
1

Finite-State Automata
& Recursive Transition

Network

J. Savoy
Université de Neuchâtel

R. Mitkov (Ed): The Oxford Handbook of Computational Linguistics.
Oxford University Press, Oxford, 2005.

G. Gaznar & C. Mellish: Natural Language Processing in PROLOG:
An Intorduction to Computational Linguistics. Addison-Wesley,
1989.

2

Purpose

� Finite-State Automata (FSA)
� Very simple automaton
� Efficient / effective
� Use to recognize or to generate (an answer)
� Applications in various sublanguages
� A first step (and a first model)

3

Basic Notation

� Language: set of strings of any kind
� String: concatenation of zero (null string) or more symbols
� Symbols: single char (e.g., a) or multi-char (e.g., +noun)

empty string (ε or 0) → atomic entity
� Relation: a set of ordered string pairs e.g., {(a,bb), (cd,ε)}.

The first member is the upper string (domain)
The second member is the lower string (range)

� Identity relation: {(a,a), (c,c), …}.

4

Basic Notation

� Network: a finite-state automata or network
directed graphs composed of states and arcs

� A single initial state (start state)
� Any number of final states

� Arc: may be labeled either by a single symbol (a) or a
symbol pair (a:b) (or e.g., (car:voiture))

� Path: a sequence of arcs from the start state to a final
state

5

Example
A finite-state automata to recognize the laughing
language (ha!, haha!, hahaha!, etc.)
Where are the states?
Where are the arcs? And their labels?

10
h

The initial state will be placed on the left.
When we’re processing a string, we remove the front
symbol corresponding to the label on the arc.

6

FSA Processing

If starting in the initial state, we reach a final state and
the input string is empty at this point, we have found a
path and the entry string is valid.
If we cannot reach a final state, the input string is not
valid (well-formed formula, wff).
If we have a choice, we can come back (backtracking)
and try the alternative way later.

7

Example

Example: A finite-state automaton to recognize
the laughing language (ha!, haha!, hahaha!, etc.)
If you find a path, you find a valid string

210
h !

a

h
3

The final state will be placed on the right (in bold).
At any state, you have no real choice (deterministic
automaton). Is this the single solution?

8

Deterministic & non-deterministic

Example of a non-deterministic automaton

210
!

h

a
3

Do we recognize the same strings?
Why non-deterministic?

a

9

More Complex Transition

Draw a FSA to accept from state i to state j …
a) the symbol “a”
b) any symbol
c) the symbols “ed”
d) with, at least, once the symbol “b”
e) with 0, 1, or n occurrences of the symbol “c”

We can define a metachar (e.g., *)

ji

?

10

More Complex Examples

Draw the FSA to accept numbers…
a) Real numbers (e.g., 123.45)
b) With the scientific notations (e.g., 3.14E+02)
c) A simple English grammar

Hint: Replace a set of symbols by a LABEL
LABEL: set of symbols

11

Simple Grammar

We have the following lexicon:
NNP (proper noun): Kim, Mary, Ann.
DT (determiner): a, the, her.
NN (noun): consumer, man, woman.
VB (verb): is, was
JJ (adjective): happy, stupid.
MD (modal): very
RB (adverb): often, always, sometimes.
CC (conjunction): and, or.

(We have used the Penn Treebank POS tags)

12

Simple Grammar

3

2

1

9

4

DT
NNP

NN

VB

CC CC

5

6

7

8

NN

DT

JJ

DT
ε

JJ

RB

ε MD

MD

13

Simple Grammar

• Verify your grammar with the following string:
a. Kim is happy
b. Ann is often a consumer
c. Mary is a happy consumer and Ann is happy
d. the consumer is very happy
• What are the strings you can generate?
• Can you add the plural form?

• Can you transform the grammar to admit also
interrogative string?

14

Lexical Analysis

• Other application: Recognize a set of words
belonging to a sublanguage.

• Build a finite-state automaton that will recognize
the following words
• Clear
• Clever
• Ear
• Ever
• Fat
• Fatter

15

Example

FSA for the lexical analysis

4 53210

6 7 8 9

f
a t

c ael r

e

t

v
e

16

Transducers

• Instead of verifying the string (valid or not), we
may transform it (more precisely, return a new
output string if the input string is valid).

• Use the relation definition (e.g., {(a,bb), (cd,ε)})
between states (but one could be the empty
symbol ε).

• We may change our name from Finite-State
Automaton to Finite-State Transducer (FST).

• You need to propose a FST to produce the
translation for the string (where is the exit) into
(où est la sortie).

17

Translation withTansducer
A simple translation example

4 3

2
1

0

where:où
is:est

the:la

exit:sortie

18

Transducer

1. Generalize the previous example.

• We may replace a specific symbol pair by a set
possible symbols (e.g, NN)
Example
NN
exit:sortie, shop:boutique,
policeman:gendarme, toilet:toilette

2. Can you take account for the gender (the:la) and
(the:le)?

19

Translations with Transducer

NN
exit:sortie, shop:boutique,
policeman:gendarme,
toilet:toilette
But “où est la gendarme”!

4 3

2
1

0

where:où
is:est

the:la

NN

20

Translations with Gender

NN
exit:la_sortie,
shop:la_boutique,
policeman:le_gendarme,
toilet:la_toilette

Closed association between DT & NN!

4 3

2
1

0

where:où
is:est

the:ε

NN

21

Translations with Gender

NF
exit:sortie,
shop:boutique,
toilet:toilette
NM
policeman:gendarme

5

3

21

0

where:où
is:est

the:la

NF

4

the:le

NM

22

Overview of FSA and FST

• The simplest approach to NLP
• Of very little use by themselves
• Map one string of symbols into another
• Can be used for sublanguage translation
• Can be used for morphological processing
• Are easy to implement
• Can handle expression like anbm but not anbn

• But not sufficient for NLP

23

Recursive Transition Network

• We could name a network (for future use) and thus
we may simplify the design process (we may reuse
existing networks)
(Recursive Transition Network, RTN)

• We have:
NN: woman, house, table, mouse, man, genius, …
NNP: Mary, John, Washington, Ben, …
DT: a, the, that, …
VB: sees, hits, sings, loves, saw, …
WH: who, which, that, …

• A valid Sentence is a string with a NounPhrase
follows by a VerbPhrase.

24

Recursive Transition Network

• A valid NounPhrase is a string composed of a
determinant follows by a noun and possibly
follows by a WH and VerbPhrase

210
NP VPS:

210
DT NNNP:

3
WH

VP

NNP

25

Recursive Transition Network

• And for the VerbPhrase network (VP):

• Can you recognize the sentences:
John sees the house, Mary loves John,
John says that Mary says that Washington is a genius

210
VB NPVP:

3

Sthat

26

Recursive Transition Network

• We clearly take account for recursive patterns in the
language

• Very common in all natural languages
• But with limited use
• “The man who the woman sings sees Ben” .

“The man who the woman who the boy plays sings
hits Washington” .

• Useful to named a network
• Handle recursive expressions easily

“The rapidity that the motion that the wing that the hummingbird
has has has is remarkable”

• Can recognize expression such as anbn but not anbncn

27

Exercice

• Using FSA
can you represent the Latin morphology
E.g., the first declension
nominative, vocative, accusative, genitive, dative, ablative
rosa, rosa, rosam, rosae, rosae, rosae;
rosae, rosae, rosas, rosarum, rosis, rosis.

• Using the RTN method, can you recognize a grammar
having the following rule
S: a S b
and that can generate ab, aabb, aaabbb, ..., anbn

