incommensurate fractional-order
systems. We propose a novel technique using the master–slave synchronization
scheme for estimating the unknown state variables based on a new incommensurate
fractional algebraic observability (IFAO) property. As far as we know, this class of
estimation scheme has not appeared in the literature in relation to incommensurate
fractional-order systems.

The remainder of this chapter is organized as follows: In Sect. 14.2, we establish
the basic concepts needed to tackle the synchronization problem for incom-
mensurate fractional-order systems. In Sect. 14.3, we introduce a new concept

© Springer International Publishing Switzerland 2015
R. Martínez-Guerra et al., Synchronization of Integral and Fractional Order
Chaotic Systems, Understanding Complex Systems,
DOI 10.1007/978-3-319-15284-4_14
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given by Definition 14.2 (IFAO), and we propose a new system to estimate the
unknown dynamics (slave system), called an incommensurate fractional reduced-
order observer (IFROO). In Sect. 14.4, we apply our methodology to incommensu-
rate fractional-order Rössler, Chua–Hartley, and financial systems. The reason we
have chosen these systems is to clarify the proposed methodology and to highlight
the simplicity and flexibility of the suggested approach. Also, we present some
numerical results to confirm the effectiveness of the suggested approach. Finally,
we close this chapter with some concluding remarks.

14.2 Basic Concepts

There are several definitions of a fractional derivative of order ˛ [5–7]. We will use
the Caputo fractional operator in the definition of fractional-order systems (as in
Chap. 9).

Definition 14.1 (Caputo Fractional Derivative [8]) The Caputo fractional deriva-
tive of order ˛ 2 R

C of a function x is defined as

x.˛/ D t0D
˛
t x.t/ (14.1)

D 1

� .m � ˛/
Z t

0

dmx.�/

d�m
.t � �/m�˛�1d�;

wherem�1 6 ˛ < m;
dmx.�/

d�m
is themth derivative of x in the usual sense,m 2 N,

and � is the gamma function.
Now we define a sequential operator, see [5], as follows:

Dr˛x.t/ D t0D
˛
t t0D

˛
t : : : t0D

˛
t„ ƒ‚ …

r-times

x.t/; (14.2)

i.e., it is the Caputo fractional derivative of order ˛ applied r 2 N times sequentially,
with D0x.t/ D x.t/. We note that if r D 1, then D˛x.t/ D x.˛/.

14.2.1 Mittag-Leffler-Type Functions

The Mittag-Leffler function with two parameters is defined as [11]

E˛;ˇ.z/ D
1X

iD0

zi

� .˛i C ˇ/
; z; ˇ 2 C;Re.˛/ > 0: (14.3)
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This function is used to solve fractional differential equations in analogy to the
exponential function in integer-order systems. In the particular case ˛ D ˇ D 1, we
have that E1;1.z/ D ez. Now if we have particular values of ˛, the function (14.3)
has asymptotic behavior at infinity.

Theorem 14.1 ([7]) If ˛ 2 .0; 2/; ˇ is an arbitrary complex number and � is an
arbitrary real number such that

	˛

2
< � < minf	; 	˛g; (14.4)

then for an arbitrary integer k > 1, the following expansion holds:

E˛;ˇ.z/ D �
kX

iD1

1

� .ˇ � ˛i/zi
CO

1

j z jkC1 (14.5)

with j z j! 1; � 6j arg.z/ j6 	 . ut
The Mittag-Leffler function has the following properties:

Property 14.1 ([7])

Z t

0

�ˇ�1E˛;ˇ.�k�˛/d� D tˇE˛;ˇC1.�kt˛/; ˇ > 0:

Property 14.2 ([9]) E˛;ˇ.�x/ is completely monotonic, i.e., .�1/nE.n/

˛;ˇ.�x/ > 0

for 0 < ˛ 6 2 and ˇ > ˛, for all x 2 .0;1/ and n 2 N [ f0g.

We will use these facts in the following problem.

14.3 Problem Statement and Main Result

Consider the following class of incommensurate fractional-order systems:

d˛i

dt˛i
xi D fi .x1; : : : ; xn/; 1 � i � n; i 2 Z

C; (14.6)

where the ˛i are rational numbers between 0 and 1.
Consider the system given by (14.6). We will separate it into two dynamical

systems with states Nx 2 R
p and � 2 R

n�p, respectively, with xTi D . NxTi ; �Ti /. The
first system describes the known states, and the second system represents unknown
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states. Then the systems (14.6) can be written as

Nx.˛i / D Nf . Nx; �/;
�.˛j / D �. Nx; �/; (14.7)

y Nx D h Nx. Nx/;

where Nx 2 R
p, h W Rp ! R

q is a continuous function, 1 � p � n, and f T .x/ D
. Nf T . Nx; �/;�T . Nx; �//, Nf 2 R

p , � 2 R
n�p .

How can we estimate the states of the various values of �? This question arises,
because if we know the �’s states, we can use these signals to generate measurements
depending on them. In order to solve this observation problem, let us introduce the
following observability property.

Definition 14.2 (IFAO) A state variable �i 2 R satisfies the IFAO property if it is
a function of derivatives of the available output y Nx , i.e.,

�i D �i .y Nx; y.˛1/Nx ; y
.˛1C˛2/
Nx ; : : : ; y

.˛1C;:::;C˛n/
Nx /; 0 �

nX

iD1
˛i � 2; (14.8)

where �i W R.nC1/q ! R. If we assume that the components of the unknown state
vector � are IFAO, then we can describe our problem in terms of the master–slave
synchronization scheme, which is defined in the following way.

Let us consider the master system

�.˛i / D �i. Nx; �/; (14.9)

y�i D �i D �i .y Nx; y.˛1/Nx ; y
.˛1C˛2/
Nx ; : : : ; y

.˛1C;:::;C˛n/
Nx /; (14.10)

and consider an unknown dynamic

�. N̨i / D N�i. Nx; �/; (14.11)

where 0 < N̨ i < 2 is a rational number, and N�i. Nx; �/ is an unknown dynamics that
contains�i. Nx; �/. Now let us propose an IFROO with order N̨i , so the slave system
is given by

O�. N̨i / D k O�i .�i � O�i /; (14.12)

y O�i D O�i : (14.13)

In the master–slave synchronization scheme, the output of the master system rep-
resents the target signal, while the slave’s output is the response signal. Therefore,
given a master system and our slave system, some conditions should be determined
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for synchronizing the output of the slave system with the output of the master
system.

Let us define the synchronization error as

ei D y�i � y O�i D �i � O�i : (14.14)

We establish the following assumptions:

H1: �i satisfies the IFAO property for i 2 .p C 1; : : : ; n/.
H2: N�pC1 is bounded, i.e., 9 M 2 R

C such that k N�.X/k � M;8 x in a compact
set ˝ , where N�.X/ D . N�1; : : : ; N�n/

T .
H3: k O�i 2 R

C.

Now we are in position to propose the following proposition.

Proposition 14.1 Let the system (14.6) be expressed as (14.7), where the above
conditions are fulfilled. Then (14.14) converges asymptotically to an open set Br.0/,

with r D M

k O�i
, i.e., synchronization is achieved.

Proof From H1, we can write Eqs. (14.11)–(14.14). Taking the fractional derivative
of Eq. (14.14), we have

e
. N̨i /
i D �

. N̨i /
i � O�. N̨i /i : (14.15)

Substituting the fractional dynamics (14.11) and (14.12) into (14.14), we obtain

e
. N̨i /
i C k O�i ei DMi .x/: (14.16)

There exists a unique solution to the system (14.16), due to the fact that
Mi .x.t// � k O�i ei .t/ is a Lipschitz continuous function on e.1 Solving the above
equation, we have

ei .t/ D ei0E N̨i ;1.�k O�i t
. N̨i // (14.17)

C
Z t

0

.t � �/ N̨i�1E N̨i ; N̨i .k O�i .t � �/ N̨i / Mi .�/d�;

where ei .0/ D ei0 . Using the triangle and Cauchy–Schwarz inequalities and H2
yields

j ei .t/ j 6 j ei0E N̨i ;1.�k O�i t
N̨i / j (14.18)

CM
Z t

0

j .t � �/ N̨i�1E N̨i ; N̨i .�k O�i .t � �/ N̨i / j d�:

1Equation (14.16) is nonautonomous, but the Lipschitz condition ensures a unique solution [10].
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The functions .t��/ N̨i�1E N̨i ; N̨i .�k O�i .t��/ N̨i / andE N̨i .�k O�i t N̨i / are nonnegative,
due to Property 14.2 of the Mittag-Leffler function and H3:

j ei .t/ j 6 j ei0 j E N̨i ;1.�k O�i t
N̨i / (14.19)

CM
Z t

0

.t � �/ N̨i�1E N̨i ; N̨i .�k O�i .t � �/ N̨i /d�:

Using Property 14.1 of the Mittag-Leffler function gives us

j ei .t/ j6j ei0 j E N̨i ;1.�k O�i t
N̨i /CMt. N̨i /E N̨i ; N̨iC1.�k O�i t

N̨i /: (14.20)

If t ! 1, we use Eq. (14.5) with � D 3	
N̨i
4

due to H3:

lim
t!1 j ei .t/ j � j ei0 j lim

t!1E N̨i ;1.�k O�i t
N̨i / (14.21)

CM lim
t!1 t N̨i E N̨i ; N̨iC1.�k O�i t

N̨i / D M

k O�i
:

ut

14.4 Numerical Results

In this section, we study the problem of synchronization of incommensurate
fractional dynamical systems by means of numerical simulations. Consider the
fractional-order Rössler system [11] as follows:

x
.˛1/
1 D �x1 � x3;
x
.˛2/
2 D x1 C 0:63x2;

x
.˛3/
3 D 0:2C x3.x1 � 10/;

(14.22)

where x D .x1; x2; x3/
T is the state vector, ˛1 D 0:9, ˛2 D 0:8, and ˛3 D 0:7, and

we take the system output as y D x2. The system (14.7) can be rewritten as (14.7):

Nx.˛2/2 D �1 C 0:63 Nx2;
�
.˛1/
1 D � Nx2 � �3;

�
.˛3/
3 D 0:2C �3.�1 � 10/;

(14.23)
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where x2 D Nx2, x1 D �1, x3 D �3, and y D Nx2. From (14.23), the following
relationships are achieved:

�1 D y.˛2/ � 0:63y; (14.24)

�3 D �y C 0:63y.˛1/ � y.˛1C˛2/; (14.25)

and from (14.24) and (14.25), we can see that �3 D x3 and �1 D x1 are IFAO. The
master systems are given by

�
.˛1/
1 D � Nx2 � �3; (14.26)

y�1 D �1 D y.˛2/ � 0:63y; (14.27)

�
.˛3/
3 D 0:2C �3.�1 � 10/; (14.28)

y�3 D �3 D �y C 0:63y.˛1/ � y.˛1C˛2/: (14.29)

Remark 14.1 To design the slave system, the derivative order for each O�i is chosen
such that N̨ i is equal to the largest fractional derivative order of the output y.

We now design the slave system for (14.27), where in this case, N̨ i D ˛2 D 0:8.
Then we have

O�.˛2/1 D k1.�1 � O�1/; (14.30)

and substituting (14.24) into (14.30), we obtain

O�.˛2/1 D k1.y
.˛2/ � 0:63y � O�1/: (14.31)

In order to avoid fractional-order derivatives, we propose a change of variable
O�1 D 
1 C k1y, and from Eq. (14.31), after some manipulations, we obtain



.˛2/
1 D k1.�0:63y � 
1 � k1y/: (14.32)

It is now time to estimate x3, but in this case, we consider x1 unknown, and we use

x
.˛1/
1 D x

.˛1C˛2/
2 � 0:63x.˛1/2 : (14.33)

Since the system is incommensurate, the previous equation contains a derivative
that depends on different fractional orders; however, it is possible to obtain a
reduced-order observer after additional manipulations, as we show. From the first
equation of (14.22) and Eq. (14.33), the following expression is obtained:

x3 D �3 D �y C 0:63y.˛1/ � y.˛1C˛2/: (14.34)
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In this case, N̨ i D ˛1 C ˛2 D 1:7, which is smaller than 2. At the outset, the slave
system for (14.28) has the following representation:

O�.˛1C˛2/3 D k2.�y � y.˛1C˛2/ C 0:63y.˛1/ � O�3/: (14.35)

We introduce in (14.35) the change of variable O�3 D ˇ1 � k2y in order to avoid the
term y.˛1C˛2/. Then we have

ˇ
.˛1C˛2/
1 D k2.�y C 0:63y.˛1/ � ˇ1 C k2y/: (14.36)

Finally, we need to avoid one more term, namely y.˛1/. To achieve this goal,
we propose a change of variable as follows: first consider a new variable ˇ2 and
substitute the change of variable ˇ1 D ˇ

.�˛2/
2 C0:63k2y.�˛2/ into (14.36); then after

some algebraic manipulations, it is possible to achieve the following relationship:

ˇ
.˛1/
2 D k2.�y � ˇ

.�˛2/
2 � 0:63k2y.�˛2/ C k2y/: (14.37)

We select the observer’s constant parameters as k1 D 120 and k2 D 7;000.
Figures 14.1 and 14.2 show the original system states and the slave system

synchronized with the master system respectively. To end this example, we see in
Figs. 14.3 and 14.4 the convergence of the estimates to the original states. Now
consider the following fractional-order Chua system [12]:

x
.˛1/
1 D ax2 C ax1

7
� 2ax31

7
;

x
.˛2/
2 D x1 � x2 C x3;

x
.˛3/
3 D �ˇx2;

(14.38)
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Fig. 14.1 Phase plot of the incommensurate fractional-order system with initial conditions
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Fig. 14.2 Phase plot of the slave incommensurate fractional-order system with initial conditions
O�1.0/ D 100 and O�3.0/ D 200
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Fig. 14.3 Synchronization of the incommensurate fractional-order system, state x1, vs. esti-
mate �1

where a D 12:75, ˇ D 100

7
, x D .x1; x2; x3/

T is the state vector, ˛1 D 0:99,

˛2 D 0:91, and ˛3 D 0:95, and we take the system output as y D x1. The system
(14.38) can be rewritten as

Nx.˛1/1 D a�2 C a Nx1
7

� 2a Nx31
7

;

�
.˛2/
2 D Nx1 � �2 C �3;

�
.˛3/
3 D �ˇ�2;

(14.39)
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Fig. 14.4 Synchronization of the incommensurate fractional-order system, state x3, vs. esti-
mate �3

where x1 D Nx2, x2 D �2, x3 D �3, and y D Nx1. From (14.39), the following
relationships are obtained:

�2 D y.˛1/

a
� y

7
C 2y3

7
; (14.40)

�3 D y.˛1C˛2/

a
� y.˛2/

7
C 2y3.˛2/

7
� y C y.˛1/

a
� y

7
C 2y3

7
; (14.41)

and from (14.40) and (14.41), we can see that �2 D x2 and �3 D x3 are IFAO:

�
.˛2/
2 D Nx1 � �2 C �3; (14.42)

y�2 D �2 D y.˛1/

a
� y

7
C 2y3

7
; (14.43)

�
.˛3/
3 D �ˇ�2; (14.44)

y�3 D �3 D y.˛1C˛2/

a
� y.˛2/

7
C 2y3.˛2/

7
� y C y.˛1/

a
� y

7
C 2y3

7
: (14.45)

Now we design the slave system for (14.27) in the case N̨ i D ˛1 D 0:99. Then
we have

O�.˛1/2 D k1.�2 � O�2/; (14.46)
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and substituting (14.40) into (14.46), we obtain

O�.˛1/2 D k1

�
y.˛1/

a
� y

7
C 2y3

7
� O�2

�

: (14.47)

In order to avoid fractional-order derivatives, we propose a change of variable O�2 D

1 C k1y

a
, and from Eq. (14.47), after some algebraic manipulations, we obtain



.˛1/
1 D k1

�

�y
7

C 2y3

7
� 
1 � k1y

a

�

: (14.48)

We now estimate x3, but in this case, we consider x2 unknown, and we use

x
.˛2/
2 D Nx1 � �2 C �3: (14.49)

Since the system is incommensurate, the previous equation contains a derivative
that depends on different fractional orders; however, it is possible to obtain a
reduced-order observer after some manipulation, as we show. From the first equation
of (14.38) and Eq. (14.49), the following expression is obtained:

x3 D �3 D �
.˛2/
2 � y � �2;

�3 D y.˛1C˛2/

a
� y.˛2/

7
C 2y3.˛2/

7
� y C y.˛1/

a
� y

7
C 2y3

7
: (14.50)

In this case, N̨ i D ˛1 C ˛2 D 1:9, which is smaller than 2. At the outset, the slave
system for (14.44) has the following representation:

O�.˛1C˛2/3 D k2.�3 � O�3/; (14.51)

O�.˛1C˛2/3 D k2

�
y.˛1C˛2/

a
� y.˛2/

7
C 2y3.˛2/

7

�y C y.˛1/

a
� y

7
C 2y3

7
� O�3

�

: (14.52)

We introduce in (14.52) the change of variable O�3 D ˇ1 C k2y

a
in order to avoid the

term y.˛1C˛2/. Then we have

ˇ
.˛1C˛2/
1 D k2

�

�y
.˛2/

7
C 2y3.˛2/

7
� y C y.˛1/

a

�y
7

C 2y3

7
� ˇ1 � k2y

a

�

: (14.53)
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Finally, we need to avoid derivatives y.˛1/ and y.˛2/. To achieve this goal, we
propose a change of variable as follows:

ˇ1 D ˇ
.�˛2/
2 � k2y

.�˛1/

7
C 2k2y

3.�˛1/

7
C k2y

.�˛2/

a
: (14.54)

Substituting the change (14.54) into (14.36), we finally, after some algebraic
manipulations, we arrive at

ˇ
.˛1/
2 D k2

�

�y�y
7

C 2y3

7
� k2y

a
� ˇ1

�

: (14.55)

We select the observer’s constant parameters as k1 D 100 and k2 D 1;000.
In Fig. 14.5, we can observe the original systems, while Fig. 14.6 shows the slave

system synchronized with the master system. Finally, the convergence of estimates
to the original states is shown in Figs. 14.7 and 14.8 .

To conclude, we study the problem of a fractional financial system, [13]

x
.˛1/
1 D x3 C .x2 � 3/x1;

x
.˛2/
2 D 1 � 0:1x2 � x21 ;
x
.˛3/
3 D �x1 � x3;

(14.56)

where the interest rate, investment demand, and price index are given by x1; x2; x3
respectively, x D .x1; x2; x3/

T is the state vector, ˛1 D 0:95, ˛2 D 0:98, and
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Fig. 14.5 The incommensurate fractional-order system with initial conditions x1.0/ D 1, x2.0/ D
2 and x3.0/ D �1
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Fig. 14.6 The slave incommensurate fractional-order system with initial conditions O�1.0/ D �10
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0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6

0 5 10 15 20

−4

−2

0

2

Time(s)

x 2,η
2

x2
η2

Fig. 14.7 Synchronization of the incommensurate fractional-order system, state x2, vs. esti-
mate �2

˛3 D 0:99, and we take the system output as y D x3. The system (14.56) can be
rewritten as (14.7):

Nx.˛3/3 D ��1 � Nx3;
�
.˛1/
1 D Nx3 C .�2 � 3/�1;

�
.˛2/
2 D 1 � 0:1�2 � �21;

(14.57)
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Fig. 14.8 Synchronization of the incommensurate fractional-order system, state x3, vs. esti-
mate �3

where x3 D Nx3, x1 D �1, x2 D �2, and y D Nx3. From (14.57), the following
relations are achieved:

�1 D �y.˛3/ � y; (14.58)

�2 D 1

�y.˛3/ � y
Œy.˛1C˛3/ � y.˛1/ � y C 3.�y.˛3/ � y/�; (14.59)

and from (14.58) and (14.59), we can see that �1 D x1 and �2 D x2 are IFAO:

�
.˛1/
1 D Nx3 C .�2 � 3/�1; (14.60)

y�1 D �1 D �y.˛3/ � y; (14.61)

�
.˛2/
2 D 1 � 0:1�2 � �21; (14.62)

y�2 D 1

�y.˛3/ � y
Œy.˛1C˛3/ � y.˛1/ � y C 3.�y.˛3/ � y/�: (14.63)

Now we design the slave system for (14.60), and we have

O�.˛3/1 D k1.�1 � O�1/: (14.64)

Substituting (14.58) into (14.64) yields

O�.˛3/1 D k1.�y.˛3/ � y � O�1/: (14.65)



14.4 Numerical Results 233

In order to avoid fractional-order derivatives, we propose a change of variable
O�1 D 
1 � k1y, and from Eq. (14.65), after some manipulations we obtain


.˛3/ D k1.k1y � y � 
1/: (14.66)

To estimate x2, there is a problem when �y.˛3/ � y D 0. At this moment, the
IFAO property is lost, so in order to overcome this drawback, from (14.57) we use
as an estimate:

�2 D 10 � 10 O�.˛2/2 � 10 O�21: (14.67)

Then the slave system for (14.62) is given by

O�.˛2/2 D k2.�2 � O�2/: (14.68)

Substituting (14.67) into (14.68), after some algebraic manipulations we achieve the
following observer:

O�.˛2/2 D 1

1C 10k2
.10k2 � 10k2 O�21 � k2 O�2/: (14.69)

The simulation shows the effectiveness of the proposed observer; in the simulations,
the gains are k1 D 100 and k2 D 100.

Figure 14.9 shows the original systems, while Fig. 14.10 shows the slave
system synchronized with the master system. To end this section, we mention that
Figs. 14.11 and 14.12 show the convergence of the estimates to the original states.
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14.5 Conclusions

In this chapter, we introduced a new concept, IFAO and a new observer (IFROO)
to solve the synchronization problem for incommensurate fractional dynamical
systems. The scheme was applied to incommensurate fractional chaotic systems;
however, it could be applied to other classes of systems that satisfy the conditions
of Proposition 14.1. Finally, numerical simulations showed the effectiveness of the
suggested approach.
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Appendix

Estimation Error Convergence to the Zone Q� Asymptotically
(Ultimately Bounded)

Consider the Lyapunov function V.e/ satisfying the equality

PV D �˛V � #p
V C ˇ:

The equilibrium point V � of this equation, satisfying

�˛V � � #
p
V � C ˇ D 0;

is as follows:

V � D
�q

.#=2˛/2 C ˇ=˛ � #=2˛
�2

D .ˇ=˛/2

�q

.#=2˛/2 C ˇ=˛ C #=2˛

�2 :

Proof of (3.22)
Defining� WD .V � V �/2, we derive

P� D 2
	
V � V �
 PV � 2

	
V � V �
 h�˛V � #

p
V C ˇ

i

D 2
	
V � V �


h
�˛V � #

p
V C ˇ C

�
˛V � C #

p
V � � ˇ

�i

2
	
V � V �
 h�˛ 	V � V �
 � #

�p
V � p

V �
�i

D �2˛ 	V � V �
2 � 2#
�p

V C p
V �
� �p

V � p
V �
�2
< 0

for all V ¤ V �, which implies V !
t!1 V �. For

G WD ŒV � Q��2C D V 2

�

1 � Q�
V

�2

C
;
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we obtain

PG W D 2 ŒV � Q��C PV D 2V

�

1 � Q�
V

�

C
PVt

� 2V

�

1 � Q�
V

�

C

�
�˛V � #p

V C ˇ
�

D �2V
�

1 � Q�
V

�

C

h
˛
	
V � V �
C #

�p
V � p

V �
�i

� 0:

The last inequality implies that Gt converges, that is,

Gt ! G�
t < 1:

Integration of the last inequality from 0 to T yields

GT �G0 �
�2 R T

0
Vt

h
1� Q�

V

i

C

h
˛
	
Vt � V �

t


C #
�p

Vt �p
V �
t

�i
dt;

which leads to the following inequality:

2
R T
0
Vt

h
1 � Q�

V

i

C

h
˛
	
Vt � V �

t


C #
�p

Vt �p
V �
t

�i
dt

� G0 �GT � G0:

Dividing by T and taking the upper limits of both sides, we obtain

lim sup
T!1

1

T

Z T

0

Vt

�

1 � Q�
V

�

C

h
˛
	
Vt � V �

t


C #
�p

Vt �
p
V �
t

�i
dt � 0;

and hence there exists a subsequence tk such that

Vtk

h
1 � Q�

V

i

C

h
˛
�
V
tk

� V �
t

�
C #

�p
Vtk �p

V �
t

�i
! 0;

or

Gtk !
k!1 0:

So it follows that G D 0, which is equivalent to the fact that

�

1 � Q�
V

�

C
! 0:

ut
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Differentially transcendental element, 2
Differential primitive elements, 2, 163, 166,

167, 169, 175, 181, 187, 190
family, 192
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