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Chapter 1

Introduction

The subject of this thesis is the rigorous study of mean field spin glass models [6], [8]
and, in particular, of the Sherrington-Kirkpatrick one. This was proposed [16], [17]
almost thirty years ago as a “solvable” mean field approximation of finite dimensional
spin glasses. Actually, it was soon realized that the model is far from being trivial.
Indeed, only many years later Parisi [18]-[20] proposed a solution for the infinite volume
limit of the system, which required the introduction of completely new concepts, e.g.,
Replica Symmetry Breaking and the ultrametric structure of the space of equilibrium
states. Even if the physical picture of the model is by now well established thanks to
both analytical calculations and numerical simulations, the situation is very different from
the mathematical point of view, where progress has been much more difficult. The task
of reducing Parisi theory, based on the so called “replica trick” and on the ultrametric
Ansatz, to standard mathematical and statistical mechanical concepts has proved to
be very tough, and has not been fully accomplished yet. Therefore, following Michel
Talagrand [21] one can really say that the Sherrington-Kirkpatrick model and, in general,
mean field spin glasses, are a challenge to mathematicians. However, the last times have
witnessed remarkable progress in this field, and some long time open problems have
been finally solved. As an example, let us mention here the proof of the existence of
the infinite volume limit for the free energy and ground state energy per site [22], and
Guerra’s bounds and sum rules [23], relating the free energy to the Parisi solution with
replica symmetry breaking.

The rigorous study of mean field spin glass models is important, in our opinion, at least
for two reasons. First of all, many fundamental questions concerning their connection with
finite dimensional spin glass models are still open. Actually, it is not clear yet whether or
to what extent the main physical features of mean field models have a counterpart in more
realistic ones. A full understanding of the mathematical structure underlying the physical
behavior of the mean field system seems to us to be a necessary prerequisite to attack
this question. The second reason is that, as we will briefly illustrate in the following,
mean field spin glass models arise naturally in many different contexts, ranging from
combinatorial optimization problems [24] to the theory of neural networks [7] and error
correction codes [10].

In this thesis I report the results which I have obtained, in collaboration with Francesco
Guerra, during my PhD studies. Our work focuses on equilibrium properties, and we don’t



2 1. Introduction

deal with the (very interesting) dynamical aspects of spin glasses. In order to enable the
non-expert reader to appreciate the meaning of the results I present, I have tried to put
them into a more general context, introducing some of the main concepts of the theory
of spin glasses, and some physical motivation for the study of these models. Moreover, I
have tried as much as possible to link our results with previous works by other authors,
and to compare the different methods and approaches which have been employed in the
literature.

1.1 Outline of the thesis

This work is organized as follows.

e In Chapter 2, we give a very short overview on some general aspects of the theory
of spin glasses and its applications. Our aim is to motivate the non-expert reader,
illustrating both the physical origin of these models and their connection with other
fields of physics and mathematics, especially random combinatorics and theoretical
computer science.

e In Chapter 3, we introduce mean field spin glass models, and in particular the
Sherrington-Kirkpatrick and p-spin models, together with the basic definitions we
need in the following of this work: quenched free energy, replicas, overlaps and so
on.

e In Chapter 4, before we undertake the rigorous analysis of mean field models, we
recall briefly some of the results of Parisi theory of Replica Symmetry Breaking,
with the purpose of making this work as self-contained as possible, and to allow the
reader to fully appreciate the meaning of the results in the following chapters.

e In Chapter 5, we prove the existence of the infinite volume limit for the free energy
and ground state energy per site, for a wide class of mean field spin glass models.
This class includes also models with non-Gaussian disorder, with non-Ising type spin
degrees of freedom and with multi-component spins. The problem of the existence
of the infinite volume limit is a very basic question, which has remained open for
a very long time. In this context, we introduce the very simple but powerful idea
of interpolating between Hamiltonians, which will be employed many times in the
following chapters.

This chapter is based on:
F. Guerra, F. L. Toninelli, The Thermodynamic Limit in Mean Field Spin Glass

Models, Communications in Mathematical Physics, 230:1, 71-79 (2002), preprint
number cond-mat/0204280.

F. Guerra, F. L. Toninelli, The infinite volume limit in generalized mean field dis-
ordered models, Markov Processes and Related Fields, to appear, preprint number
cond-mat/0208579.

F. Guerra, F. L. Toninelli, The Sherrington-Kirkpatrick model with non-Gaussian
disorder, in preparation.
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e In Chapter 6, we explain how to find exact sum rules for the free energy of mean
field spin glasses. In the case of the Sherrington-Kirkpatrick model, this allows
to rigorously prove that the free energy is bounded below by the Parisi solution
with Replica Symmetry Breaking. The proof of these sum rules is based on a
beautiful interpolation method and is due to F. Guerra [23]. We also prove that,
as a consequence of Guerra’s bounds, replica symmetry is necessarily broken under
the Almeida-Thouless critical line. This result is based on

F. L. Toninelli, About the Almeida-Thouless transition line in the Sherrington-
Kirkpatrick mean field spin glass model, Europhysics Letters, to appear, preprint
number cond-mat/0207296.

e In Chapter 7, on the other hand, we discuss how to obtain effective upper bounds
for the free energy. The aim is to prove that the free energy is bounded above by
Parisi solution, apart from terms which vanish as the system size goes to infinity.
This task has not been fully accomplished yet, and it would provide a rigorous
proof that Parisi solution actually gives the infinite volume limit for these models.
In the case of the Sherrington-Kirkpatrick model, we show how this strategy can
be carried on, at least in a sub-region of the expected high temperature region,
where replica symmetry is not broken. Several approaches have been developed
in the literature, to prove replica symmetry in some region of parameters. Here,
we illustrate our “quadratic replica coupling” method, which has the advantage
of being conceptually quite intuitive and technically very simple, and which was
introduced in

F. Guerra, F. L. Toninelli, Quadratic replica coupling for the Sherrington-Kirkpatrick
mean field spin glass model, Journal of Mathematical Physics 43, 3704 (2002),
preprint number cond-mat/0201091.

e In Chapter 8 we prove a central limit theorem for the fluctuations of the free energy
and of the overlaps, in the region where we are able to prove that replica symmetry
is not broken. This result is based on

F. Guerra, F. L. Toninelli, Central ltmit theorem for fluctuations in the high tem-
perature region of the Sherrington-Kirkpatrick spin glass model, Journal of Mathe-
matical Physics, to appear, preprint number cond-mat/0201092.

The latter result is based on a rigorous version of the cavity method, developed by
M. Talagrand.

e Finally, in Chapter 9 we summarize briefly our results, we discuss some of the main
open problems, and we try to outline future research directions.






Chapter 2

A short overview on spin glasses

The simplest definition of spin glass [6, 8] is that of a spin system whose low temperature
state appears as a disordered one, rather than the uniform or periodic pattern one is used
to find in conventional Ising magnets. In order to produce such a state, two ingredients
are necessary: the Hamiltonian must contain randomness, and there must be frustration
[25].

Randomness means that the Hamiltonian depends not only on the configuration of
the system, which we denote by o, and on the strength of the external applied fields,
like the magnetic field, but also on some random parameters (usually, the couplings
among the elementary degrees of freedom), whose probability distribution is supposed to
be known. We will always deal with discrete systems on a lattice, where o denotes the
configuration of the spin variables o;, 7.e., the magnetic moments of the individual atoms,
in suitable units, and 7 is the site index. The random parameters are collectively denoted
as “quenched” (or “frozen”) disorder. From the physical point of view, the word “frozen”
means we are modeling a disordered system whose impurities have a dynamics which
is many orders of magnitude slower than the dynamics of the spin degrees of freedom.
Therefore, the disorder does not thermalize, and it can be considered as fixed.

We say that frustration is present when the Hamiltonian cannot be written as the
sum of many terms, all of which can be minimized by a single ground state configuration.
In order to clarify this rather sloppy definition, let us begin with a non-frustrated system,
namely, the ferromagnetic Ising model. The model is defined on the Z? lattice by the

Hamiltonian
H(O’, h) = —ZJZ']'O','O'J', (21)
,J

where the couplings J;;, for our present purposes, are only required to be all non-negative,
and o; = +£1 are Ising spins. Of course, each spin-spin interaction term is minimized by
the configurations where all spin are parallel, i.e., 0;0; = +1 for all 7, j. There are two
such configurations, one with all spins equal +1, the other with spins —1, and they are
connected by the global spin-flip symmetry o; — —o; Vi. It is also elementary to check
that any other configuration has a strictly higher energy. On the other hand, if the
coupling signs are random, this is not true in general and, even worse, it is not possible
to guess the ground state configuration just from symmetry considerations. Moreover,
in the random sign case the ground state of the system has a high degeneracy, and
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the several ground state configurations are not connected one to another by elementary
symmetry transformations. The reader can check this by himself, in the simple case
where the system is composed of four spins, denoted by the indices 1,2, 3,4, and where
Jio = Jog = J34 = —J14 = +1, all other couplings being zero, as illustrated in Fig. 2.1. In

4 t 3

1 + 2

Figure 2.1: A system of four spins (a plaquette) with frustrated interactions. One can
define a plaquette to be frustrated if the product of the couplings along its border is
negative [8]. Notice that this is the case in the present example.

this case, there are eight ground state configurations, of course not all connected by global
spin-flip. The number of ground states grows very fast as the number of spins is increased.
If the absolute values of the couplings are also random, the exact degeneracy is broken,
but frustration still gives rise, for large systems, to low-lying metastable configurations,
which would be absent in the unfrustrated case.

Experimentally, it is very easy to find systems satisfying the requirements of being
both disordered and frustrated, where spin glass behavior can be observed. The first kind
of spin glass systems which was studied consisted in dilute solutions of magnetic transi-
tion metal impurities in noble metal hosts. The impurity moments produce a magnetic
polarization of the host metal conduction electrons, which is positive at some distances
and negative at others. For instance, in the simple approximation where the metal elec-
trons are considered as free, one finds that the polarization induced at the point r; by a
spin &(r;) placed at the point r;, is proportional to

wﬁ(ri) for kpr > 1,

where r = |r; — rj| and kp is the Fermi momentum. Such an interaction potential takes
the name of Ruderman-Kittel-Kasuya-Yosida (or RKKY) interaction [8]. Other impurity
moments then feel the local magnetic field produced by the polarized electrons and try to
align themselves along it. Since the impurities are randomly placed, some of the resulting
interactions are of ferromagnetic character (i.e., they favor parallel alignment of the spins)
and others are anti-ferromagnetic. Thus we clearly have random, competing interactions
which produce frustration.

In the RKKY model we have just illustrated, randomness is in the position of the
magnetic impurities. This model does not turn out to be simple enough to allow an ana-
lytical approach. Therefore, following Edwards and Anderson [26], one usually considers
models where the positions of the magnetic moments are non-random and are placed
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on the Z? lattice, and disorder is in the interactions .J;;, which are taken to be random
variables whose distribution depends only on (r; —rj). A further simplification is that of
considering, instead of a model of Heisenberg vector spins &;, an Ising-like model where
one keeps only a single spin component o; = (4;), = +1. The Hamiltonian of the model,
in some magnetic field i, can be therefore written as

H(o,h;J) = ZJZJa,a, hZaz, (2.2)

which resembles Eq. (2.1), apart from the fundamental difference that, here, the couplings
Jij are random and have random sign. The J;; are assumed to be independent random
variables with zero mean and a variance which depends only on |i — j|. For instance, one
can consider the Gaussian case

1
P(J;;) = ————exp(—J%/2A,;),
( J) 27TAij p( z]/ ])
where A;; = A(r; — r;j) vanishes sufficiently fast for |r; — r;] — oco. Another often

studied case is that where J;; = £1 with equal probability for |i — j| = 1 and J;; =
0 otherwise (nearest neighbor interaction). The Edwards-Anderson model, though in
a sense simplified with respect to the RKKY one (the disorder averages are easier to
perform), retains all the essential features of spin glass systems, and is still of formidable
difficulty.

The physical behavior of spin glasses is not sensitively dependent on the particular
features of the interaction, like the decay of the interaction potential with distance, and
this is the reason why the physically more natural random-position RKKY model can be
replaced by a random-coupling one.

Spin glass behavior has also been observed in completely different physical systems,
e.g., ferroelectric-antiferroelectric mixtures, where the electric dipole moments take the
place of the magnetic ones. We refer to [8], and references therein, for a review.

2.1 Experimental observation of spin-glass behavior

A fundamental question for a physicist is of course, how spin glass behavior can be
observed experimentally. In this section, we give just a sketchy description of some basic
aspects, in order to make some connection between real-life experiments and the theory
we will discuss in the following of this work.

An important feature of the (low temperature) spin glass phase is that there is a
local finite magnetization* m; = (0;) # 0 even when the magnetic field is infinitesimal,
while the total magnetization m = |A[~' ", m; vanishes. Of course, this is possible
only because randomness destroys translation invariance, for a given disorder realization.
Here, we are considering a system enclosed in a finite box A, containing |A| lattice sites.

*here, the symbol (.) denotes the usual Boltzmann-Gibbs thermal average. In the following of this
work (see Chapter 3) we will use a different notation, but in these introductory remarks we wish to keep
notations and definitions to a minimum.
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In contrast with the case of ordered antiferromagnets, any “staggered magnetization” of
the form

1 ks
my = T Z e tkrim,, (2.3)

where k € R® and the sum is performed on all lattice sites of position r;, also vanishes.
This can actually be proved experimentally, since neutron scattering experiments show
no magnetic Bragg peaks. In other words, there is a phase transition (non-zero local
magnetization in zero external field), but no long-range order. However, the effect of the
local spontaneous magnetizations can be observed experimentally, since they reduce the
(static) magnetic susceptibility from the value it would otherwise have. Recall that the
zero field magnetic susceptibility is defined as

. Om(h)
X Tan

where m(h) denotes the magnetization in presence of the magnetic field h. For instance,
if the interactions are symmetrically distributed, x is given by the formula [§]

11— A7, mi
- = ,

X (2.4)
where 7" is the temperature. Therefore, the reduction of the susceptibility from the Curie
law x = 1/T is a direct measure of the mean square local spontaneous magnetization.
Experimentally, one finds the 1/7 behavior for temperatures higher than the so-called
freezing temperature Ty, where a cusp is observed (see Fig. 2.2).

A
X

» °

[ ]
[ ]
[} e
le® . Curie behavior x o< 1/T
[ ]
[ ]
...
[ ]
..... (] .............

0 Ty T

Figure 2.2: Typical behavior of the (zero-field cooled [8]) static magnetic susceptibility
for a real spin glass system (in arbitrary units). 7 denotes the freezing temperature,
where x has a cusp.

The freezing temperature marks the boundary between the (low temperature) spin
glass phase and the high temperature phase, which is of paramagnetic character.

Even more interesting effects are found when non-equilibrium properties of the system
are investigated below Ty. For instance, the frequency-dependent susceptibility x(w),



2.2. Finite dimensional vs. mean field spin glasses 9

defined as the response of the magnetization to an external time dependent magnetic
field oscillating with frequency w, depends strongly on the external frequency, even if
w is much smaller than the characteristic microscopic frequency of the system. This
phenomenon does not occur in ordered magnets. Generally speaking, the dynamics in
the spin glass phase is characterized by very long characteristic times which suggest the
presence of many metastable states with high energy barriers separating them. Another
important feature of spin glasses is the onset of remanence effects below the freezing
temperature. For instance, the value found for the static magnetic susceptibility depends
strongly on the way the experiment is performed (for instance, whether the system is
cooled in zero or in non-zero external field). In other words, ergodicity of the dynamics
is lost below the freezing temperature, and the experimental results depend on the initial
condition of the system. The remanence effects in y have the same origin as the frequency
dependence of x(w), i.e., the existence of many roughly equivalent (quasi)-equilibrium
states. Which state is reached when the system is prepared depends crucially on details
of the experiment such as the frequency and magnitude of the applied field, the speed
with which one it cools down, whether one cools in zero or finite field and so on.

2.2 Finite dimensional vs. mean field spin glasses

The Edwards-Anderson model, although somewhat simplified with respect to the actual
physical situation, appeared soon too hard to be attacked analytically, and suitable ap-
proximation schemes were sought. Possibly the most important one, and the most rich of
surprises, was the mean field approzimation. In other words, it appeared natural to start
from the study of a simplified model where, while maintaining the fundamental features
of disorder and frustration, the geometrical structure of the lattice is disregarded, so that
every magnetic moment interacts with all others, irrespective of the distance. The first
model of this kind was introduced by D. Sherrington and S. Kirkpatrick [16], [17], and is
defined by the Hamiltonian

N
1
Hy(o,hy J) = —— Jiio;0:; — h ;. 2.5
N( ) /_N1<¢<Zj<1v J J Zl ( )

i=
While this expression is formally similar to the Hamiltonian (2.2) of the Edwards-Anderson
model, here the couplings J;; are independent identically distributed random variables
with zero mean and wvariance independent of |i — j|. Notice also the presence of the
normalization factor 1/v/N, where N is the number of spins in the system. This factor,
which is absent in the Edwards-Anderson model, is necessary in the mean field case, in
order to have a well defined free energy per site in the infinite volume limit (see Section
3.1 of next chapter for a detailed discussion of this point).

Of course, mean field spin glass models are not physically realistic in describing disor-
dered magnetic alloys, since they contain no trace of the lattice structure and of its space
dimensionality. However, one of the reasons why they were introduced was the hope that
their physical behavior would resemble that of realistic models, at least when the space
dimensionality d or the range of interactions is large. This is what happens, for instance,
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for non-random ferromagnetic systems, where it is well known [1] that mean field theory
gives a good qualitative description of symmetry breaking and of the critical point, if
d is sufficiently high. Moreover, we saw previously that in the physically more realistic
RKKY model the interaction does not decay too fast (J;; ~ |i — j|~) with the distance,
which might further justify this expectation.

After almost thirty years, the question of the connection between mean field and real-
istic spin glass models is still to a great extent open and under discussion. In fact, while
there seems to be no doubt about the existence of a “spin glass” transition for finite
range models, at least for d > 3 (see, for instance, [27], and of course the experimental
observations discussed in the previous section), the nature of the spin glass - low temper-
ature - phase is still not understood. Some authors [28] believe that the main features of
the mean field picture, like the existence of an infinite number of equilibrium states and
their ultrametric structure, persist in the finite dimensional case, while others [29] argue,
within the droplet/scaling picture, that below the critical (freezing) temperature just two
pure phases exist, connected by global spin-flip symmetry. Both pictures are supported
by a mixture of numerical simulations and theoretical considerations. Recent works by
Newman and Stein [30] show some of the conceptual difficulties which arise when one
tries to precisely define the concept of pure thermodynamic state for disordered systems,
and the authors conclude by excluding the possibility of the mean field picture for finite
dimensional spin glasses. However, this rather delicate point does not seem to have been
settled yet (see, for instance, the recent papers [31], [32]).

One of the few known rigorous results in this context is based on early works by
Frohlich et al. [33, 34|, later extended by Bovier in [35], where the authors show that,
at least for sufficiently high temperature and zero external magnetic field, mean field
spin glasses can be actually seen as the limit of short range spin glass models, when the
interaction range tends to infinity. As usual in statistical mechanics, the limit where the
range of the interaction tends to infinity is performed by means of Kac asymptotics [36],
which we recall briefly. Let J(x) be a positive function with compact support satisfying
the normalization condition

/ dixJ(z) =1,

and define the Kac potential J, as

Jy(i,5) = "I (v(i — j)). (2.6)

Notice that the range of the potential J, is of order 1/v, while its total strength is

constant:
Z Jy(1,7) =1+ 0(v),

jezd

where o(7y) vanishes as 7 — 0. In the case of spin glass systems, we define a Kac-type
random potential as

J (i, 7)Jij, (2.7)

where J;; are independent identically distributed random variables with zero mean and
unit variance. The potential in Eq. (2.7) has clearly a random sign, and its strength is
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modulated by J,. (The reason for the square root in (2.7) is simply that, this way, one
has for the second moment of the Hamiltonian H(o; J) (see the definition below)

1 1
—EHy(0;J) = =
to be compared with
1 1
—EHy(o;J)? ==
N EHn(o3 )" = 3,

which holds for the mean field Sherrington-Kirkpatrick model (see next chapter).) The
Hamiltonian of the system, enclosed in a finite box A € Z? with |A| sites, is defined as

HA(O'; J) = — Z \/J,Y(Z.,j)JZ‘jO'Z'O'j.

1<i<j<|A|

If one lets the interaction range tend to infinity, i.e., v — 0 after the thermodynamic
limit has been performed, one finds [35] that the free energy per site approaches that of
the Sherrington-Kirkpatrick model, provided that the temperature is above the critical
temperature 7, = 1 of the Sherrington-Kirkpatrick model. This result is interesting but
quite weak, since one would like to study the connection between finite dimensional and
mean field models below the critical temperature, in the spin glass phase where replica
symmetry and ergodicity are broken [6].

Whatever the connection between finite dimensional and mean field models may be,
however, it is beyond doubt that the latter deserve a deep study. This is not only
because they are interesting mathematical models by themselves, but also because, as we
are going to discuss briefly in next section, they arise naturally in many contexts like,
e.g., combinatorial optimization problems, neural networks and so on.

2.3 Other examples of spin glass systems

One of the most interesting aspects of the theory of spin glasses is that it has applications
in fields apparently very far from statistical mechanics, such as combinatorial optimization
problems and neural networks. We suggest Refs. [6], [10], [7] for a beautiful introduction
to these subjects.

We limit ourselves to an example, which should illustrate the connection between
combinatorial optimization problems and spin glasses. Suppose there is a group of N
people, which we denote by Pi, P, Ps, ..., who know each other. Given any couple of
individuals, they can be either friends or enemies, no intermediate situation being allowed.
We assume (although this is of course not realistic) that the friendship-enmity relations
are assigned randomly, and independently for each couple. Of course, if (P;, P;) and
(P,, P3) are two couples of friends, it is not guaranteed that P; and P; are also friends.
In this sense, the system is frustrated, because P, has to choose between P; and Ps.
Now, one wants to divide the /N individuals into two parties, so as to minimize social
discomfort, i.e., one tries to group as far as possible friends together, and to separate
enemies. In order to show how this problem is connected with statistical mechanics and
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spin glass theory, for any of the 2V possible ways (configurations) the N people can be
divided, assign to the generic individual P; the “spin variable” o; = —1 if he is assigned
to the first group, and o; = 1 in the opposite case. Moreover, given i, j set the “coupling
constant” J;; to —1if 7 and j are enemies, and to +1 otherwise. In this way, it is clear that
the problem to find the optimal division of the group is equivalent to find the minimum
of the “cost function”

HN(O'; J) = — Z Jijo-io-ja (28)

1<i<j<N

over all configurations 0. Comparing the expression of the cost function with Eq. (2.5),
it is clear that our minimization problem is equivalent to the search for the ground state
configuration of the mean field Sherrington-Kirkpatrick model at zero magnetic field
(h = 0). The role of disorder is played in this case by the random choice of friendship-
enmity relations.

The one we have just illustrated is only a very simple, and quite academic, exam-
ple. Other more complicated combinatorial optimization problems connected with spin
glasses arise in theoretical computer science, and are intensively studied by information
scientists, mathematicians and theoretical physicists. We refer to [37] for a nice intro-
duction. Typically, one has N Boolean variables and looks for a configuration which
satisfies certain conditions (clauses) which are generally in conflict among themselves, or
for the configuration satisfying the largest possible number of clauses. These are called in
general satisfiability problems. Also in this case, as with spin glasses, we are in presence
of frustration and one cannot trivially satisfy all the conditions at the same time. The
scheme is to introduce a “cost function” (which is the analog of the Hamiltonian for
spin systems) which counts how many of the conditions are violated for a given Boolean
configuration, and to try to minimize it. In statistical mechanics, this corresponds to
search for the ground state of the system. To every Boolean variable, which can assume
two different values, one assigns an Ising spin variable ¢ = £1. The connection with
spin glasses is complete when one assumes that clauses are randomly chosen from some
given probability distribution, thus playing the role of quenched disorder, and when one
considers the limit of N going to infinity (thermodynamic limit in statistical mechanics).
This is the relevant limit, because this kind of optimization problems become interesting
and hard to solve, even with the most powerful computers, when the number of Boolean
variables and of clauses involved becomes large.

The spin glass models one is led to study when dealing with optimization problems
are still of mean field character, but with finite connectivity [24]. This means that still
there is no spatial structure or any notion of distance between lattice sites, but every
spin interacts with a finite (random) number of other spins, even in the thermodynamic
limit. The physical behavior of these systems is quite different from that of infinite-
connectivity ones like that of Sherrington and Kirkpatrick, and a complete understanding
of the corresponding replica symmetry breaking pattern has not yet been obtained, even
from the heuristic point of view. A brief discussion of finite connectivity models is given
in Section 3.4.



Chapter 3

Mean field spin glass models: basic
definitions

In this chapter, we introduce the main definitions concerning mean field spin glass models.
For clarity, we focus in the first place on the Sherrington-Kirkpatrick model, which is the
one we will mostly deal with in this work. As a simple extension, we introduce Derrida’s
p-spin model. Finally, a brief section is dedicated to finite connectivity models, or dilute
spin glasses. While a detailed study of dilute spin glasses goes well beyond the scope of
the present work, it is instructive to compare their structure with that of the Gaussian
models we are mostly interested in.

This chapter is not intended to give a complete list of mean field spin glass models,
but rather to introduce the essential concepts and definitions we need in the following
like, for instance, that of quenched free energy and replicas. As a consequence, very well
known and interesting models like the Random Energy Model (REM) [38] and Generalized
Random Energy Model (GREM) [39] are not presented here. These are very instructive
because their exact solution is known, and the predictions of Parisi theory and the replica
method can be (successfully) tested. We refer the reader interested in the REM and
GREM to the many deep and detailed works which appeared in the literature (see, for
instance, [40], [41], [42], [43]).

3.1 The Sherrington-Kirkpatrick model

The generic configuration of the Sherrington-Kirkpatrick model [16, 17] is determined by
the N Ising variables o; = +1, 4 =1,2,..., N. The Hamiltonian of the model, in some
external magnetic field h, is

N
1
Hy(o,hy J) = —— Jiio;0: — h ;. 3.1
N( ) /_ngKngN J J Zl ( )

1=

The first term in (3.1) is a long range random two body interaction, while the second
represents the interaction of the spins with the magnetic field h. The external quenched
disorder is given by the N(N — 1)/2 independent and identically distributed random

13
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variables J;;, defined for each couple of sites. For the sake of simplicity, we assume each
Jij to be a centered unit Gaussian with averages

E(J;;) =0, E(Jf]) =

The Gaussian choice is a matter of convenience. Indeed, as it was already noticed in [17]
(see Section 5.5.2 of the present work for a sketch of the proof), any other symmetric
probability distribution with finite moments could be chosen for JZ], without modifying
the free energy of the system, apart from error terms vanishing in the thermodynamic
limit. For instance, the case J;; = 1 with equal probability 1/2 is often considered in the
literature. On the other hand, independence of the J;;’s is of fundamental importance.

Notice that the couplings are not only random, but have also a random sign, so that
the two main features of spin glass systems, i.e., disorder and frustration, are present.
Moreover, the Hamiltonian we are considering clearly defines a mean field model, since
there is no geometric structure in the lattice, and any spin interacts with any other.

For a given inverse temperature* 3, we introduce the disorder dependent partition
function Zy (B, h;J), the quenched average of the free energy per site fy(3,h), the
Boltzmann-Gibbs state wy, and the auxiliary function ay(8,h), according to the def-
initions

Zn(B Ry J) = Zexp(—BHN(a, h; J)), (3.2)
{0}
—Bfn(B,h) = NEIDZN(ﬁ h; J) = an(B, h), (3.3)
ws(A) = Zy(B,h; J) 1 A(o) exp(—BHy(o, h; J)), (3.4)
{o}

where A is a generic function of the ¢’s and E denotes average with respect to the
quenched disorder. In the notation w;, we have stressed the dependence of the state on
the external disorder J, but, of course, there is also a dependence on 5, h and N.

The main object of interest is the quenched free energy fy(f5,h), from which all
thermodynamic quantities can be deduced. The reason why we have introduced the
auxiliary function ay (3, h) is that, in some cases, it will be more practical to deal with
it, rather than with fy(5,h). It is very important to stress that we want to compute

1

(quenched average of the free energy) rather than

_N—B In EZy (3.6)

(annealed average). The computation of the annealed average is trivial, since the Boltz-
mann factor can be written as the product of statistically independent terms, one for

*here and in the following, we set the Boltzmann constant kg equal to one, so that 8 = 1/(kgT) =
1/T.



3.1. The Sherrington-Kirkpatrick model 15

each couple of sites, so that

N(B,h;J) = Z H exp( J,]azaj) exp BhZak

{o} 1<i<j<N
and the disorder average factorizes:

2 _ 2
EZN(B,h; J) = Zexp (%%) exp(ﬁhZak) = oN coshN(Bh) exp %(N —1).
k

Taking the disorder average of the logarithm of the partition function corresponds to
consider the J variables as a frozen (quenched) disorder, which does not take part to
thermal equilibrium. The free energy is therefore computed for given J, and expectation
over disorder corresponds to take the average on many different samples of the material.
From the physical point of view, this means we are modeling a disordered system whose
impurities have a dynamics which is many orders of magnitude slower than the dynamics
of the spin degrees of freedom. In order to clarify this point, consider the S derivative of
the free energy which, as it is known from thermodynamics, is connected to the internal
energy. For the quenched free energy, one finds

—(9,8%]3 In Zy = N1 2e N (0) e;i(_ﬁHN<")) = N"'Ew,;(Hy)

and, for the annealed one,

E >, Hn(o)exp(-fHy(0))
E >, exp(=fHy(0))

In the first case, one is first computing the thermal average of the Hamiltonian, for a
fixed disorder realization, and then is averaging over the disorder distribution. This
corresponds to the actual physical situation. On the other hand, in the second case the
disorder and spin variables are treated on the same footing, being averaged both in the
numerator and in the denominator, and this corresponds to the situation where the J
variables also thermalize at the temperature 1//.

The normalization factor 1/v/N in the Hamiltonian (3.1) is typical of the mean field
character of the model and guarantees a good thermodynamic limit for the free energy
per spin, i.e., it ensures that the N — oo limit of the free energy per site is finite and non-
trivial. Recall that, in the case of the mean field (non-random) ferromagnetic Curie-Weiss
model, the Hamiltonian is defined by

H{W (o =——ZO‘ZO']—hZJZ (3.7)

1,j=1

1
~Os5;In B2y = N7t

Here, the couplings J;; = J > 0 are non-random and positive. Since the two body
interaction term is the sum of N? terms of order 1, the correct normalization factor,
which guarantees that Hy /N and the free energy density are of order 1, is 1/N. In the
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case of the Sherrington-Kirkpatrick model, on the other hand, the random signs of the
couplings J;; produce cancellations among the many terms of Hy, and the factor 1/ VN
is enough to have a finite average energy per particle. This can be easily understood as
follows. Suppose that v/N in (3.1) is replaced by N, as in the Curie-Weiss case, so that
the Hamiltonian becomes

Hy(o,h; J) = Z Jijoioj — hZaz, (3.8)

1<z<]<N

where the prime reminds us that we have changed the normalization factor. The auxiliary
function oy (B, h), defined in analogy with (3.3), satisfies then the bounds

1
In2 +1Incoshh + o(1) < a/y(B,h) < i InEZy(B,h; J), (3.9)
where we denote with o(1) a quantity which vanishes for N — oo. The upper bound

is obtained by means of the Jensen inequality, observing that the function + — Inzx is
concave. As for the lower bound, it suffices to write

av(B,h) > —Eanexp (——\ > JZ]|+hZaZ> (3.10)

{o} 1<i<j<N
= ln2+lncoshh——E\ Z Jij
1<i<j<N
N(N -1
= 1n2+1ncoshh—% %E\JL (3.11)

where .J is a standard Gaussian random variable with zero mean and unit variance. The
last term in (3.11) clearly vanishes for N — oco. The average of Z} is easily calculated,
since it involves only Gaussian integrals, and one finds

2

EZ} = (2cosh b)Y exp < b

SN - 1)) . (3.12)

Then, the bounds (3.9), together with (3.11) and (3.12), imply
ay(B,h) = In2 + Incosh h

for any value of the temperature, so that the two-body interaction has no effect in the
infinite volume limit, and the model is trivial.

3.2 Replicas and replica overlaps

Let us now introduce the important concept of replicas. Consider a generic number n

of independent copies of the system, characterized by the spin variables 02(1), 02(2), ey

distributed according to the product state

Qy = w(Jl)wS) . .wgn),
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where each w(JO‘) acts on the corresponding aga) variables, and all are subject to the same

sample J of the external disorder. Clearly, the Boltzmann factor for the replicated system
is given by

exp (—=B(Hn (oW, h; J) + Hy (0P, hy J) + -+ + Hy(0™, h; J))) . (3.13)

These copies of the system are usually called real replicas, to distinguish them from those
appearing in the so called replica trick [6], which requires a limit to zero replicas (n — 0)
at some stage.

The overlap between two replicas a, b is defined according to

1 a
CCRURES pr e

and it satisfies the obvious bounds
-1< Gab < 1.

For a generic smooth function F' of the configuration of the n replicas, we define the
() averages as'

(F(eW,6@ ... o™y =EQ,F (0(1), o@ .., a(")) , (3.15)

where the Boltzmann-Gibbs average ); acts on the replicated o variables, and E denotes,
as usual, average with respect to the external disorder .J.

Replica overlaps are quantities that can be in principle measured, at least in a nu-
merical experiment. In a physical experiment, this would require to have two copies of
the system with exactly the same realization of disorder, which is not realistic. Notice
that the average over disorder introduces correlations between different groups of replicas,
which would be independent under the Boltzmann-Gibbs average {2;. For example,

QJ(Q12Q34) = QJ(C]u)QJ (Q34) (3-16)

but
(q12a34) # (@12)(a34)- (3.17)

On the other hand, the (.) averages are obviously invariant under permutation of replica
indices. For instance,

(q12923) = (q24915)- (3.18)

Overlap distributions carry the whole physical content of the theory [6], and the
averages of many physical quantities with respect to the external disorder can be expressed
through (.) averages involving simple polynomials of the overlaps. As an example, for
h = 0, the disorder average of the internal energy per spin N~'w;(Hy) is given by [44]

N Buy(Hy) = =5 (1~ {g), (3.19)

Different notations are used sometimes in the literature. For instance, the brackets (.) are often used
to denote thermal average only, while (especially in the theoretical physics literature) disorder average of
an observable O is denoted by the symbol 0. However, we believe this should not generate any confusion,
since we will stick to our notations all through this work.
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while its S derivative is [44]

N7'9%Ew;(Hy) = —N7'E(w;(HY) —w3(Hy)) (3.20)

2
B N ((ahy) — Uodls) + HEtes)).

= SO+ 5

2
The proof of equations like (3.19) and (3.20) is very simple, since it requires only to apply
the integration by parts formula

E(JF(J) = E (%F(J)) , (3.21)

which holds for a centered unit Gaussian variable J and any smooth function F'.

3.3 Derrida’s p-spin model

It is very natural to generalize the Sherrington-Kirkpatrick Hamiltonian, by letting the
spins interact through a p-body random mean field potential, where p is an integer. The
resulting Hamiltonian is

N
/ pl
H( 0' h, J oONP— Sno—1 Z Jil...ipo-il <04, — hZO'z (322)
=1

1<i1 <. <p <N

Like for the Sherrington-Kirkpatrick model, we assume the couplings J;;. ;, to be inde-
pendent identically distributed centered Gaussian random variables, with unit variance.
One can easily show, as we did for the Sherrington-Kirkpatrick model, that the nor-
malization factor 1/N®~1/2 is actually the one required to yield a good thermodynamic
limit. The factor /p!/2 is introduced just to ensure that, for p = 2, one recovers the

Sherrington-Kirkpatrick model. Notice that the Gaussian random variables H](\Z,’)(a, h; J)
have a very simple covariance structure, which depends only on the mutual overlap of
the configurations o, o'

E (HP(0)HY (o)) - EHY(0)E HY (') = %qga, +O(1/N).  (3.23)

This system, known as p-spin model, was first introduced by Derrida in [38], and later has
been widely studied, both in the theoretical and in the mathematical physics literature
(see, for instance, [45, 46, 47, 48, 23]).

The physical behavior of the p-spin model is quite different from that of the Sherrington-
Kirkpatrick one. Anticipating some concepts which will be introduced in Section 4, we
can say that, for p > 2, one expects replica symmetry to be broken only at the first step
(at least as long as the temperature is not too low), while for p=2 there is an infinite
pattern of symmetry breaking [6]. The meaning of these statements will be clarified in
the following chapter.

The limit of large p has also been considered. For p — co, the system reduces to the
so called Random Energy Model [38], which consists of 2V statistically independent and
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identically distributed Gaussian energy levels Hy(o;J). Formally, this can be seen by
letting p — oo in (3.23), and noticing that ¢” , — 0 whenever ¢ # o’. Of course, this
argument is not completely convincing, since the limit p — oo has to be taken after the
infinite volume limit (the Hamiltonian (3.22) has no meaning for p > N), but things can
be settled [45], [47] and one can actually prove that the infinite volume free energy of the
p-spin model tends to that of the REM, for p — co. Owing to statistical independence of
the energy levels, the Random Energy Model can be solved exactly, thereby confirming
the predictions of Parisi theory. For p large but finite, the system approaches very fast?
the REM, and a very detailed analysis in this regime has been recently performed by M.
Talagrand [47], [48]. We do not discuss here Talagrand’s results, which rely on techniques
which are rather far from those employed in this work, and we refer the reader to the
original papers.

3.4 Finite connectivity models

So far, we have dealt only with infinite connectivity mean field spin glass models, i.e.,
models where each spin interacts with all the remaining /N — 1 spins. On the other hand,
of great interest are finite connectivity (or dilute) models, where the mean field character
is conserved but each spin interacts only with a finite number of other spins. For instance,
consider the Viana-Bray [49] model defined by the Hamiltonian

HN<U; J, X) = — Z JinijOin- (324)

1<i<j<N

The J;; are, as usual, independent standard Gaussian variables, while the x;;’s are random
variables (independent of the .J), which assume the value 0 with probability 1 — v/N,
for some 7y > 0, and the value 1 with probability v/N. In other words, given any two
sites 7 and j, they interact with probability /N and, in this case, the interaction has a
Gaussian distribution. Of course, each spin interacts on average with a finite number (of
the order ) of different spins and this is the reason why the normalization factor 1/v/N
is absent, like in finite dimensional models. On the other hand, there is no geometry in
the system (no notion of distance among sites), so that it is still a mean field model.

From the probabilistic point of view notice that, while for infinite connectivity models
the Hamiltonian Hy(o; J) can be seen as a correlated Gaussian process on the configura-
tion space {—1,+1}", when the connectivity is finite the process is no longer Gaussian,
owing to the presence of the random variables x;;, and therefore it is no more determined
solely by its covariance matrix. It should not be surprising, therefore, that these models
are much more complicated, even from the heuristic point of view, and that a complete
analysis of Replica Symmetry Breaking, in the context of Parisi theory, has not been
achieved yet.

On the other hand, the study of these models is of great interest at least for two
reasons. In the first place, finite connectivity makes them more similar to models with

Hor p large, the difference between the p-spin and the REM free energy is of order 277. For more
precise statements, see [46], [47]
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short range interactions. Secondly, such models arise very naturally in the context of
combinatorial optimization problems [24], neural networks [7] and error correction codes
[10].



Chapter 4

An overview of Parisi theory of
Replica Symmetry Breaking

In this chapter, we present a brief and streamlined introduction to some central concepts
and results of Parisi theory of mean field spin glasses. In particular, we will try to
emphasize the meaning of the Replica Symmetry Breaking phenomenon, and of the so
called functional order parameter x(q). For simplicity, we will concentrate mostly on the
Sherrington-Kirkpatrick model, for which the theory was first formulated.

We do not intend to give a complete or even satisfactory review of the theory, both
because this would lead us away from the main scope of this work, and because beautiful
and thorough reviews exist in the literature. In particular, we refer the interested reader
to the original papers (see, for instance, [18], [19] and [20]), and to the book [6]. See also
[50] for a different perspective. Rather, we will restrict to those concepts and results which
are essential to understand the following of this work, and in particular to appreciate the
relevance of the results in Chapter 6.

As a last warning, let me underline that, in this chapter, results are given without their
original derivation, which would require to introduce techniques which are very different
in spirit from those employ in this work. The results we report here were originally
obtained by means of the so called replica method which, though mathematically not well
understood, is of remarkable elegance and simplicity. Unfortunately, the beauty of the
method gets completely lost here, and this is another reason why we warmly recommend
Ref. [6] to the reader.

4.1 Replica symmetry breaking and first order phase
transitions

Let us begin by recalling the concept of spontaneous symmetry breaking, and of phase
coexistence, in ordinary statistical mechanics [2]. Consider for simplicity a system on a
d-dimensional cubic lattice, formally defined by a Hamiltonian H (o), which depends on
the configuration of all spins o;, with 7 € Z¢. In order to deal with mathematically well
defined objects, one restricts the system and the Hamiltonian to a finite subset A of the

21
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lattice, computes the finite volume free energy per site

1

fa(B) = “TAIB

In Zx(B), (4.1)

where [ is the inverse temperature and Z, is the partition function, and then lets A
grow to the whole Z? in a suitable way. There is a certain degree of arbitrariness in this
procedure because, as long as the system is finite, one has to impose boundary conditions,
that is, one has to specify the configuration of the boundary spins, or their interaction
with the external world. It is well known that, at least for systems with short range
interactions, the free energy per site is not sensitive to boundary conditions, in the limit
where A — Z¢. However, the equilibrium thermodynamic state of the system is not
determined simply by its free energy, but also by all the correlation functions, i.e., by

Ah_>nzld <0i1 e Uin)A y (42)
for all finite sets of site indices 41, ..., i,, where (.) denotes the Boltzmann-Gibbs thermal

average at temperature 1/4. Unlike the free energy, the correlation functions do in general
depend on the chosen boundary conditions, also in the infinite volume limit. When the
equilibrium state is not unique, one says that a first order phase transition occurs.
Another, strictly related, way to select different equilibrium states, is to introduce
auxiliary infinitesimal external fields A;, which are removed only after the thermody-
namic limit A — Z? has been performed. More precisely, one adds to the Hamiltonian
terms which represent the interaction of the system with the external fields, and then
computes the thermodynamic limit for the free energy and for the correlation functions.
For instance, in the case of an external magnetic field & the interaction term is —h ), o;.
After the infinite volume limit has been taken, one lets the )\; go to 0, and the resulting
correlation functions depend, in general, on the way the limit is performed, e.g., whether
Ai = 07 or \; = 07, and more generally on the order how the various fields go to 0.
The set of all equilibrium states forms a convex set and, in addition, it is a simplex
[2], so that every state can be written in an unique way as a convex linear combination
of certain extremal states, which are called pure states or pure phases. Pure phases are
characterized by the cluster property, or spatial decay of correlations, that is

<0i1 - 0§,04; - .O'jk> — <0i1 R Jin> <0'j1 .. .O'jk> . (43)

for
min |, — jp| = 00.
a,b

Usually, a first order phase transition is associated to the phenomenon of spontaneous
symmetry breaking. This means that, while the Hamiltonian of the model has a certain
symmetry (for instance, spin-flip or rotational symmetry), the equilibrium states possess
only a smaller symmetry group. This implies that the choice of the auxiliary external
fields, or equivalently of boundary conditions, which select the pure states, is suggested by
the symmetry of the model. For instance, if rotation symmetry is broken, the pure states
are selected by an infinitesimal uniform magnetic field which destroys space isotropy,
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and so on. Of course, applying the symmetry transformation to a particular symmetry-
breaking phase, one obtains another (physically different) equilibrium state.

As a last comment, recall that Gibbs’ phase rule usually holds, which states that, in
order that the system has n coexisting pure phases, one has to tune n —1 thermodynamic
parameters. For instance, in order to have coexistence of water and ice it is sufficient
to fix the temperature, for a given pressure, while the triple point of vapor-liquid-solid
coexistence requires to fix also the pressure.

In the case of spin glasses, the situation is much more complicated. Indeed, at low
temperature one expects the pure phases to be many (actually, infinite [6]), and not
related by symmetry transformations. In other words, there is phase transition but no
obvious broken symmetry. Recalling the discussion above, this means that it is not clear
a priori what should be the right boundary conditions, or external fields, which select the
pure states. Moreover, Gibbs rule is clearly violated, since one has an infinite number of
pure phases for a generic choice of the thermodynamic parameters.

One of the major achievements of Parisi theory of mean field spin glasses is that it
showed that the study of the spin glass phase transition can be led to the framework
of spontaneous symmetry breaking. However, due to the very peculiar nature of these
models, the broken symmetry is also very unusual. Indeed, one has to break the symmetry
under permutations for a group of n identical copies (replicas) of the system, in the limit
n — 0. Let me shortly give the idea of the method.

Recall that the main purpose of the theory is to compute the disorder average of the
free energy, defined in the previous chapter:

1
———FEInZy(B,h; J). 4.4
BN nZy(p ) (4.4)
The replica trick is based on the observation that the average of the integer moments of
Zy is easy to compute, and that

EZY —1

v (4.5)

FlnZy = lim

n—0

Notice that Eq. (4.5) requires not only knowledge of the integer moments of Zy, but
also of non-integer ones. The scheme one follows is to compute EZ}, for integer values
of n, and then somehow analytically continue it to real n. Finding the right analytic
continuation required long efforts and attempts at the beginning of the 80’s, until the
right strategy was proposed by Parisi. Computation of EZ} for n € N is equivalent
to calculate the average of the partition function of a system of n identical and non-
interacting copies (replicas) of the original system, subject to the same realization of

disorder: i
EZY(B,h;J)=E > ... > exp (—ﬁZHN<O'(a),h; J)) . (4.6)
a=1

{e®}  {om}
The average over disorder can be easily performed, since it involves only Gaussian inte-
grals, and one finds [6] an expression of the kind

236050 = [ ] (@Qu(N& /20 ep(-NAQD). (4

1<a<b<n
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where @ is a n X n symmetric matrix, with zeros on the diagonal, and A[Q)] is a functional
depending on @, n, 3, ..., whose explicit expression we do not report here. Equation (4.7)
suggests that the n-th moment of Zy can be computed through the saddle point method,
in the limit of N going to infinity. Once the saddle point has been found, the infinite
volume free energy is obtained as

.1
7B, 1) = lim == A[Qu) (4.8)

Owing to equivalence among replicas, which reflects into symmetry of A[Q] with respect
to permutation of rows or columns of the matrix (), the most natural idea is to look
for a replica symmetric saddle point, corresponding to a matrix ) whose non-diagonal
elements have all the same value ¢, the elements on the diagonal being zero. In this case,
the integral in (4.7) reduces to an ordinary integral over the real variable q. However,
when one performs the limit of zero replicas (4.8), one finds [6] an expression for the free
energy (the so called replica-symmetric approximation fsx (3, h) , which will be discussed
in the following) which is not physically acceptable in some region of parameters, since
it violates basic thermodynamic stability conditions.

Therefore, one has to look for a saddle point which breaks symmetry between replicas.
Notice that the number of independent parameters of the matrix @ is n(n — 1)/2, which
becomes negative when n — 0. In other words, one is looking for the relevant saddle
point of an integrand which depends on a negative number of variables. In a series of
remarkable papers [18]-[20], by means of a powerful Ansatz, Parisi proposed a form for the
saddle points, which is by now widely believed to be the correct one. We will not pursue
this idea here, and refer instead to Chapters 1-3 of Ref. [6] for a detailed discussion.

Rather, let us go back to our discussion about ordinary symmetry breaking, and
consider the Ising model which, as it is well known, at low enough temperature and zero
magnetic field has two pure phases, one with magnetization +m(/) and the other —m().
If one takes two typical configurations belonging to the same phase, one finds that their
overlap, as defined in Eq. (3.14), equals

d++ =4—— = m2(5)

while, for two different phases,
g4 = —m*(B).

This holds only in the thermodynamic limit, since for finite volume systems there can be
strictly speaking no symmetry breaking. Therefore, the distribution function of the over-
lap ¢12 between the configurations of two replicas, picked according to their Boltzmann
weights, is given in the limit of infinite volume by the sum of two delta functions

On the other hand, above the critical temperature there is just one pure phase, with zero
magnetization, and in that case

P(q) =4(q)- (4.10)
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This means that the analysis of P(q) allows to detect the phenomenon of non-uniqueness
of the state, without introducing symmetry-breaking external fields or boundary condi-
tions. For spin glasses, where there is no obvious symmetry to be broken, and conse-
quently no natural order parameter and associated field, the way to be pursued is to

compute )
P(q) = lim EP"
(@) = Jim EPP(g),
where P}N) (q) is the finite volume probability distribution of the overlap, for a given
disorder realization J. If the limit distribution P(q) is a single delta function (or a
sum of two symmetric deltas, in absence of magnetic field) then there is just one pure
state (respectively, two states related by spin-flip symmetry), and the systems is said
to be replica symmetric. If, on the contrary, P(q) has more than two peaks, or has a
continuous part, replica symmetry is said to be broken.

4.2 The functional order parameter and Parisi solu-
tion

Parisi theory gives a precise prescription on how to compute both the infinite volume free
energy per site and P(q), through the replica method. In the following of the present
chapter, we present the main results of the theory. To this purpose, we need some
preliminary definitions. Although all of this can be found, for instance, in [6], we use a
slightly different language. We refer to [51] and to the forthcoming paper [52] for a review
on Parisi theory, along these lines. First of all, let us introduce the convex space X" of
the functional order parameters x, as non-decreasing functions of the auxiliary variable
g, both x and ¢ taking values on the interval [0, 1], i.e.

X>5z:[0,1] 3 ¢ — z(q) €10,1]. (4.11)

Notice that we call x the non-decreasing function, and z(q) its values. We introduce a
metric on X’ through the L'(]0, 1], dq) norm, where dq is the Lebesgue measure.

Usually, we will consider the case of piecewise constant functional order parameters,
characterized by an integer K, and two sequences qq, q1,---,qx and mq, ma, ..., mg of
numbers satisfying

O=q¢g<q < <qgrg-1<gqx =1, (4-12)
0<m1§m2§---§mK§1, (413)
such that
z(q) =my for 0=g¢y <gq<aq,

x(q) = m2 fOl“ (I1 S q < q2> (414)

x(q) =mg for qr_1 <q<gk.

In the following, we will find convenient to define also mg = 0, and mg,1 = 1. The
choice of a piecewise constant order parameter corresponds, in the frame of Parisi theory,
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to consider replica symmetry breaking at a finite number of steps. For instance,
K= 2, g1 =4q, m = 0, my = 1. (415)

corresponds to the so called replica symmetric case. The case K = 3 gives the first level
of replica symmetry breaking, and so on.

Let us now introduce the function f, with values f(q,y;x, 5)*, of the variables ¢ €
[0,1], y € R, depending also on the functional order parameter z and on the inverse
temperature 3, defined as the solution of the nonlinear antiparabolic equation

(0,f)(q,y) + %(f”(q,y) +2(¢)f*(0,9)) =0, (4.16)
with final condition
f(1,y) = Incosh(By). (4.17)

Here, we stressed only the dependence of f on ¢ and y, and we put f' = 9, f and f" = ij.

It is very simple to integrate Eq. (4.16) when x is piecewise constant. In fact, consider
x(q) = ma, for q,_1 < q < qq, firstly with m, > 0. Then, it is immediately seen that the
correct solution of Eq. (4.16) in this interval, with the right final boundary condition at
q = qq, is given by

fla,y) = mi 1n/exp(maf(qa, Y+ 2V — q)) du(z), (4.18)

a

where du(z) is the centered unit Gaussian measure on the real line:

du(z) = \/LQ_W exp (-%2) dz.

On the other hand, if m, = 0, then (4.16) loses the nonlinear part and the solution is
given by

fla,y) = /f(qa, Y+ 2V — q) du(z), (4.19)

which can be seen also as deriving from (4.18) in the limit m, — 0. Starting from the
last interval K, and using (4.18) iteratively on each interval, we easily get the solution of
(4.16), (4.17), in the case of piecewise order parameter z, as in (4.14).

We refer to [52] for a detailed discussion about the properties of the solution f(q,y; x, 3)
of the antiparabolic equation (4.16), with final condition (4.17), as a functional of a generic
given z, as in (4.14). Here we only state the following

Theorem 1 The function f is monotone in x, in the sense that x(q) < Z(q), for all
0 <q <1, implies f(q,y;2,8) < f(a,y;2,8), for any 0 < ¢ <1, y € R. Moreover f is
pointwise continuous in the L'([0, 1], dq) norm. In fact, for generic x, T, we have

2 1
@) = faia5) < 5 [ lale) = o) d
q

*the reader should not confuse the function f(q,y; z, 8) with the free energy per particle f(3, h). Both
are denoted as f in the literature, and we do not wish to change conventions here.
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This result is very important. In fact, any functional order parameter can be approxi-
mated in the L' norm through a piecewise constant one. The pointwise continuity allows
us to deal mostly with piecewise constant order parameters.

Now we are ready for the following important definitions.

Definition 1 The trial auziliary function &, depending on the functional order parameter
x, 18 defined as

2 1
a(B. i) = 2+ f0, 1, 6) = 5 [ qsta)da (4.20)
0
Notice that in this expression the function f appears evaluated at ¢ = 0, and y = h,
where h is the value of the external magnetic field.

Definition 2 The Parisi spontaneously broken replica symmetry solution is defined by
a(B, h) = inf a(pB, h; x), (4.21)

where the infimum 1is taken with respect to all functional order parameters x.

The main prediction of Parisi theory is that, for the Sherrington-Kirkpatrick model,

—Bf(8,h) = lim %Eln Zn(B,h; J) = a(B, h). (4.22)

Moreover, Parisi gives the following interpretation to the functional parameter z, in
correspondence of which the infimum in (4.21) is realized':

2(q) = / " Plo)da. (4.23)

If replica symmetry holds, i.e., P(¢) = 6(¢ — G), the optimal order parameter is just a
step function which equals 0 for ¢ < ¢, and 1 for ¢ > §. As more and more steps appear
in the optimal functional order parameter x(gq), replica symmetry is said to be broken at
more and more levels.

There is an important point which deserves to be noticed. Eqs. (4.22), (4.21) show
that the infinite volume free energy f(/3, h) is obtained by maximizing the trial functional
—B7ta(B, h;x) over the space of functional order parameters. This has to be compared
with the usual variational principle of statistical mechanics [1], implied by the second
principle of thermodynamics, which states that the true free energy is obtained through
minimization of a suitable free energy functional on all possible trial states. More pre-
cisely, for any system at thermodynamic equilibrium (spin glasses included}),

(B, ) = inf(u(p) = B *sn (), (424

in the particular case h = 0, where the system is invariant under spin-flip, P(q) is symmetric and
Eq. (4.23) is replaced by z(g) = 2 [ P(¢q)dg. On the other hand, as soon as an arbitrarily small magnetic
field h is present, one expects P(q) to have support only on the interval [0, 1].

tWe are always considering systems of finite volume, so that relaxation to equilibrium is always
guaranteed.
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Here, p: 0 — p(0) is a generic state, i.e.,

p(o) >0

> olo) =1,

{o}

and u(p), s(p) are the corresponding internal energy and entropy, respectively:

un(p) = plo)Hy(o)
o)

sn(p) == _p(0)Inp(o).
{o}
As it is well known, it turns out that the infimum in (4.24) is realized in correspondence
of the Boltzmann-Gibbs state

plo) = Zy' exp(—BHy(0)).

Together, Eqs. (4.24) and (4.22) imply that, for any order parameter = different from the
optimal one, —371a(8, h;x) cannot be interpreted as the free energy associated to some
trial state. The rather mysterious maximization procedure in (4.22) is usually justified
[6] by pointing out that, in the limit where the number of replicas goes to zero, the
relevant saddle point in the computation of the functional integral (4.7) is the one which
minimizes the exponent and not the one which maximizes it since then, for n < 1, the
Hessian matriz has a negative number of negative eigenvalues. As we shall see in Chapter
6, recent results by F. Guerra [23] give a more firm ground to this procedure.

and

4.3 The phase diagram of the Sherrington-Kirkpatrick
model

It is very interesting to discuss the phase diagram of the Sherrington-Kirkpatrick model,
as emerging from Parisi theory. Let us discuss first of all the high temperature, or
high external field, region. To this purpose, define the Sherrington-Kirkpatrick order
parameter ¢ [16], depending on f3, h, as the solution of the implicit equation

qg= /tanhQ(ﬁh + B2y/q) du(z). (4.25)

In Ref. [53] it was proven that, for any § > 0 and h # 0, the solution of Eq. (4.25) exists
and is unique (the same result was found by R. Latala, in unpublished work). The high
temperature (or replica symmetric, or ergodic) region is defined by the condition [54]

2 1
’ /cosh4(5h+ B2v/a(B. 1) du(z) < 1. (4.26)
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In this region, the infimum in (4.21) is obtained’ in correspondence of a x(q) with the
simple step form

0 O0<g<ag
x<q>={1 vsazd (4.27)

In correspondence of this very simple expression for the functional order parameter, one
finds that the Parisi solution (4.22) is given by

2
asi(B,h) =In2+ /ln cosh(Bh + Bzv/q) du(z) + %(1 —q)°. (4.28)
This is just the so called “replica symmetric solution”, which was originally found in [16].
It is easy to see that the Sherrington-Kirkpatrick order parameter defined by Eq. (4.25) is
just the value which minimizes the expression (4.28), considered as a function of generic
g, in agreement with (4.21). The authors of [16] soon realized that the replica symmetric
solution cannot hold in the whole region of parameters f3, h, for basic thermodynamic
reasons, based on the positivity of the entropy. This is discussed in greater detail in
Section 6.5. Recalling Eq. (4.23) and (4.27) we find that, in the region where the replica
symmetric solution holds, the overlap does not fluctuate and its typical value is just §:

P(q) = 6(g —q)- (4.29)
The critical Almeida-Thouless line [54]
2 1

d =1 4.30

o /cosh4(5h T eJa ) ) (430)

is the boundary between the replica-symmetric region and the (low temperature) spin
glass phase, and marks the onset of replica symmetry breaking. Below? this line, replica
symmetry is broken at an infinite number of levels, i.e., the optimal z(q) is given by
the limit of piecewise constant functional order parameters, where the number of steps
tends to infinity, and of course their height and width go to zero. As a consequence, the
overlap probability distribution has support on a whole interval [g,,, ¢as]. A perturbative
computation of P(q) in the neighborhood of the Almeida-Thouless line is possible.

In the spin glass phase there exists an infinite number of thermodynamic states which,
in contrast with usual ordered systems, are not connected one to another by any sim-
ple symmetry transformation. However, the set of all pure states is characterized by a
very peculiar geometric structure (ultrametricity), which can be explained as follows: Let
a, B3, ... denote the different pure phases of the system and let ¢(®, ¢(® .. . be configura-
tions belonging to them. Then, for almost every choice (“almost” with respect to Gibbs
measure) of the configurations, the overlap

Qoy = Zafa)azh)/]\f (4.31)

Sactually, this has never been rigorously proven, although it is believed to be true.

T When we say “below” or “above the Almeida-Thouless line”, we think of the phase diagram where
we put S on the z-axis, and h on the y-axis as in figure 4.1, so that the region below the critical line
corresponds to low temperature and/or small magnetic field, and vice versa.




30 4. An overview of Parisi theory of Replica Symmetry Breaking

h 1 high temperature (replica symmetric) phase

Almeida-Thouless line

low temperature (spin glass) phase

0 p=1 B

Figure 4.1: The phase diagram of the Sherrington-Kirkpatrick model and the Almeida-
Thouless line.

will assume the same value

Goy = Y m“m{V/N, (4.32)

where mga) is the thermal average of o; in the state a. Now, introduce the following very

natural notion of distance between two states:

1 1
2 — @ _ 2 = (@) _ ()2
=yl = = 5 3o = ) (433)
It follows from Parisi theory that
_ 1 @)? _
does not depend on the state «, so that we can write
d?yy = 2(QEA - Qa'y)- (435)

The property of ultrametricity states that, for any choice of three pure states, the resulting
triangle is either equilateral or isosceles with respect to the metric d,s and, in the latter
case, the different side must be the smaller one. Clearly, ultrametricity is stronger than
the usual triangular inequality.

It is important to stress that ultrametricity follows from the Parisi Ansatz for the
relevant saddle point in (4.7), and therefore in a sense is assumed from the beginning.
On the other hand, no one has so far proposed a different expression for the saddle point,
which has no underlying ultrametric structure, and which allows to perform the limit
to zero replicas as in (4.8). Even the cavity method [55], [6], which is considered as an
alternative to the replica trick, and which leads to the same results, assumes ultrametricity
from the beginning.
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Parisi theory of Replica Symmetry breaking, proposed around twenty years ago, is by
now fully accepted from the theoretical point of view and widely supported by numerical
simulations. However, a mathematical justification is still lacking. On one hand, the
replica trick involves not well defined objects like 0 x 0 matrices and functions of a
negative number of variables. On the other hand, many rigorous results, among which
those discussed in the next chapters, provide a strong support to Parisi theory for mean
field spin glasses, and in all cases where a full rigorous analysis was possible, its predictions
have been confirmed.






Chapter 5

Existence of the thermodynamic
limit

5.1 Introduction

As always in statistical mechanics, also for spin glasses the main object of interest is
the free energy per site, from which one can compute all equilibrium thermal averages,
by performing derivatives with respect to the suitable thermodynamic parameters like
temperature, magnetic field and so on. Of course, the first question one may ask is
whether the free energy per site has a unique limit when the size of the systems grows to
infinity, or if it depends on the particular sequence of system sizes one chooses to reach
the thermodynamic limit. For ordinary non-random translation invariant systems with
short range interactions, it is well known [2] that the limit is unique. The strategy of
the proof consists in dividing the system into large sub-systems, and showing that the
energy of interaction among the sub-systems is a surface effect which can be neglected
with respect to the bulk energy. This implies that the free energy per site stays essentially
the same, when the size of the system is increased. In mean field models, on the other
hand, this approach does not work. The reason is that, owing to the infinite range
of the interaction, what should be surface terms are actually of the same order as the
bulk terms. For this reason, the problem of proving the existence of the thermodynamic
limit for mean field spin glass models, independently of an explicit computation of the
limit itself, has been considered open until very recent times. In a joint work with F.
Guerra [22], we solved this problem by means of a very simple but general strategy,
based on a smooth interpolation between a large system, made of N spin sites, and
two similar but independent subsystems, made of N; and N, sites, respectively, with
N; + Ny = N. The main result is that, for a very large class of mean field spin glass
systems, which includes most of the models introduced in Chapter 3, the limit exists
and is unique. This holds both for the quenched average of the free energy per site, and
for the disorder dependent one, for almost every disorder realization. It is important
to emphasize that this is true not only in the high temperature region, where the limit
can be explicitly computed, but for any value of the thermodynamic parameters. By
simple thermodynamic considerations based on convexity of the free energy, we were

33
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able to extend these results to the thermodynamic limit of the ground state energy.
Subsequently, the existence of the infinite volume limit has been extended by Contucci et
al. [56] to include also the REM and GREM, and by Franz and Leone [57] to the finite
connectivity (or diluted) spin glasses (see Section 3.4 of the present work).

We begin by recalling the usual strategy which works for short range random and
non-random systems. This is very instructive, since it shows what goes wrong in the
case of mean field models. Then, after discussing the self-averaging property of the free
energy, we present our main results about the existence of the limit for the Sherrington-
Kirkpatrick and p-spin model, together with some extensions to more general mean field
spin glass systems with non-Gaussian couplings and non-Ising spin degrees of freedom,
which we obtained in later work [58].

5.2 The thermodynamic limit for short range models

5.2.1 Non-random systems

In ordinary translation invariant non-random systems with short range interactions, it is
simple to show that the free energy fn(5) = —1/(NpS) In Zy has a well defined limit for
N — oo [2, 3]. For simplicity, we consider the particular case of the d-dimensional Ising
model with nearest-neighbor interaction. Given a finite subset A of the lattice Z?, the
Hamiltonian of the system is

Al

Hy(o,h) =—J Z 00 — hZai, (5.1)

li—j|=1 i=1

where the first sum is performed over all couples of neighboring spins belonging to A,
and |A| denotes the number of sites contained in the considered portion of lattice. We
consider the particular case of free boundary conditions but, as we have already stated,
the infinite volume free energy does not depend on the particular choice of boundary
conditions. In the course of the proof we need the following inequality. Let H/(xl), Hl(f) be
two generic Hamiltonians defined on the same finite set A of Z?, and f ,(\1)(6), /(\2)(5) the
corresponding finite volume free energies per site. Then,

1708) - £28) < A IHY - BHY|, (5.2)

where ||H,|| is defined as the maximum value of |Hx(o)| over all spin configurations in
A. This can be easily obtained as follows. For every configuration o we have

o BIHD D ~BHD(0) < ~BH(0) < BIHY D ,~BH (0) (5.3)

which, after summing over all configurations and taking the logarithm, yields (5.2). Now
consider domains A of increasing size, and in particular hypercubes of side L, = 2%, with
k € N. We let Hy, fr(5) denote the Hamiltonian and the free energy for such hypercubes,
for a given inverse temperature 3. Dividing the hypercube of side L; into 2¢ hypercubes
of side L;_1, one has

Ho=H,, +H=HY +. . +H*) + i (5.4)
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where H ,EZ_)I refers to the sub-system 7, and H' contains the interaction terms between
spins belonging to different sub-systems, so that H, ; is the Hamiltonian of the system
where the 2¢ hypercubes do not interact. In absence of H', the free energy would equal
fni(B,h) = fr_1(B, h) (it suffices to observe that the partition function factorizes in the
product of the partition functions for the different sub-systems, and that the interaction
is translation invariant). Therefore, inequality (5.2) implies

HI
1H] <d|J|27%, (5.5)

|fk(3)h) - fk*l(ﬁah’)‘ < odk =

since H' is the sum of d2*(4~1) terms, each of which equals |.J| in absolute value. By
repeatedly applying (5.5), one finds that for any positive integer m,

| form(B, 1) = fo(B,R)| < dJ| Y 277 =d|JJ27F, (5.6)

j=k+1

so that fi(B,h) is a Cauchy sequence and admits a limit for £ — oo, for any S, h. It is
also easy to show that the same limit for fo(3, h) is obtained for an arbitrary sequence of
hypercubes with edges increasing to infinity or, more generally, for domains A of arbitrary
shape, growing to infinity in the sense of van Hove [2].

The finite range of the interaction is not really essential in the above argument, and
actually it is enough to require that the potential is translation invariant and summable
[2], i.e.,

> il < +oo. (5.7)

JEZL

5.2.2 Random systems

The main ingredients of the above proof are the short range character of the potential,
which allows to neglect, in the thermodynamic limit, the surface interaction among the
sub-systems with respect to the bulk energy, and translation invariance. Both properties
are lost in the case of mean field spin glass models. However, for finite-dimensional spin
glasses, where the interaction has short range and the disorder distribution is translation-
invariant, the proof essentially still works. The idea is again to divide the system into
large blocks, which interact weakly owing to the short range character of the potential.
The free energies of the different blocks can be therefore approximately considered as
independent identically distributed random variables and the existence of the large N
limit of the free energy per site follows from the strong law of large numbers [13]. This is
essentially the method followed, for instance, in [59]. See also [60] for a very interesting
generalization to non-summable random potentials.

For pedagogical reasons, we follow here a somewhat different strategy, which allows
us to introduce some of the techniques we will employ in the following. For simplic-
ity, we outline the proof of the existence of the thermodynamic limit in the case of
the nearest-neighbor Gaussian Edwards-Anderson model [26] (see also Chapter 2 of the
present work), which models a finite dimensional spin glass, and which is defined on Z?



36 5. Existence of the thermodynamic limit

by the Hamiltonian

|Al

HY Z Jijoio; — hZUZ

li=jll=1

The J;; are independent identically distributed standard Gaussian variables and, as in
(5.1), the sum runs over all couples of neighboring spins contained in the finite domain A.
As regards the quenched free energy, the proof of the existence of the limit is analogous to
the one we presented for non-random systems, thanks to the translation invariance of the
disorder distribution: Fix a disorder realization .J and divide, as before, the hypercube
of side Ly = 2F into 2¢ hypercubes of side 271, In analogy with (5.5), the estimate (5.2)
implies
!

B s ) - dsz (.| < ML 5.9

’ — 9dk

Notice that, since the disorder reahzatlon is fixed, the system is not translation invariant,
so that the free energies of the various sub-systems do not coincide. However, this problem
disappears when one is interested in the disorder average of the free energy, since

EfD (B, hJ) = foi(Bh) Vi=1,...,2% (5.9)

Therefore, from (5.8) one has

[fu(B,h) = fia (B, R)] < 27" B ||H'|| < d27"E|Jy| = d\/ng, (5.10)

and the proof goes on exactly like after Eq. (5.5), with the result that the limit

EInZy (B,h;J) = f(B,h) (5.11)

exists, for any value of 5 and for any sequence {Ay} of increasing hypercubes. From Eq.
(5.11), one can deduce almost sure convergence, i.e.,

1
— lim ——=InZy (5,h;J) = f(B,h) J — a.s. (almost surely), (5.12)
provided that one knows that the fluctuations of the disorder dependent free energy

1
Ia(B;J) = =2 In Zx(B; J)
A8
vanish sufficiently fast for |A| — oo (for an alternative approach, based on the ergodic
theorem, see [60]). To this purpose, we anticipate a result from next section, and we state
the following

Proposition 1 For any value of B, h and for any finite subset A C Z¢, the probability of
the fluctuations of the free energy per site can be estimated as follows:

o ) <z (-A). g

—IHZA(ﬁ, h; J)

|A|/3
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Results of this kind, known as concentration of measure inequalities, have been widely de-
veloped and employed by probabilists, in the more general context of Gaussian processes.
We refer to the beautiful paper [61], for some early results and general motivations for
concentration of measure inequalities, in the context of probability in Banach spaces. For
later generalizations, we refer to [62], [63], [14], [15]. Concentration of measure techniques
have been widely and successfully employed, in the framework of mean field spin glass
theory, especially by M. Talagrand, as witnessed for instance in [9] and in the forthcoming
book [11].

The above Proposition can be obtained as a particular case of Theorem 2 of next
section. Now, we want to show how Eqs. (5.13) and (5.11), together, imply the almost
sure convergence (5.12) to a non-random limit. To this purpose, we recall a very impor-
tant result from probability theory, namely, Borel-Cantelli lemma [13], which states the
following:

Lemma 1 (Borel-Cantelli) Let (2,%, i) be a probability space with c—algebra ¥ and
probability measure p, and consider a sequence of events A, € Q, n=1,2,..., such that

D nu(A,) < oo (5.14)
n=1
Then,
plw € Q:w e A, for infinitely many indicesn) = 0. (5.15)

Going back to the problem of proving (5.12), for any arbitrary ¢ > let ko be such that

Fn(B.1) = F(B.1)| < 5

for k& > ko, where f,, is the finite volume average free energy corresponding to the
hypercube Ay, so that

P (‘ i wanAk(ﬂ hyJ) — f(B, h)‘ > s) (5.16)

Asle?
<P (|- o) - (5] 2 22 < e (<57,

Since the right hand side is summable in &, Borel-Cantelli lemma implies that, J-almost
surely,

‘ 1

|AK|B

definitively in k. Now, consider a countable sequence {¢,}, such that ¢, | 0 for n — oo.

Since the intersection of a countable sequence of sets of measure one has still measure
one [13], one deduces, for almost every J, the pointwise convergence (5.12). O

In Z, (8, h; J) — (B, h)‘ <e
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5.3 Self-averaging of the free energy

At this point, we abandon short range models and revert to mean field spin glasses. Even
though the problem of proving the existence of the thermodynamic limit of the free en-
ergy remained open for a long time, it was nevertheless soon noticed that its disorder
fluctuations vanish when the system size grows to infinity. Of course, this is not enough
to show convergence, since the mean value could oscillate as N grows. When a physical
quantity, such as the free energy per site, does not fluctuate in the limit of N large, it is
said to be self-averaging. In ordinary statistical mechanics, one expects intensive quanti-
ties, such as the magnetization or the energy per site, to be self-averaging, with respect
to thermal fluctuations. This holds for a generic value of the thermodynamic parameters,
i.e., away from phase transition points. In spin glass systems the situation is somewhat
different [6] and one expects some quantities (like magnetization and internal energy)
to be self-averaging, and others, in particular the overlap between the configurations of
two replicas, to fluctuate even in the thermodynamic limit, at low temperature. This
latter phenomenon is an indication of the occurrence of Replica Symmetry Breaking, as
we explained in Chapter 4.

Self-averaging of the free energy for the Sherrington-Kirkpatrick model was first
proved by Pastur and Scherbina [64] by using martingale techniques. Their result is

B (% In Zy (8: J)>2 - (%E In Zy (8; J))2 < % +0(1/N?), (5.17)

for some constant C. Later, Guerra [44] made this estimate more precise, by showing
that

The self-averaging property of the free energy can also be proved in a different con-
text, i.e., by using exponential inequalities and concentration of measure arguments, as
discussed briefly in the previous section. This method allows to show that fluctuations
of the free energy from its disorder average are suppressed exponentially in the system
size. For later convenience, we give a somewhat more general result, and we prove it by
a method very similar to the one followed by Talagrand in [9].

Theorem 2 Consider the family of Gaussian random wvariables Hy (o3 J), with o €
{—=1,+1}", characterized by the mean value

by(0) = EHy(o;J) (5.19)
and covariance matrix
en(o,0') = E(Hy(0;J)Hn(0";J)) — EHy(o; J)E Hy(0'; J), (5.20)

and suppose that
len(o,0)| < NL VYo, N. (5.21)
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Then, for any B and any non-random set Ay in the configuration space {—1,+1}", one
has

N 2
P (‘_NL,B In Zy(8;J) + NLﬁEm Z5(B; J)‘ > u> < 2exp (-%) : (5.22)
where
Z(B;J) = exp(—BHy(o;J)) (5.23)

oCAN

1s the modified disorder-dependent partition function, with the sum over configurations
restricted to Ay.

Of course, we will be often interested in the case where Ay coincides with the whole
configuration space {—1,+1}".
Proof) We rewrite the Gaussian variables Hy(o; J) as

Hy(o;J) = &n(0) + bn (o), (5.24)
where, of course, £y(0) is a centered Gaussian random variable, and
E(&n(0)én(0")) = en(a, o).
Given s € R, we define
en(t) =InEiGn(t) = InEyexp (sB87 ' ExIn Zy(2)) , (5.25)

where the interpolating parameter ¢ varies between 0 and 1, and Z4(t) is the auxiliary
partition function

Zy(t) = Zy(t; Ji, )2, B) (5.26)
= ) exp(—pViEN(0) — BVT — &5 (0) — Bby(0)).

Here, £(0) and &% (o) are two independent copies of the random variable ¢y (c), with
the same distribution, and F;, F5 denote average with respect to ¢! and &2, respectively.
For simplicity of notation, we let

_ exp(—BvIEk (o) — BVT—1€4(0) — Bbn (o))

prlt) = Z0

denote the modified Boltzmann weight.
It is very simple to check that

en(1) —en(0) =InEexp s87' (InZy(B) — Eln Zy(B)) . (5.27)

Next, we compute the ¢ derivative of py(t), and we find

5 JEAN%]IVU_%%VU N(t, 0
SO'N(t):—mEl{GN(t)EQZ Ghhio) ol >}‘




40 5. Existence of the thermodynamic limit

An application of the integration by parts formula
Ex;F({z}) =Y E(xix;)E0, F({x}) (5.28)
J

which holds for any family of Gaussian random variables {z;} and any smooth function
F| gives
v = —> g la "E E /
en(t) = m 1 ~(t) Z cn(0,0")Eapn (t, o) Eapn (t,0') ¢ .

o,0'€AN

Thanks to the bound (5.21), one has
s Ns*L

v (@) < 5 max|en(o,0')] < —5 (5.29)
Here, we have used the fact that, thanks to Cauchy-Schwarz inequality,
len(o,0") < en(o,0) en(o’,0") < N2L2.
Therefore, using Eq. (5.27) and the obvious inequality
e|:c| <e® _i_ef:c,
one finds
1 1 ’NL
Eexp <N|s\ il ZA(8; ) - ek Z4(8; J)D < 2exp (3 ) . (5.30)

By Tchebyshev’s inequality,

P ( = L ) (5.31)

Np Np
and, choosing the optimal value |s| = u/L, one finally obtains the estimate (5.22). O
Theorem 2 is of very wide applicability for Gaussian models, since it relies only on
the very natural hypothesis (5.21) that cy(o,0)/N is bounded. For instance, for the
Sherrington-Kirkpatrick model defined by (3.1) one finds at once that

s°NL

In Zy(B3; J) —

Eln Z3(5 J)‘ > u) < 2exp (—N|s\u +

qur’
2 )

en(o,0)=N

so that .
L —_ 5.
To conclude this section, we wish to warn the reader that the estimate of Theorem
2, though usually very useful, is not always optimal. Indeed, it states that free energy
fluctuations are at most of order 1/ VN, irrespective of whether the system is at high or
low temperature. On the other hand, in the case of zero external field and § < 1 Eq.
(5.18), together with the fact that (¢%,) = O(1/N) (see [6], and also Section 7.2 of the
present work), shows that the free energy fluctuations are actually of order 1/N. This
was already noticed in [65] and later in [66], where the authors employed techniques of

stochastic calculus, quite different from those we use here.
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5.4 The interpolation method and the existence of
the limit for the Sherrington-Kirkpatrick model

With this section, we begin to report the results obtained, in collaboration with F. Guerra,
about the existence of the thermodynamic limit for mean field spin glass models. The
results are partly contained in the two papers [22], [58], and partly are unpublished work,
which will appear on a forthcoming paper [67]. For clarity, we proceed step by step,
introducing our strategy first for the Sherrington-Kirkpatrick model, which is technically
the simplest one, and then extending it to a wider class of mean field models.

5.4.1 A preliminary exercise: the Curie-Weiss model

For pedagogical reasons, we find it instructive to start with the exactly solvable and
non-random Curie-Weiss model. This allows us to present, in a very simple context, the
method of interpolation between Hamiltonians, which we introduced in [22]. Let us recall
the Curie-Weiss Hamiltonian, which is given by

HGW(o,h) = == ZO’ZO'] hZaZ (5.32)

1,j=1

Here, the coupling strength .J is a positive constant, and A is as usual the magnetic field.
For a given inverse temperature (3, and defining the magnetization per spin, corresponding

to the configuration o, as
N
1
== o, (5.33)
N

the partition function can be rewritten as

h) =Y exp NB(Jm*(c) + hm(0)). (5.34)
{o}
Now divide the /N spin system into two subsystems of N; and N, spins each, with Ny +
N, = N. Denoting by m (o), ma(c) the magnetization corresponding to the subsystems,
i.€.,

Ny
1
= — i 5.35
mi)= 5 20 (539
1 N
ma(o) = — > o, (5.36)
Ne S
one sees that m(o) is a convex linear combination* of m4 (o) and ms(0)
N N.
m@zﬁm@+ﬁm@. (5.37)

*recall that y is a convex combination of z; and x5 if

y=0x1+ (1—0)xs,
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Since the function  — 22 is convex, one has

Zn(Bh) < Y exp(BI(Nimi(0) + Nomi(0)) + Bh(Nima (o) + Nams(0)))

{o}
= ZN1 (B,h)ZN2(ﬁa h) (538)
and .
NfN(/Bah) - _BanN(ﬁah) 2 leNl(67h) + N2fN2(Bah)' (539)

In other words, the free energy is superadditive in the system size, and the existence of
the limit follows from standard methods [2]. For a different but equally simple method
to prove the existence of the limit for the Curie-Weiss model, see Section 2 of Ref. [68].

Unfortunately, the very simple approach we illustrated above cannot be applied to
the Sherrington-Kirkpatrick model, where the randomness of the couplings prevents us
from exploiting subadditivity directly on the Hamiltonian Hy. However, there exists an
alternative and related strategy, which allows in some sense an extension to mean field
spin glass models. The main idea is to interpolate between the original systems of N
spins, and two non-interacting systems, containing N; and N, spins, respectively, and
to compare the corresponding free energies. To this purpose, consider the interpolating
parameter 0 < t < 1, and the auxiliary partition function

Zn(t) = Z exp B (NtJm?(o) + Ni(1 — t)Jm3(0) + Nao(1 — t)Jm3(c) + Nhm(o)) .

{0}
(5.40)
Of course, for the boundary values ¢ = 0,1 one has
— L Zy(1) = fx(8,h) (5.41)
NB N — JN\M> .
1 N N.
~N 20 = (B 1) + (B, h) (5.42)
and, taking the derivative with respect to t,
d 1 N N.
~E NG InZy(t) = —J Q <m2(a) - Wlmf(a) - Wzmg(a)) >0, (5.43)

where Q(.) denotes as usual the Boltzmann-Gibbs thermal average. Therefore, integrating
in ¢ between 0 and 1, and recalling the boundary conditions (5.41), one finds again the
superadditivity property (5.39).

The interpolation method, which may look unnecessarily complicated for the Curie-
Weiss model, is actually the only one working in the case of mean field spin glass systems.

for some 0 < § < 1. By definition, for any convex function z — f(z), one has

fOz1+(1—=0)z2) <6 f(x1) + (1 —0) f(z2).
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5.4.2 The Sherrington-Kirkpatrick model

Let us explain the main idea behind our method. As for the Curie-Weiss model, we divide
the N sites into two blocks Ny, Ny with N; + Ny = N, and define

Zexp (5\/7 > Jwazo]—i-/i’\/i Y Jhoio;  (5.44)

1<i<j<N 1<1<j< Ny
Lo J! h
/B N 0-10] exp B 0'1,
2 Ni<i<j<N

with 0 <t < 1. The external disorder is represented by the independent families of unit
Gaussian random variables J, J' and J”. Notice that the two subsystems are subject
to a different external disorder, with respect to the original system but, of course, the
probability distributions are the same. As in the case of the Curie-Weiss model to in-
terpolate between the original N spin system at ¢ = 1 and a system composed of two
non-interacting parts at ¢ = 0, so that

Zn(1) = Zn(B, h; J) (5.45)
Zn(0) = Zn, (B, hi J') Zn, (B, s T”). (5.46)
As a consequence, we have
ElnZyx(1) = —=NBfn(5,h) (5.47)
EnZy(0) = N1 8w (B, h) — NaBfy (B, ). (5.48)

By taking the derivative of —1/(NS)E In Zy(t) with respect to the parameter ¢, we obtain

d 1 1

———FInZ =
"t = 2N (V 1<2<J<N

4 NG Jijwi(oi05) (5.49)

Z Jijwi(0i05) — —————= Z J{;wt(aiaj)>
\/ Nl 1<i<j<Ni V (1- t)NZ N1<i<j<N

where w,(.) denotes the Gibbs state corresponding to the partition function (5.44). A
standard integration by parts on the Gaussian disorder, as done for example in [6], [44],
gives

d 1 ﬁ 2 B 2
S EZy(t) = ——= S E(l—wi(0i0) + o > E(1— w00,
dt N/B n N( ) 4N2 by ( wt (O-ZO-])) + 4NN1 = ( wt (O-ZO-]))
B
+4NN2 | EN E(1 - wj(0i0;)) (5.50)
%] 1+1

B M Na o (2
= J(dh -y -5 @)?). (5.51)
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where we have defined

Ny
Nigly) = olo? (5.52)
=1
N
Nogly = > olo? (5.53)
1=N1+1

as the partial two-replica overlaps, corresponding to the first (respectively, second) sub-

(1) (2)
2

. . . . . 1 .
system. Since g;5 is a convex linear combination of ¢;, and g5 in the form

Nl 1 N2 2
G2 = 37 CI§2) + N CI§2),

due to convexity of the function  — 2, we have the inequality

N, N,
<Qf2 — W(qg))Q — W(qg))2> <0.

Therefore, we can state our first preliminary result.

Lemma 2 The quenched average of the logarithm of the interpolating partition function,
defined by (5.44), is increasing in t, i.e.

d 1
- <0. .
dtNBEanN(t) <0 (5.54)

By integrating in t and recalling the boundary conditions (5.47), we get the first main
result.

Theorem 3 The following subadditivity property holds

N fn(B,h) < Ny fn, (B,h) + No f, (B, h). (5.55)

Of course, due the minus sign in (3.3), we have superadditivity for the auziliary function

OKN(ﬁ, h)

It is interesting to compare this result with the corresponding Eq. (5.39), which holds for
the Curie-Weiss model. In that case, free energy is superadditive rather than subadditive.

The subadditivity property gives an immediate control on the infinite volume limit,
as explained for example in [2]. In fact, we have

Theorem 4 The infinite volume limit for fx(5,h) does ezists and equals its inf:

limf(8,h) = inf [y (B, ) = [(B, ). (5.56)
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5.4.3 Thermodynamic limit for the ground state energy

For finite N and a given realization J of the disorder, define the ground state energy
density —en(J, h) as

1
—en(h;J) = N iI;fHN<O,h; J). (5.57)

The minus sign in (5.57) simply guarantees that ex(h;.J) is positive. Numerically, one
finds that ex(h;J) approaches a well defined limit when N grows, and in particular
ex = 0.763... when the magnetic field is zero [6]. Numerical computation of the ground
state energy is quite hard, since any search algorithm which tries to minimize the energy
by changing one or a few spins a time, tends to get stuck very soon in metastable states,
which are stable under a single spin-flip, but have an energy higher than that of the
ground state.

Here we show, using simple thermodynamic properties, that Eq. (5.56) of Theorem 4
implies the existence of the thermodynamic limit for E ey (h; J). First of all, notice that
the bounds

eBNen (hiJ) < Ze—ﬂHN(U,h;J) < N BNen (h;J) (5.58)
{o}
hold for any .J, N, 3, h, so that
In Zn (B, h; J) In 2
n< ——m= — : < —. .
< T e <7 (5.59)
The bounds (5.59), together with the obvious
InZ h; J
aﬂm <0, (5.60)
B
which is equivalent to positivity of the entropy!, imply that
Of course, by taking the expectation value in (5.59) and defining
en(h) = Een(h; J),
one also finds
Tim fu(8.h) T —en(h) (5.63)

Therefore, by taking into account the subadditivity (5.55), the inequalities (5.59), and the
existence of the limit f(5,h) for fx(5,h), we have from (5.63) the proof of the following

tIn fact, it is easy to check that

M = ,8_12 Zp(a) In p(o) <0, (5.61)

{c}

o

where
0< plo) = Zy' exp(—BHn (0, h; J)) < 1.
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Theorem 5 For the quenched average of the ground state energy we have the superaddi-
tivity property
N@N(h) 2 N1 eNl(h)+N2€N2(h). (564)

and the existence of the infinite volume limat

lim ex(h) = sgjp en(h) = eo(h). (5.65)

N—o0

Finally, we can write the limit eg(h) in terms of f(5,h) as

Jim J(8,h) 1 —eo(h). (5.66)

5.4.4 Almost sure convergence

After proving the existence of the thermodynamic limit for the quenched averages, we
can eagsily extend our results to prove that convergence holds for almost every disorder
realization J, as we did for the short range models of Section 5.2.2. In fact, we can state

Theorem 6 The infinite volume limits

_]\}EHOON—ﬁanN(/B h; J) = f(B,h), (5.67)

exist J-almost surely.

For the proof of (5.67), one proceeds exactly as for the random short range models,
employing the asymptotic vanishing of free energy fluctuations (5.22), with L = 1/2, and
Borel-Cantelli lemma. As regards the ground state energy one notices that, thanks to
Eqgs. (5.62) and (5.63), letting 5 — oo one has

P(lex(h;J) —en(h)| 2 u) = lim P _—anN</B h; J) — fn(B,h)| > u
B—o0 Nﬁ
< 2exp(—Nu?). (5.69)
Again, Borel-Cantelli lemma implies (5.68), and the theorem is proven. O

It is easy to realize that all the results of this section hold also in the case where on
each spin o; acts a random magnetic field h;, where the h;’s are independent identically
distributed random variables. In fact, the one-body (random) interaction

Ny N
—Zhaz— Zhaz— Z h;o;
i=1 i=N1+1

produces no additional interaction between the two sub-systems of size N; and Ns.
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5.5 Generalization to other mean field spin glass mod-
els

In this section, we show how the above results on the (almost sure) existence of the
thermodynamic limit for the free energy and for the ground state energy can be extended
to other mean field spin glass models. In the first place, we can immediately extend
the above approach to the Derrida p-spin model introduced in Section 3.3, for even p.
Secondly, we can allow the couplings to be non-Gaussian random variables, provided
that suitable bounds are imposed on their moments. Finally, we consider more general
models, where the spin degrees of freedom are not necessarily two-valued Ising variables.
The contents of this Section are based on results obtained in collaboration with F. Guerra
in [22], [58].

5.5.1 The p-spin model

We turn first of all to the Derrida p-spin model introduced in Section 3.3, and we consider
only the case of even p. As we did for the Sherrington-Kirkpatrick model, we define the
auxiliary partition function Zy(¢), in analogy with (5.44), by just replacing the two-body
with a p-body interaction. By taking the ¢ derivative, we find after integration by parts

d 1 N N:
Pz = 5 (- Ry - 2y ) + o)
< O(1/N), (5.70)

for p even, by the same convexity argument as before, since the function ¢ — ¢? is convex.
It is easy to realize the reason for the appearance of the terms O(1/N). In fact, for p = 2,
we can write

= X B(-uon) = 5 3B -wio) = (- (), (1)

as already exploited in (5.50). On the other hand, for p > 2 one has

]i)f—; Z E(1-wi(0j,...04)) (5.72)

1<i1<...<ip<N
N

= > B(—ui(oi.o,)) + O(U/N) = (1= (gh)) + O(1/N)
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From (5.70) one finds, as in the previous section, the existence of the infinite volume
limits

lim f7(8,h) = fP(8,h) (5.75)
Jim e (h) = € (h) = — lim f*)(5, h). (5.76)

The proof of almost sure convergence, both for the free energy and for the ground state en-
ergy per site, presents no additional difficulty with respect to the case of the Sherrington-
Kirkpatrick model. In fact, for the p-spin model the covariance matrix defined in (5.20)

equals
qga’

en(o,0') = NT +o(1),
and Theorem 2 holds with L = 1/2.

Unfortunately, our proof does not extend directly to the case of odd p, since in this
case the function ¢ — ¢” is not convex, for negative values of q. However one expects
that the overlap between two configuration is non-negative with probability approaching
one, when N tends to infinity. This is in contrast with the case of p even, where the
system is invariant under global spin-flip symmetry, and the distribution of the overlap is
symmetric. It is interesting that M. Talagrand proved [48] that, for odd p large enough,
the probability distribution of the overlap has support in [0, 1], asymptotically for N
large, and the probability that a couple of configurations o', 02 has overlap ¢ < 0 tends
to zero. Moreover, in a very recent still unpublished work [11] he generalized the result
to a generic odd value of p. For a more precise statement, see the forthcoming book
[11]. As a consequence, modulo some minor technical modifications, the existence of the
thermodynamic limit for the free energy and ground state energy of the p-spin model
follows from (5.70), also for odd p.

fit is easy to see that the term O(1/N) in (5.70) does not spoil the argument leading to the existence
of the thermodynamic limit. More generally, if

N N.
fN < Wlle + WQfNQ + C/N‘Ya (573)

with C,~v > 0, then the limit exists. Indeed, fix z1 2 = Ny 2/N, and rewrite C/N" as

C _NMa Nya a
N NN/  NN; N7

where
1—y 1—y -t
a=C (3:1 +x5 T — 1) .

In this way, Eq. (5.73) gives
N; N.
I +a/NY < 2 (v +a/N]) + 2 (fv, +a/NF). (5.74)

The existence of the limit for fy +a/N7, and therefore also for fy, follows from the usual subadditivity
argument.
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5.5.2 Non-Gaussian couplings

In Section 3.4, a comparison was made between infinite and finite connectivity mean field
spin glass models, and it was stated that they can be characterized, in probabilistic terms,
as Gaussian and non-Gaussian processes on {—1,+1}", respectively. In the present
section, on the other hand, we deal with infinite connectivity models (essentially, the
Sherrington-Kirkpatrick and p-spin models), where the couplings between spins are non-
Gaussian random variables. In this case, of course, the Hamiltonian Hy(o;J) is also
non-Gaussian. This, however, does not contradict the above statement. In fact, for N
large, Hy(o; J) is the sum of many (for the Sherrington-Kirkpatrick model, N(N —1)/2)
independent identically distributed random variables, each having a small weight (of the
order 1/v/N, for the Sherrington-Kirkpatrick model), so that Hy/v/N has a Gaussian
distribution, for N going to infinity, as guaranteed by the central limit theorem? [13].
As we shall see, the precise probability distribution of the couplings is inessential for N
large, provided that certain conditions of symmetry and finiteness of the moments are
satisfied.

That the probability distribution of the couplings J;; should not influence the thermo-
dynamic limit of the model was already clear to the authors of [17], and was rigorously
proved by Talagrand [69], in the particular case of two-valued quenched variables J;;,
which assume the values +1 with equal probability 1/2. Of course, the probability dis-
tribution of the couplings J;; is expected to have an effect on the disorder fluctuations
of the various physical quantities, and on finite size corrections to the thermodynamic
limit. Here, we extend Talagrand’s result to more general conditions, thereby extending
to these models the proof of the existence of the limit. While this presents no difficulty
for the quenched free energy, the proof of almost sure convergence requires an extension
of inequality (5.22), which expresses exponential self-averaging of the free energy and
which, the way it is stated, holds only for Gaussian models.

Consider the p-spin model (which, for p = 2, reduces to the Sherrington-Kirkpatrick
model) defined by the Hamiltonian

N
( P
Hp (0,h;n) ZNP1 Z Miy..iyTiy - - - iy — h;ai. (5.78)

1<91 <. <p <N

and suppose that the couplings 7;, ;, are independent identically distributed random
variables, with a symmetric distribution and finite fourth moment, i.e.,

P(iy..ip) = P(=iy...i,) (5.79)
B, ., < 00, (5.80)

§for instance, one can check directly that

EH?V(O'v h; J) - 3(EHIZV(07 h? J))2
N2

= O(1/N), (5.77)

where Hy (o, h; J) is the Sherrington-Kirkpatrick Hamiltonian, and the couplings J;; are independent
identically distributed symmetric random variables with finite moments. Similar relations hold for the
higher order moments of Hy/v/N, which therefore tend to the moments of a Gaussian variable with
variance EH% (o, h; J)/N = 1/2.
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Moreover, we assume the disorder variables to have unit variance,
E(n; ) =1, (5.81)

as in the Gaussian case. This last assumption is just a matter of convention, since a change
in the variance is equivalent to a change in the scale of temperatures. Conditions similar
to (5.79), (5.80) have been also exploited for the study of the Sherrington-Kirkpatrick
model, at zero external field and high temperature, for example in [65] and [33].

As we have shown in the previous sections, integration by parts on the Gaussian
disorder (3.21) is a simple but essential tool. In the present case, Eq. (3.21) no longer
holds, and its role is played instead by the formula

I
EnF(n) = Ev*F'(n) = ;B lnl [ (o = w)F"(w)du, (582)

n]

which holds for any symmetric random variable 7 and for sufficiently regular functions
F, as a simple direct calculation shows. A similar expression has been exploited in [69]
by Talagrand, for two-valued random variables n = £1.

Denote as f](\f)(ﬁ, h) and fj(f)(ﬂ, h) the finite volume quenched free energies of the
Gaussian and non-Gaussian p-spin model, respectively. Then, the following result holds:

Theorem 7 If conditions (5.79)-(5.81) are satisfied,
AV (8, h) = F¥(8,h)| = O(N*™). (5.83)
In particular, for p even this implies that the limit
lim f(8,h) = lim [®(5,h) = fP(5, 1) (5.84)
—00 N—o00

exists for any B,h. A similar statement holds for the ground state energy:

lim é? () = Ii B ny =@ (p) = — i (p) ) )
Jim #0() = lim () = () =~ lim (5, 1) (5.85)

Proof ) Just for simplicity, we consider the case h = 0. It should be clear, by now, that
in order to compare the Gaussian and the non-Gaussian free energies, we need to suitably
interpolate between them. In this case, the interpolating auxiliary partition function is
given by

Zy(t) =3 exp (=BVIHY (037) = BVT = tHY (03 ) (5.86)

{0}
such that
1
~ 35 E N0 = 17(9) (5.87)
—iEanNu) = fP(p). (5.88)
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As regards the ¢ derivative, one easily finds

d 1 1 !
1<i1 <. <ip <N
Bp!
+4NP Z (1_Ew7t2(0i1'-'0ip))a (589)

1<i1 <. <ip<N

where we used Gaussian integration by parts on the variables .J;, ;, in the second term.
Applying formula (5.82), one can see that the first term in the right hand side cancels
the second, apart from terms of order O(N'~P). More precisely, (5.82) gives

p't _3(p—
E’r’il---ipwt(o-il e O'ip) = ﬂ W(l —_ Enfl---ipwt2<o-il .. Uip)) + O(N 3(p 1)/2), (590)
where the error term arises from the third derivative F"” in (5.82), since the dependence
of the Boltzmann-Gibbs state on the single variable n;, ; is of order N~®=1/2, One has

also to make use of assumption (5.80). Moreover, employing the simple identity

Enfl...ipwf(ail ...0i,) = Euwi(oi...04)

Miq .- ip

+E (i~ 1) / du 0y (s, . 01)
0

Niy.ip=t’
one has
Enflmipwf(ail ..0i) = Ewl(oi ...0i) + O(N—(=1), (5.91)

Putting Eqgs. (5.89), (5.90) and (5.91) together, one finally obtains (5.83). Statements
(5.84) and (5.85) are obvious consequences of Eqgs. (5.83) and (5.75)-(5.76), referring to
the Gaussian p-spin model. .
As we explained in Section 5.4.4, for models with Gaussian couplings almost sure con-
vergence of the free energy and ground state energy per site follows from the convergence
of the quenched average and from Borel-Cantelli lemma, provided that an estimate of the
type (5.22) holds. The extension of (5.22) to the non-Gaussian case is not entirely trivial.
For instance, Theorem 2 of [61] allows to extend it to the case where the probability
distribution of the variables 7;; vanishes for |n;;| — oo at least as fast as in the Gaussian
case (for instance, this includes the case of bounded random variables), but we are not
aware of much more general results concerning concentration of measure inequalities for
functions of many non-Gaussian random variables. Here, we prove the following

Theorem 8 [67] If the quenched variables satisfy conditions (5.79), (5.80), then for the
p—spin model free energy

1 1 )
P ( N In Zy(B, h;n) — B—NE In Zy (8, k; n)‘ > u) < C(B)e NeBW (5.92)

where C(3) is some constant, which depends only on the temperature and on the disorder
distribution.
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Proof) We give just a brief sketch of the proof, since the strategy is the same we followed to
prove Theorem 2, apart from some technical estimates, which have already been employed
to prove Theorem 7.

We define, in analogy with (5.26), an auxiliary partition function Zy(t), depending
on the interpolating parameter 0 < ¢t < 1 and on two independent families n"), n® of
independent identically distributed random variables, with the same distribution as the
original disorder 7:

N
Zexp (B o= 12\/7)21 4t V1 7711 ip)Uil---Uip'*‘BhZUi)-
i=1

{o}

Exactly as in Eq. (5.25), one defines
on(t) =In E; exp %EQ In Zn(t),

such that

on(1) — pn(0) =In E exp% (mz (B, h,n) — Eln Z® (3, h 77)) (5.93)

Next, one computes as usual the ¢ derivative of ¢y (t) and, after some algebra, one finds
[on(t)] < C(B)(Ns* + 1), (5.94)

in analogy with (5.29). Here and in the following, C'(f) denotes some positive constant,
which needs not be the same at each occurrence. The detailed proof of Eq. (5.94) is
rather lengthy, but conceptually straightforward, since it relies only on formula (5.82),
and on estimates of the kind (5.90), (5.91), which simply express the weak dependence
of the Gibbs state from any individual coupling variable. For further details, see the
forthcoming paper [67]. Notice that in the present case, with respect to (5.29), there is
also dependence on the temperature in the bound (5.94). Recalling Eq. (5.93), we find

1 1 2
At this point, one proceeds like after Eq. (5.30) and the theorem is proved. O

In conclusion, as a simple consequence of Theorem 8, we have

Theorem 9 For p even, under assumptions (5.79)-(5.81), there exist the limits

- lim 510 28 (6, ki) = fP(5 1) 1 ae. (5.95)

and
Jim e (hyn) =eP(h) n—ae. (5.96)
—00
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Proof) The first statement simply follows from Borel-Cantelli lemma and (5.92).

As for the ground state energy recall that, in the Gaussian case, the result simply
follows from the fact that ey (h; J) is the zero-temperature limit of the disorder dependent
free energy per site (apart from a minus sign), and from the lack of S-dependence of the
right hand side of the exponential estimate (5.22). In fact, the limit § — oo in the
exponential inequality can be then taken without problems, as in (5.69). In the present
case, due to the 5 dependence of the right hand side of (5.92), the proof is not so direct,
and rather relies on thermodynamic considerations, based on convexity properties of the
free energy. Indeed, the inequality (5.60), together with (5.62) implies, for any n, N, 3, A,

In ZP (8, h;n)

e (hyn) < N3

and, thanks to the almost sure existence of the limit for the free energy (5.95),

lim sup e%)(h; n) < —fP(B,h) n—a.s.

N—00

Choosing a sequence {3®} with lim;_,, 3% = oo and recalling Eq. (5.85), we get

limsup e® (h;n) < eP(h) n—a.s. (5.97)

N—o0

On the other side, since the function 3 — In Zy(3) is convex in 3, for any 3 > /3 we have

In Zy (B, him) _ InZy (B, him) LB-8
B B B B

so that, letting 3 — oo with /3 fixed,

95 In ZE (8, hyn)

1 Z(P) h:
655)(h;77)26ﬂ - NN(B’ ) V3,N,n.

Choosing a sequence {3} which goes to infinity and such that 9 f®) (5%, h) exists, we
have¥, in the infinite volume limit

lim inf e (h;n) > 850® (8% h) 1 —a.s. (5.98)
—00

TRecall that the function 3 — —3f® (8, h) is convex in 3, and that a convex function is differentiable
almost everywhere [70], so that it is not a problem to find the required sequence {5} .

Moreover, it is known [70] that, given a sequence {fn(z)} of convex functions which converges to a
limit function

f@) = Jim_fu(@),

for any x such that f'(x) exists, then also

fn(@) = f'(2).

This fact is used in Eq. (5.98), when the infinite volume limit is taken in the right hand side.
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Convexity of a®) (3, h) with respect to 3 implies that

aP (B, h) — (0, h)
B

is increasing in 3. This, together with the fact that «®)(3,h)/S decreases with 3 (see
Eq. (5.60)) implies that

®)(0, h ®)(3, h
a4 o

Therefore,

Q) a®) (3@ p) o) (BO ) )

lim 950" (5%, h) > lim 95 (5% —5"=) = lim —— == = e’ (h),  (5.99)
and
lim inf e (hin) > e (h) n—as, (5.100)
—00
which, together with (5.97), completes the proof of the theorem. O

5.5.3 Mean field disordered models with non-Ising type spins

In all the models we have considered so far, the basic degrees of freedom are two-valued
Ising variables o; = £1. In this section, we consider a more general class of mean field
spin glass models, whose spin degrees of freedom may, in general, have many components,
taking arbitrary values in R. This generalization is conceptually quite important, at least
for two reasons. First of all, as we explained in Chapter 2, one of the main purposes of
spin glass theory is to describe disordered magnetic alloys, and the magnetic moments
of the impurities have of course three components. Secondly, we will see in the following
of this work that it is very useful to consider identical coupled replicas of the mean field
spin glass system, in order to obtain upper bounds for the free energy per site of the
one-replica system. While the approach we outlined in the previous sections does not
allow directly to prove the existence of the thermodynamic limit for the coupled replicas,
the generalization we present in this section covers also this case. Indeed, we will see that
this model can be seen as a system whose spin degrees of freedom have more than one
Ising-like component.

The generic configuration o of the system is again defined by N spin degrees of freedom
01,09, .... We suppose each o; to belong to a set S€ R*, n € N, equipped with an a priori
measure v. For instance, the case S ={—1,+1} and v = 1/2(d_1 + d41) corresponds to
the usual Ising two-valued variables. The Hamiltonian of the model, Hy(o;.J), depends
on the spin configuration, on the system size N and on some quenched disorder, which
we denote as J. Of course, the Hamiltonian can also depend on some additional external
fields, e.g., on the magnetic field h. We do not indicate this dependence explicitly. The
mean field character of the model consists in the condition that, if two configurations o
and o' are related by a permutation of the site indices, the random variables Hy/(o;J)
and Hy(o’; J) have the same distribution.
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In analogy with definitions (3.2)-(3.4), we introduce the disorder dependent partition
function Zy(B;J), the quenched free energy per site fy(3), and the Boltzmann-Gibbs
state wy, according to the definitions

Zn(B; ) = /SN dv(oy)...dv(oy)exp(—BHy(0; J)), (5.101)
—Bfn(B) = NT'Eln Zy(B; J), (5.102)
wi(A) = Zn(B; J)™ /SN dv(oy)...dv(on)A(c) exp(—SHy(o;J)), (5.103)

where A is a generic function of the o’s.

We restrict our analysis to the case of Gaussian models, i.e., to models for which the
Hy(o; J) are (correlated) Gaussian random variables. Of course, these random variables
are fully characterized by their mean values by (¢) and covariance matrix cy (o, 0’), defined
in (5.19), (5.20). In order to prove the existence of the thermodynamic limit, we suppose
that the following conditions are satisfied. First of all, we require that

by (o _
% =gamP(),....,mP ) + oW (5.104)
Here, k € N, ¢, is a smooth function of class C' and the mg\i,) (o) are bounded functions,

with N mg\i,) additive in the system size. In other words,

mP (o) <M Vi,N,o (5.105)
and
Nm{) (o) = Nim{Q) () + Nym{y), (), (5.106)

if N = N; + N, and if the configuration o can be decomposed as

1 1) (2 2
0:(0%),...,0§V1),0§),...,0](V2)).

As regards the covariance matrix, we assume that

en(o,0')

v = 2(QV(0,0),....Q¥(0.0) +O(N ), (5.107)

where g, is a convex function with continuous derivatives. The variables QS@) must satisfy
properties analogous to (5.105)-(5.106), i.e.,

QW (o,0)| <M Vi,N,o (5.108)
and
N QS\Z[) (0‘, UI) =N QE\Z[)I (0(1)’ 0—'(1)) + N, QS\’[)Q (0-(2)’ 01(2)). (5_109)

It is interesting to observe that the Ising spin glass models of Chapter 3 have the
additional properties that c¢y(0o, o) does not depend on the configuration o, and that g;
is a linear function.

Now, we can state our result:
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Theorem 10 [58] If conditions (5.104) to (5.109) are satisfied, then the thermodynamic
limit of the quenched free enerqy exists:

lim -NLﬁEln Zn(B: ) = F(B). (5.110)

N—o0

Moreover, the disorder dependent free energy converges almost surely, with respect to the
disorder realization:

N—oo

lim _N—ﬂln Zn(B;J) = f(B) J — almost surely, (5.111)

and its disorder fluctuations can be estimated as

2

P (‘—N—BanN(/B, J) - fN(ﬂ)‘ > u> < 2exp <—]ZZ ) , (5.112)

where

L= 5.113
|w2\12?\3l(w |92<‘T17 axk)|ﬂ ( )

and M is the same constant as in (5.108).

Remark As we already showed for the Ising type models, from Egs. (5.110)-(5.112)
follows also the convergence, both under quenched average and J-almost surely, of the
ground state energy per site.

Before we turn to the proof of the theorem, we give a few examples of physically
meaningful systems to which it applies.

1. The Sherrington-Kirkpatrick model with non-Ising type spins, defined as

N
Hy(o,h; J) Z Jijoioj — Zai. (5.114)
i=1

1<z<]<N

As for the spin degrees of freedom, we suppose that o; € S = [—a, a|, while the measure
v on S, which appears in the definition of the partition function, is arbitrary. In this
case,
b
NOo) h
N

and conditions (5.104) to (5.106) are clearly satisfied, since |my(c)| < a and the total
magnetization ) . 0; is linear in the system size. Of course, the function g; in (5.104) is
just g1(x) = —hx. As regards the covariance matrix, one finds easily

CN(Ua UI) C]2 d -1
— (X N

where

1 N

! 2

Qoo = N E 0;0;, |q0'(T’| S a-,
=1
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is as usual the overlap of the two configurations. Since Ng,, is additive and go(z) = 22/2
is convex, conditions (5.20) to (5.109) are also satisfied.

2. The Sherrington-Kirkpatrick model with an additional Curie-Weiss interaction,
defined as

Hy(o,hy J) = \/_ Z Jij0i0; — NZO'zO'] hZoz,

1<i<j<N ij=1

where the non-random constant .Jy is the strength of the Curie-Weiss mean field ferromag-
netic interaction and, again, o; € [—a,a]. This model can be obtained from the previous
one, if one supposes that the Gaussian variables J;; in (5.114) have mean value 2.J/v/N.
This case can be dealt with in analogy with the previous one, with the only difference

that
by (o)
N
so that gi(z) = —hx — Jy 22
3. The Sherrington-Kirkpatrick model with Heisenberg type interaction, defined by
the Hamiltonian

=—J mN(0)2 — hmy(o),

HN(a,i_i; \/_ Z Jij0i G5 — Zhaz, (5.115)

1<i<j<N

O (n)

where each &; has n bounded components o; ’,...,0; ', and @7 denotes scalar product
in R™. In this case,
en(o, o 1 — B
% =52 (@)’ +O(N ), (5.116)
a,b=1
where
1 & b
i
2l = 3ol
i=1

The check of properties (5.104) to (5.109) is trivial, and is left to the reader.

4. The multi-replica Sherrington-Kirkpatrick model, with coupled replicas. In this
case, the Hamiltonian depends on the configurations oM, ... o™ of the n replicas of the
usual Sherrington-Kirkpatrick model defined in Chapter 3, which interact through a term
depending on the mutual overlaps:

Hy(oW, ... .0 ) :_T Z Jij(oo! '+Oz(n)0-]('n))+Ngl({Qab})’
1<i<j<N

where ¢; is a smooth C! function of all the overlaps. This model also fits our general
scheme, as it is easily realized by noticing that the generic configuration of the model

can be %e)en as a collection of variables 7;, = = 1,2,..., N, each with n Ising components
~a a

o = o; ' = x1. Therefore, the present model can be seen as a particular case of the

Sherrington-Kirkpatrick model with Heisenberg-type interaction discussed at point 3.
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It is instructive to verify explicitly that, for these models, the method introduced in
[22] does not work, and requires an extension. Indeed, let us try to apply naively the
approach of Section 5.4.2 to the model 1. When one integrates by parts on the Gaussian
random variables in (5.49) one finds, instead of Eq. (5.50),

d 1 )
_EN—BE In Zn(t N2 ;E wi(o? a — wi(004))
b\
+4NN1 Z E(wi(0}03) — wj (0i05)) Z E(w(o — wi(oi0;)) + O(1/N)
i,j=1 i,j=N1+1
B N N. B N Ny
=5 (dh = @) = @) ) - 5 (b - W%q%?)z — @) ) +0o(/N).

(5.117)

While in the Ising spin case

qi1 = C]§1) = CIS) =1

identically and the second term in Eq. (5.117) vanishes, for generic spin variables this is
no more the case, and the two terms in the right hand side of (5.117) give contributions
of opposite sign. Therefore, we cannot conclude immediately that the ¢ derivative is
non-positive and find subadditivity for the free energy.

Proof of Theorem 10) Eq. (5.112) is a trivial extension of Theorem 2 we discussed
above. Therefore, we turn to the main statements of the theorem, concerning the exis-
tence of the thermodynamic limit. For simplicity, we assume that

N by (o) = gi(my (o)) + O(N ),

and
N~'en(0,0") = 92(Qn(0,0")) + O(N7Y),

corresponding to the case £ = 1 in Eqgs. (5.104), (5.107), and we assume that L = 1 in
(5.113) (the general case can be obtained as a simple extension).

First of all, we prove the existence of the limit along sequences of the type { Ny} =
{Non®}, with n, Ny € N. As in [22], the idea is to find a suitable interpolation between
the original system, of size Nk, and a system composed of n non-interacting subsystems,
of size Ni 1 each. However, in the present case, it is also necessary to divide the configu-
ration space into sets, such that my(o) and Qx (o, o) are approximately constant within
each set. This idea was introduced by Talagrand [11], and developed in an important
series of applications. For any 0 < £ < 1, we can rewrite the partition function (5.101) as

[1/€] [1/€]

Zne (B )= ZP(B;0) = Z/ di(o) exp(—BHy, (o)), (5.118)

2,7=0 2,7=0

where

i ={0 € 8VK 1ie < Qny(0,0),< (i+ 1)e,je < mpy(0),< (5 + 1)e}, (5.119)
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[x] denotes the integer part of x and, for simplicity of notations, we put
dv(c) = dv(oy)...dv(oy).

Since Ng = nNg_1, we can divide the system into n subsystems of Ng_; spins each, and
we denote the configuration of the /-th subsystem as o©, with £ =1,2,...,n. Of course,
the following inequality holds

280(5:0) > Z4)(6:0) = [ dolo) exp(~5H, (03 ) (5.120)
Gij
where
Cij2Cij = {0€8" 1ie < Qup_,(0?,09) < (i + 1), (5.121)

je < mu,_ (6®) < (j + 1)e, VE}.

Now, we introduce an interpolating parameter 0 < ¢ < 1, and the auxiliary partition
function

Z8) = /é_.dﬂ(o)exw(‘ﬂ&vm—ﬂm(a)—Vl—thﬁK_xa“’)

—(1-1) zn:bzvx_l(a(@)> :
=1

where Hy(c;J) has been rewritten as in (5.24), and &5 (o) are n independent copies of
the random variable {y(0). Clearly, for the boundary values of the parameter ¢ one has

1 e .
——— EWnzZW = _ Elnz" (5 122
N B n Zy (0, 5) Neo1B nZy.  (B;J) (5.122)
and
1 > (ij) 1 > (i) 1 (i)
—~—FInZy (1,8) = —=—FEInZy, (8;J) > ——%Em Zy (B; J). (5.123)

NkB K NkB Nk

As regards the t derivative, we apply the integration by parts formula (5.28) and, recalling
that the random variables £5 (o) are statistically independent for different ¢, we find after
some straightforward computations,

d_1 S (1 3) —
_g <92(QNK (0> 0)) - % KZ:;QQ(QNK—l (U(€)> O-(Z)))> (5124)

+§ <gz(QNK(a, o)) — % D 92 (Quge_, (0, a’<@))> (5.125)

K

- <gl<mNK<a>> - Zgl<mNK_1<o“>>>> 20(5).  Gaw)
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where the averages are, of course, restricted to configurations belonging to éij. Since
@n, is a convex combination of the Qy,_, and g, is a convex function, the term (5.125)
is non-positive. On the other hand, since g, is a function of class C', and Qy,_, (¢(9, ¢(9)
and are constrained to belong to the interval [ig, (i + 1)¢) for each ¢, the term (5.124) is
of order . The same holds for the term (5.126). This implies that, for K large enough,

d 1
" dt Nk

for some positive constant C' independent of N. Recalling Eqgs. (5.122), (5.123), this
means that

— B2, p) < Ce, (5.127)

— EmZ9B: N+ ———FEnzZ® (8.]) < Ce. 5.128
Ng Ng-1

 NkB Ng-1f

Now, we want to turn this inequality, which involves disorder averages, into an inequality
valid J—almost everywhere. To this purpose, we choose ¢ = N ;1/ * and we observe that,
thanks to the estimate (5.22),

D55 - pm 250 02 < 20y [ VI
P< NKBIHZNK(B’ J) > — NKBEIHZNK(ﬁ’J)+C€>_2eXp< 5

and
1 (i) 1 (i7) VNKC?
. _ < vy - .
P( N 151nZNK (B ) < = NK,lﬁEanNK—I(B’J) Ce | <2exp o
Therefore, with probability P > 1 — 4y/Ng exp (—@7@02» one has
1 y 1 g
_ 1 Z(Z]) . < _ 1 Z(ZJ) . N—1/4
NoB nZy,.(6;J) < Ne 5 nZy. (8;J)+3CNg
Vi,j=0,..., [N/ (5.129)

Since the probability of the complementary event is summable in K, it follows from
Borel-Cantelli lemma that inequality (5.129) holds J-almost surely, for K large enough.
As a consequence, one obtains

N v
i _ 3/4 ii n
Znie (B ) = Z Z0(8;7) > NN (20 (80) (5.130)
4,j=0 i,j=0

n

1/4
_ 3/4 1—n)/2 i
e (327 (5

>
3,j=0
73501\]3/4
= WZ?JK (B3 ).

Here, we have used the property

k k n
Zx? >kt (sz> , (5.131)
j i=1
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which holds if z; > 0, thanks to the convexity of the function x — ™. Taking the
logarithm and dropping terms of lower order in Nk, one has

InZy, (8;J) < - InZy, ,(8;J)+3CNM* J—as., (5.132)

1
" NgB Ni_1f

for K large enough. Notice that, with respect to (5.128), the above inequality involves
the original free energy, where the sum over configurations has no restrictions. From
(5.132), it follows that the thermodynamic limit exists, J-almost surely by subadditivity,
the term NI;I/ 4 being inessential, as discussed in the footnote on page 48. On the other
hand, the exponential estimate (5.112) implies that the limit has a non random value
f(B), for almost every disorder realization .J.

Once the almost sure convergence is proved, the convergence of the quenched average
can be obtained easily, provided that the probability that 1/N In Zy assumes large values
is sufficiently small. For instance, one has the following criterion [12]: given random
variables X and X, if Xx — X almost surely for K — oo, and if

lim sup B (|Xk| L{jxge>ry) =0, (5.133)
A—=00 K

where 14 denotes the characteristic function of the set A, then
EXyx — EX.

In the present case, X = —1/(Nkf)InZn, (5;J), X = f(B), and the condition (5.133)
can be easily checked, by employing the exponential bound (5.112).

In conclusion, we have proved almost sure convergence for the free energy, and con-
vergence of its quenched average, for any subsequence of the form {Nyn®}. Tt is not
difficult to show, by standard methods, that this implies convergence along any increas-
ing subsequence { Nk}, and the uniqueness of the limit. O






Chapter 6

Sum rules and lower bounds for the
free energy

The previous chapter was entirely devoted to the proof of the existence of the thermody-
namic limit for the free energy per site, and to the estimation of its disorder fluctuations,
for a wide class of mean field spin glass models. Even if this is a very important con-
ceptual problem, the mere existence of the limit does not tell us much about the physics
of the system. Of course, one would like to compute the infinite volume free energy, in
order to verify the predictions of Parisi theory. This task has proven to be very hard,
and actually it has been accomplished so far only in very particular cases.

Of course, we have a few exactly solvable models, e.g., Derrida’s Random Energy
Model and Generalized Random Energy Model. These models are very instructive, but
they look even more artificial than the mean field spin glass models introduced in Chapter
3. For more “realistic” ones, like that of Sherrington and Kirkpatrick or the p-spin, the
control of the limit has been so far achieved essentially only for high temperature, where
replica symmetry is not broken and the system is considered as trivial in the theoretical
physics literature. A remarkable exception is the case of the p-spin model for p large,
where M. Talagrand has been able to give [47], [48] a complete description of the phase
where replica symmetry breaking occurs, provided that the temperature is not too low*.
Also in this case, the physical picture given by Parisi theory has been fully confirmed.

The status of knowledge has been evolving quite fast in the last times, and a general
strategy to approach the problem seems to have emerged. First of all, given a mean field
spin glass model one proves that its free energy per site is bounded from below by the
corresponding Parisi solution

_ﬂ_1d<67 h)a

which was defined in (4.22) of Chapter 4 in the particular case of the Sherrington-
Kirkpatrick model. This result was proved recently by F. Guerra [23], for the Sherrington-
Kirkpatrick and p-spin models, in the whole range of thermodynamic parameters j3, h,
and in particular in the low temperature region. The bounds derive from a sum rule,

*essentially, the analysis by Talagrand covers the range of temperature where one-step replica sym-
metry breaking occurs. One expects continuous replica symmetry breaking to occur at even lower
temperatures.

63
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expressing the true free energy of the system as the sum of the Parisi solution plus a
positive term, which involves the fluctuation of the overlap in suitable states (see Section
6.2 in this chapter for details). The next necessary step to control the infinite volume
limit is to prove that the opposite bound also holds, i.e., to prove that —8~'a(3, h) is
also an upper bound for the free energy, apart from error terms which vanish in the ther-
modynamic limit. To this purposes one considers two replicas of the system, suitably
coupled. The idea is to use, as coupling interaction, just the fluctuation terms which
appear in the above mentioned sum rule, in order to show that they vanish in the infinite
volume limit. This second step has been performed so far essentially only for high enough
temperature, in situations where replica symmetry holds, as reported in detail in Chapter
7 of the present work.

In this chapter, we illustrate Guerra’s broken replica symmetry bounds for the free
energy. The conceptual importance of the result can be hardly overestimated. Indeed,
it shows how the functional parameter z(¢) introduced in Chapter 4 and Parisi solution
arise in a very natural way in the theory, without recourse to the replica trick, and it gives
strong support to Parisi’s prediction (4.22) for the infinite volume limit of the free energy.
In the second place, Guerra’s result gives a firm ground to the maximization procedure
in Eq. (4.22) which, as we already noticed, is quite unclear from the physical point of
view. Guerra’s bounds have been later extended by Franz et al. [57] to finite-connectivity
models.

As a byproduct we also prove that, in the whole region of parameters below the
Almeida-Thouless line, replica symmetry cannot hold for the Sherrington-Kirkpatrick
model.

It is quite surprising that the proof of the broken replica symmetry bounds turns out
to be technically rather easy, since it relies on an interpolation scheme somewhat similar
to the one we employed in the previous chapter to prove the existence of the infinite
volume limit.

6.1 An example: the replica-symmetric bound

As a preliminary exercise, we show that, for the Sherrington-Kirkpatrick model, the
following lower bound holds for the free energy:

In(B,h) = fsx(B;h) (6.1)
for any value of N, 3, h. Here, fsx(3,h) is the so called “replica symmetric free energy”
fsi(B,h) = =B ask (B, h), (6.2)

where agx was defined in (4.28). Inequality (6.1) was obtained by Guerra in [53].

As we discussed in Chapter 4, fsx arises from the functional integral (4.7) when one
looks for a saddle point symmetric under permutation of replicas or, equivalently, from
the trial functional (4.20), when one considers a functional order parameter of the simple
one step form (4.27). Recall that fex is expected to be the infinite volume of the free
energy per site, in the region above the Almeida-Thouless line, i.e., when condition (4.26)
holds.
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The essential idea to prove Eq. (6.1) is to compare, by means of a suitable interpola-
tion, the Sherrington-Kirkpatrick model and an exactly solvable model, where a random
site dependent external field takes the place of the random two-body potential. To this
purpose, fix 5, h and consider the auxiliary interpolating partition function

= Zexp (ﬁ\/7 Z ngUzOJ +6\/ 1 _t ZJOZ +5h201) ) (63)

{o} 1<i<i<N

depending on the interpolating parameter 0 < ¢t < 1, where .J; are independent identically
distributed standard unit Gaussian variables, independent of the disorder J;;. For ¢ = 0
all sites decouple due to the disappearance of the two-body interaction, so that

Zeﬁz (Vadithjoi — QNHcosh Bh+ BqJ;), (6.4)
{o}

and 1/NEIn Zy can be computed explicitly, with the result

FEWZy(0) =12+ [ du(e) I cosh(5h + 52 (6.5)

The similarity between (6.5) and the expression for the replica symmetric solution (4.28)
is evident. On the other hand,

B Zn(1) = B Zx(8.h) = ~Bfx (6, h). (6.6)

As for the t derivative of 1/NEIn Z, the computation is not very different from that of
(5.49). Indeed, one finds

d 1 ~
%NEIDZN@) 2N\/_ Z Jijwi(oi05) QN\/lTZEJZwt gi), (6.7)

1<i<j<N

where the Boltzmann-Gibbs average w; refers to the t-dependent partition function (6.3).
After integration by parts on the Gaussian disorder, and grouping terms in order to
reconstruct squares, one is left with

d 1 32

%NEanN() ; Pa-g2 ——< G2 —7)%), - (6.8)

Therefore, integrating along ¢, and taking into account the boundary conditions, one finds
the sum rule

Fu(8.) = ForB.0)+ 7 [ (=0 at > fotB.h), (6.9)

and (6.1) is proven. O
We call Eq. (6.9) a “sum rule” because it expresses the true free energy as the sum of
two positive terms, one of which is the replica symmetric solution, and the other is the



66 6. Sum rules and lower bounds for the free energy

integral of the “source” {(gi2—q)?)». From Eq. (6.9) it appears clear that, as one expects
from the physical point of view, the replica symmetric approximation for the free energy
is equivalent to the assumption that the overlap ¢5 is self-averaging. This was already
proved, in a different context, by Pastur and Scherbina in [64].

It is very important that the “source” term has a very natural interpretation, as
the mean square fluctuation of the overlap around the replica symmetric value ¢, in the
auziliary state indexed by the parameter . As we will explain in Chapter 7, the expression
for the source suggests in a very natural way how to couple two replicas of the system,
in order to obtain an upper bound for the free energy, and to show that replica symmetry
holds, in a suitable region of parameters.

6.2 Guerra’s Broken Replica Bounds

Here, we start by proving Guerra’s bounds for the Sherrington-Kirkpatrick model. The
present section, as well as Sections 6.3 and 6.4, is based on Ref. [23] by Guerra.

In Chapter 4 we introduced the structure of the space of functional order parameters
and of Parisi trial solutions with replica symmetry breaking. The main motivation for
the introduction of these definitions is the following expected tentative Theorem:

Theorem 11 (expected) In the thermodynamic limit, for the Sherrington-Kirkpatrick
model, we have
lim N 'ElnZy(3,h;J) = a(B,h).

N—oo

for any value of the temperature and magnetic field.

Of course, the present technology is far from being able to give a complete rigorous
proof. However, in this section we prove that a(f,h) is at least a rigorous upper bound
for N"'E1n Zy(B, h; J), uniformly in N.

The main results of this section are summarized in the following

Theorem 12 [23] For all values of the inverse temperature [3, and the external magnetic
field h, and for any functional order parameter x, the following bound holds

_NLBEanNw, B J) > —%a(ﬁ, hi ),

uniformly in N, where &(f, h; ) is defined in (4.20). Consequently, we have also
a(B, h),

uniformly in N, where a(B, h) is the infimum defined in (4.21). Moreover, for the ther-
modynamic limit, we have

1

™|~

1 1
and . 1

J-almost surely.
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The proof is long, and will be split in a series of intermediate results. Consider a
generic piecewise constant functional order parameter z, as in (4.14), and define the
auxiliary partition function Z as follows

Zy(B, btz J) = ) exp (6\/% > Jijoio;

{o} 1<i<j<N
K
+ﬁhZo¢+5\/1 —tZ\/qa —qalsz0i> . (6.10)
i a=1 i

Here, we have introduced additional independent centered unit Gaussian variables J¢,
a=1,...,K,i=1,...,N. The interpolating parameter ¢ runs in the interval [0, 1].
Fora=1,..., K, let us call E, the average with respect to all random variables J?,
¢ =1,...,N. Analogously, we call E, the average with respect to all .J;;, and denote by
E averages with respect to all J random variables.
Now we define recursively the random variables Zy, 71, ..., Zk

Zx = Zn(B, hit;wy ), 20K = ExZ05 ..., ZM = By 2™, (6.11)
and the auxiliary function ay(t)

1
ON,/N(t) = _EO In Z(). (612)
N
Notice that, due to the partial integrations, any Z, depends only on the J;;, and on the
J? with b < a, while in & all J variables have been completely averaged out.
The basic motivation for the introduction of & is given by

Lemma 3 At the extreme values of the interpolating parameter t we have

(1) = %EanN(/J’,h;J):aN(B,h), (6.13)
an(0) = In2+ f(0,h;z,B), (6.14)

where ay (B, h) is the auziliary function defined in Eq. (3.3), and f is the solution of the
antiparabolic equation (4.16) introduced in Chapter 4.

The proof is simple. In fact, at ¢ = 1, the J? disappear, and Z reduces to the usual
partition function Z in (3.2). On the other hand, at ¢ = 0, the two site couplings J;;
disappear, while all effects of the J? factorize with respect to the sites i. Therefore, we
are essentially reduced to a one site problem, and it is clear that we can simply take
N=1:

an(0) = a1(0).

Now,

K
Z,(B, h; 052, J) = 2 cosh(Bh + ,BZ Vo — Ga—1J)
a=1
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and it is immediate to recognize that the averages involved in the definition of In Z; (see
Eq. (6.11)) reduce to the Gaussian averages necessary for the computation of the solution
of the antiparabolic problem (4.16), (4.17), as given by the repeated application of (4.18),
with the f function evaluated at ¢ = 0, and y = h. O
It is clear that now we have to proceed to the calculation of the ¢ derivative of ay(t).
To this purpose, we need some additional definitions. Introduce the random variables f,,
a=1,...,K, m
o= By (019
and notice that they depend only on the J° with b < a, and are normalized, F(f,) = 1.
Moreover, we consider the t-dependent state w; (we omit the subscript ¢ for simplicity)
associated to the Boltzmann factor in (6.10), and its replicated ;. A very important role
is played by the following states @,, and their replicated ones Q.. a=0,...,K, defined

as

(Z)K() = W(.), (Z)a<.) = Ea+1 e EK(fCH—l e fKCU()) (616)
Finally, we define the (.), averages, through a generalization of (3.15),
(o = B(fr - £uS0(). (6.17)

As it will be clear in the following, the (.), averages are able, in a sense, to concentrate
the overlap fluctuations around the value ¢, if g, refers to the optimal functional order
parameter which realizes the infimum in (4.21).

Now, we have all definitions in order to be able to state the following important
results.

Theorem 13 The t derivative of ay(t) in (6.12) is given by

d _ B -
G0 =~ (1= men —ma)id)
_%2 Z(ma—i-l —ma){(q12 = 4a))a- (6.18)

Theorem 14 For any functional order parameter xz, of the type given in (4.14), the
following sum rule holds

1 2 K 1
a(B, hyw) = B Zy (B, i J) + % D (Map1 — ma) / Uqro — qa)Pa(t) dt.  (6.19)
a=0 0
Clearly, Theorem 14 follows from the previous Theorem 13, by integrating with respect
to t, taking into account the boundary values in Lemma 3, and the definition of a(3, h; x)
given in Chapter 4. Moreover, one should use also the obvious identity

%(1 - Z(ma—l—l - ma)qg) = /0 qx(q) dq, (6.20)
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which is evident from the definition (4.14) of the piecewise constant functional order
parameter. By taking into account that all terms in the sum rule are non-negative, since
Mgr1 > Mg, we can immediately establish the validity of Theorem 12.

Now we must attack Theorem 13. The proof is straightforward, and involves integra-
tion by parts with respect to the Gaussian quenched disorder. We sketch only the main
points. Let us begin with

Lemma 4 The t deriwative of an(t) in (6.12) is given by

d

@dzv(t) = %E<f1f2 - JKZE 0 Z),

where
Z[_{latZK == Z&latZN
B B & ]
= —2\/m Z Jijw(Uz’O'j)_2\/1—_ta;m;JiW(0’i).

1<i<j<N

The proof is very simple. In fact, from the definitions in (6.11), we have, for a =
0,1,....K —1,
Z, 0z, = Ea+1<fa+1Z;:18tZa+1)-

The rest follows from iteration of this formula, and simple calculations.
Clearly, now we have to evaluate

K
E(Jijflfg...wa(O'in)) = ZE(...ajijfa...W(O'in))+E(f1...fKaJijW(O'i0j)),
a=1

K
E(JzaflfngW(O'z)) = ZE(anfbw(gz))+E(flfKan‘w(az))a
b=1

where we have exploited standard integration by parts on the Gaussian J variables.
The following lemma gives all additional information necessary for the proof of The-
orem 13.

Lemma 5 For the J-derivatives we have

Oy, w(oio;) = 5\/%(1 — w?(gi0y)), (6.23)
dsaw(0;) = V1 = t3/4a — qa—1(1 — w?(03)), (6.24)
aJ,-jfa = B\/%mafa(@a(aiaj) - (Da—1<0i0-j))’
a;qub =0 Zf b < a,

aJ{’fa = 6\/ 1-—- tv Qo — Qa—lmafaa}a(o'i)a
Ose fo = BV =1/ qa — qa—1mu f5 (@5 (0i) — @p—1(03)) if b > a.
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The proof of (6.23) and (6.24) is a standard calculation. On the other hand, Eq. (6.25)
follows from the definition (6.15) and the easily established equalities

0y, 20 = maZ) Z, 0y, Za,
27105, Z0 = Bo1(far1 253105, Za41), a=1,..., K — 1,

a

~ ~ [t
Z];'IaJijZK = Z&lajijZN = ﬁ N(U(O'Z'O'j),
1 t t
Z, 05,20 =P NEa+1(fa+1 .. [rw(oio;)) = B Nwa@igj)-

In the same way, we can establish (6.26), (6.27), (6.28). However, here we have to
take into account that Z, does not depend on J? if b < a.

A careful combination of all information given by Lemma 4 and Lemma 5, finally
leads to the proof of Theorem 13. On the other hand, the main Theorem 12 follows
easily from Theorem 14, and from the results of Chapter 5 about the existence of the
thermodynamic limit. U

6.3 Broken replica symmetry bounds for the ground
state energy

The lower bounds for the free energy, given by Theorem 12, can be turned into lower
bounds for the ground state energy, once a suitable  — co limit is performed. Let us
consider the ground state energy density of the Sherrington-Kirkpatrick model —ep (h; J),
defined as ) 7 b

~ex(h;J) = ; inf Hy(o,h; ) = — lim %
where we employed Eq. (5.62) in the last equality. By taking the expectation values we
also have

ex () = E(en(hi J)) :ﬂlgroloEangj(Vﬁ,h; ).

From Theorem 12 of the previous section we have, for any functional order parameter x,

(6.30)

EInZy(B,h;J)
BN

< B~ a(B, by w), (6.31)

uniformly in N.

When 3 — oo, the overlap concentrates at the value ¢;» = +1'. Thanks to Eq.
(4.23), this means that the optimal functional order parameter z(gq) tends to zero for
q < 1. Therefore, in order to obtain meaningful broken replica symmetry bounds for the

In fact, recall that

1 B
OB mZn(B,h; J) = S (1= (ai2)-
N 2
Since L F In Zy cannot grow faster than linearly for 3 — oo, it is clear that {¢?,) must tend to 1 in this
N 12

limit.
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ground state energy analogous to those of Theorem 12 for the free energy, it is necessary
to rescale x(¢q) with 3 in a suitable way. To this purpose, let us now introduce an arbitrary
sequence

0<mi <my <---<mg, (6.32)

and the corresponding order parameter Z, defined as in (4.14), but with all m, replaced
by m,. Notice that there is no upper bound equal to 1 for mg, and consequently for z.
However, for sufficiently large 3, we definitely have myx < . Therefore, we can take in
(6.31) the order parameter = defined by z(q) = Z(q)/8, with 0 < 2(¢) < 1. Then one can
easily establish the following Lemma.

Lemma 6 /23] In the limit § — oo we have

_ 1 1!
lim Bta(B, hix) = ahi ) = F(0,1i7) - 5 / 17 (q) da, (6.33)

where the function f, with values f(q,y;Z) satisfies the antiparabolic equation

@)@, y) + = (F'(a,y) + 2(0) F (a,9)) = O, (6.34)

N =

with final condition
F(Ly) =lyl. (6.35)

The proof follows easily from the definition (4.20) of &(f,h;x). In fact, the recursive
solution for f coming from (4.18), allows to prove immediately

lim 57 f(a,4:2/5) = f(a.y;7),
by taking into account the elementary property limg_,o, 7 Incosh(By) = |y|. The iden-
tification of the second term in &(h; ) is obvious from the relation Z(q) = S z(q). O

Therefore we have established

Theorem 15 /23] The following inequalities hold

en(h) < a(h;x), (6.37)
en(h) < a(h) = 1rg%f€v(h, T), (6.38)
Jim ey(h) = eolh) < alhiz), (6.39)
eo(h) < a(h). (6.40)

A detailed study of the numerical information coming from the variational bound of
Theorem 15 will be presented in a forthcoming paper [71].
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6.4 Broken replica symmetry bounds in the p-spin
model

The bounds developed in the previous sections for the Sherrington-Kirkpatrick model can
be easily extended [23] to the Derrida p-spin model introduced in Chapter 3, and defined
by the Hamiltonian

/ pl
0' h J INP- PYNEEL Z Jil...ipail e Uip — ]’LZO’Z (641)

1< < <p<N

In order to motivate the following results, we give a very short sketch of Parisi theory
for the p-spin model, along the same lines we followed in Chapter 4 for the Sherrington-
Kirkpatrick one. For a more satisfactory treatment, we refer especially to Refs. [45] and
[46]. The general structure of the theory is closely analogous to that we illustrated for
the Sherrington-Kirkpatrick model, but the predicted phase diagram is quite different.

Piecewise constant order parameters are introduced as in (4.12), (4.14), but now we as-
sume qx = p/2. We still introduce the function f(q,y;z, 3), defined by the antiparabolic
equation (4.16), but in this case ¢ ranges between 0 and p/2, and the final condition is

f(p/2,y) = Incosh(By). (6.42)

We also introduce the change of variables ¢ — ¢, defined by 2¢ = p@~!, so that, in

particular, G < 1. The definitions (4.20) and (4.21) must be modified as follows.

Definition 3 The trial auziliary function, associated to a given p-spin mean field spin
glass system, depending on the functional order parameter x, is defined as

b

2

®)(B,h;z) =2+ £(0,h; 2, B) — %/0 q(q) z(q) dg. (6.43)

Definition 4 The spontaneously broken replica symmetry solution for the p-spin model
is defined by
a®(B,h) = inf a® (B, h; z), (6.44)

where the infimum is taken with respect to all functional order parameters x.
The prediction of Parisi theory, in this case, is that
1
~BfP(6,h) = lim EnZy (8, J) = a? (5, h). (6.45)
— 00

Moreover, the optimal order parameter where the infimum in (6.44) is realized is related
to the infinite volume overlap probability distribution by?

sala) = [ " P(¢)dd. (6.47)

fWhen the magnetic field is zero and p is even, the system is spin-flip invariant and P(q) is symmetric
and Eq. (6.47) is replaced by

7)) = Z/OQP(q’)dq" (6.46)

See also the note on page 27.
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Notwithstanding the strict analogy with the Sherrington-Kirkpatrick case, the physical
behavior and the phase diagram of the p-spin model are quite different. While we refer
to the beautiful paper [46] for all the details, we want to outline here the main results.
For simplicity, we suppose that the magnetic filed A is infinitesimal, but strong enough
to break spin flip symmetry when p is even. For any integer p > 3, there are two relevant
critical temperatures 1/ ﬁél)(p) >1/ B (p).

e For < Bgl)(p), the annealed approximation holds, i.e.,

. @5 ) = lim 0 (5. J) = i
All_r)nooNEanN (B,J)—A}gnooNlnEZN (8;J)=In2+ 1 (6.48)
In this case, replica symmetry is not broken and the infimum in (6.44) is assumed
in correspondence of a functional order parameter of the simplest form

z(q) =1 for qugg,

so that the overlap does not fluctuate,

as it is easily seen from (6.47).

e for 5§1)(p) <p< ﬁ((;z) (p), the overlap assumes two different values, and one says that
replica symmetry is broken at one step. In other words, the optimizing functional
order parameter has the form

z(g)=m for 0<q¢<q (6.49)
1 :

for ¢ <q<p/2,

with 0 < m < 1. As a consequence,

P(q) =md(q) + (1 —m)d(q — @),

where 2¢; = pcj{’fl. The values of g; and m are determined by two coupled equa-
tions, arising from the minimization in (6.44).

o for B > g (p), replica symmetry is broken at infinite steps, and P(q) has support
on a whole interval, as it happens for the Sherrington-Kirkpatrick model, below the
Almeida-Thouless line.

A similar picture holds in presence of a non-vanishing magnetic field. In this case, how-
ever, for f < Bgl)(h, p) annealing does not hold, even if the system is replica symmetric.

For the Sherrington-Kirkpatrick model (p = 2) the two critical temperatures coincide,
and there is no region where replica symmetry is broken just at one step. On the other
hand, one can obtain an expansion of the critical temperatures for p going to infinity,
with the result that

B (p) = 2vIn2
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and
B2 (p) — <.

In other words, the phase with continuous replica symmetry breaking disappears for
p going to infinity and one-step breaking holds in the whole low-temperature region.
Asymptotic expansions for p large may be found in [46]. It is interesting to verify that,
in this limit, one recovers the behavior of the Derrida Random Energy Model [38], where
one has just one critical value for 8, which equals 2v/In 2.

Now, we go back to the problem of giving rigorous lower bounds to the free energy per
site of the p-spin model, involving the Parisi solution (6.44). In the following we consider
only the case of even p, for reasons that will be clarified in the following. With the same
procedure as described in Section 6.2, we arrive at the sum rule given by

Theorem 16 [23] In the p-spin model, for any functional order parameter, the following
sum rule holds

D6, h50) = B 5,k )

+ %;(ma—kl — M) /01<(]f2 —pq@ '+ (p— 1)@)(t) dt
+ 0(1/N), 6.50)

where aP)(B, h;x) is defined in (6.43).

Notice that the terms in the sum are still positive, for p even, since the minimum over
R of the function z — 2P — pxz @' is just (1 — p)g?. The O(1/N) correction in (6.50),
which is absent in the Sherrington-Kirkpatrick counterpart (6.19), is typical of the p-spin
model.

From the sum rule we have also

Theorem 17 [23] In the p-spin model with p even, for any functional order parameter
x, the following bound holds

_NLBEan (B,h; J) > —%a@ (B, h; z) + O(1/N),

where aP)(B, h;x) is defined in (6.48). Consequently, we have also

_NLBEan (8,h; J) > —%a"’ (B,h) + O(1/N),

where aP)(3, h) is defined in (6.44). Moreover, for the thermodynamic limit, we have
1_

- ]&E&N—gmnz Y(B,h; J) = fP(B,h) > - -5a ®) (8, h),
and .
- ngnooN—ﬁan (B, h; J) = f@(B,h) > — 39 ®)(8, h),

J-almost surely.
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In the case of odd p, the sum rule (6.50) still holds, but it is not obvious that the source
terms are positive. A sufficient condition for this to be true is that

~1+p@ '+ (p—1)@ >0 Va, (6.51)

where ¢, corresponds to the infimum in (6.44). Checking this property, while conceptually
straightforward, is in practice difficult, since the Parisi solution is not given in an explicit
form, but rather as the solution of a variational problem. We refer to the forthcoming
paper [72] for a more detailed treatment.

6.5 Replica Symmetry Breaking below the Almeida-
Thouless line

As a very simple yet important consequence of Guerra’s broken replica symmetry bounds
for the Sherrington-Kirkpatrick model, expressed by Theorem 12, we prove that the
replica symmetric solution fsx does not hold in the whole region below the Almeida-
Thouless line. That the replica symmetric free energy cannot be the infinite volume free
energy of the system, for very low temperature, was already proved by Sherrington and
Kirkpatrick in [16]. Indeed, consider the average entropy per site

0
SN(Bah) :Bz%f]\/(ﬁah)’ (652)
which for a lattice system is non-negative by definition. In fact, it is easily seen that
(B.1) = —E 3" ox(o. 5,k 1) n (0, 5, i J) (6.5
S = —— . . .
N\M> N { }:ON g, 0,1 PN\T, O, 1] ’

where py(o, 8, h; J) is the Boltzmann weight
0 < pn(o,B,h;J) = Zn(B,h) texp(—BHyN(0, B, h; J)) < 1, (6.54)

and
—xlnz >0

for 0 < x < 1. On the other hand, if one computes the entropy per site of the replica
symmetric free energy fsx, using Eq. (6.52), one easily finds out that s(/3, h) is negative,
for 3 sufficiently large. However, this does not happen in the whole region below the
Almeida-Thouless line, while one expects replica symmetry to be broken for all thermo-
dynamic parameters satisfying

9 1
3 / T B e > 1 (6.55)

This belief is based on an analysis of the stability of the replica symmetric saddle point
in the functional integral (4.7), performed by de Almeida and Thouless in [54]. In the
present section we prove the following result:
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Theorem 18 [73] For any value of 5 and h satisfying the condition (6.55),

where fsik(B,h) = —B task(B,h) is the Sherrington-Kirkpatrick replica symmetric so-
lution, defined in Eq. (4.28).

Proof) Recall first of all Guerra’ bounds
fN(Ba h) Z _671 lnfa(ﬁahum)a (657)

where (3, h; x) is defined as

62 1
M&hw%=MQ+ﬂ&mxﬁ)—§:Aqx@ﬁm (6.58)

The infimum is taken over the space of functional order parameters z, and f(q,y;x, )
satisfies the antiparabolic equation

(04 f)(a,y) + %(f”(q,y) +2(¢) (0, 9)) =0, (6.59)

with final condition
f(1,y) = Incosh(By). (6.60)

In order to prove the Theorem 18, it suffices to show that, if (6.55) holds, there exists a
functional order parameter & such that a(f, h; Z) is strictly smaller than asg (8, h). As
discussed in Section 4.3, if one takes

x(q) =0 ¢el0,q
{ xgg; =1 (q] € Eq,z]], (6.61)

one finds that a(f, h;x) is just ask (B, h). Therefore, we slightly deform the simple one
step functional order parameter (6.61), and choose

I(¢)=0 ¢ €l0,q]
i(q)=m ¢ €(q.q] (6.62)
i(¢)=1 ¢ €(g1],

where 0 < m <1 and § < g < 1. We denote with a(S, h;m, q) the corresponding Parisi
function a(, h; z). Of course, since a(B, h; 1,q) = ask (5, h), it is sufficient to prove that

Ona(B, hym, q)l,,—, >0,
for some ¢ > ¢. First of all, @(f3, h;m, q) is easily found to be

a.hma =2+ 21— =L am@ -+ 663

+ / dp(z') n / du(z) cosh™ (B + Bov/a =T + B/3). (6.64)



6.5. Replica Symmetry Breaking below the Almeida-Thouless line 77

In fact, it is easy to integrate iteratively the antiparabolic equation with the help of
(4.18), the order parameter being piecewise constant. Next, we compute the derivative
with respect to m, keeping ¢ fixed, and we find

= _%(QQ -7) - /d,u(z') ln/du(z) cosh(Bh + B2v/q — G+ B2'V7)

+ [ autz) [ dn(z) cosh(5h + 52 /T=G + B2'/@) In cosh(Bh + f2/T=G + /@)
8 T du(z) cosh(Bh + BorJa =G + B7/a)

It is clear that, for ¢ | ¢, the integration over z disappears, and
K(B,h;q) = 0.

Therefore, in order to check the sign of K(f, h;q), we have to expand around ¢ = . By
performing the first two derivatives with respect to ¢, one finds

K (B, h;q)|,—3=0 (6.66)

N S 1
K(8,hiq)|,_ = (1 8 [ dnte) g5 e 5h>)' (6.67)

This computation requires a simple integration by parts on a Gaussian variable, and is
sketched below. It is clear that, when condition (6.55) holds, 8§K(B, h; q)‘q:q > 0, so
that

and

Oma (B, h;m, q)l,,, > 0,

at least for ¢—¢ small. This completes the proof of the result (6.56), i.e., of the instability
of the replica symmetric solution, in the whole region below the Almeida-Thouless line.

For completeness, we compute here the first two derivatives of K ([, h; ¢) with respect
to ¢, and we prove Egs. (6.66), (6.67). Defining for simplicity

b. = Bh+ B2v/qg— g+ B2V,

one finds
. P fd/,L )z sinh(¢, /) In cosh (¢, 1)
0 KB ha) = —Fa+3 \/— [ du(z) cosh(e, )
fdu ) cosh(¢,, ) Incosh(¢, 1) [ du(z)zsinh(¢, )
2\/— (] dp(z) cosh(e, »))? '

At this point, one employs the usual integration by parts formula

[nz9)= [ ant)g ),

which holds for any centered unit Gaussian variable z and smooth function g, obtaining

. 52 (2 [ du(z) sinh(e, /) tanh(¢, /)
aqK(Ba haQ) __Q'i__/d:u(z) fdu(z) cosh(qbz,zr) .

X (6.68)
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Recalling the definitions of ¢, ,» and ¢, Eq. (6.66) is then easily proved. As for the second
derivative of K(f, h;q), one proceeds in a similar way, finding

) ' _B_Q B 33 v [ dp(z) sinh(é, ) tanh(e, 1) [ du(z)z sinh(¢, ./
GKBha) = =5 = g ) ([ du(z) cosh(6,.))?
53 y [ du(z)zsinh(e, ) (1 + cosh (4, 1))
i) W) T du(z) cosh(g.)

which, after integration by parts, gives Eq. (6.67).
O
Strictly speaking, Theorem 18 shows only that, below the Almeida-Thouless line, the
true infinite volume free energy is higher than its replica-symmetric approximation, and
not that replica symmetry is broken there, in the sense that the mean square fluctuations
of the overlap are finite in the thermodynamic limit. However, this can be easily deduced
from Eq. (6.56) by means of the cavity method, as proven originally by Pastur and
Scherbina [64], and later in a simpler way by M. Talagrand (see [9] and the forthcoming
book [11]). The proof proceeds by contradiction, and one shows that, if the overlap
self-averages, then necessarily fn(5,h) — fskx(5,h), which is not possible thanks to
inequality (6.56).



Chapter 7

Quadratic replica coupling and the
high temperature region

7.1 Introduction

In the previous chapter, by means of rigorous sum rules involving overlap fluctuations
we showed that the free energy per site is bounded below by the Parisi replica symmetry
breaking solution —3~'a(f, h) defined in (4.21), for a wide class of mean field spin glass
models. Of course, since one expects Parisi solution to be the true infinite volume limit
for the free energy, one would like to prove also upper bounds of the type

fN(B7 h) < —ﬁ_lﬁz(ﬂ,h) + 0(1)7

where o(1) vanishes in the thermodynamic limit. So far, this task has been achieved only
for high enough temperature, in regions where replica symmetry is not broken. In the
present chapter we are going to report recent progress on this point.

In the replica symmetric region, where the overlaps self-average, the system is con-
sidered as physically trivial (although it is mathematically quite hard), since the infinite
volume equilibrium state is a product state, which means that spins on different sites are
uncorrelated random variables. The same happens for instance also for the Curie-Weiss
model in the high temperature region. The factorization of the correlation functions is a
direct consequence of self-averaging of the overlaps. Indeed, one has

: N2 o N2\
]\}I_I)noo {(q13 — q14)*(q23 — 24)%) = 0 (7.1)

and, exploiting symmetry between sites, this is easily seen [6], [9] to be equivalent to
Jim B (w;(0,05) = wi(o)ws(05)* =0 (7.2)

for any 7 # j.

In the following of this chapter, we restrict ourselves for simplicity to the Sherrington-
Kirkpatrick model. As we already stated in Chapter 4, one expects the replica symmetric
region to be determined by the condition

2 1
g /cosh4(6h+6z q(B,h)) du(z) < 1, (7.3)

79
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whose boundary is just the Almeida-Thouless line (4.30) we discussed above. In this
region, the fluctuations of the overlap should vanish in the infinite volume limit, and
the free energy should converge to the replica symmetric expression, originally found by
Sherrington and Kirkpatrick in their seminal paper [16] and defined in Eq. (4.28):

—Bfn(B,h) = ask(B,h) for N — oo. (7.4)

In correspondence of the Almeida-Thouless line a phase transition should occur and one
expects it to be of second order [6]. The probability distribution P(q) of the overlap,
which is a delta function peaked at ¢ = ¢§ above* the critical line, has a finite width below
it. By “second order transition” we mean the following: when the Almeida-Thouless line
is approached from the low temperature phase, P(q) becomes more and more peaked in
correspondence of the replica symmetric value ¢, with a finite but small dispersion around
it. This is in contrast with the case of the p-spin model, where a first order transition
occurs and, as soon as a suitably defined critical line is crossed, P(q) is the sum of two
delta functions located at finite distance one from the other [6]. The computation of de
Almeida and Thouless is based on the observation that, when inequality (7.3) does not
hold, the replica-symmetric saddle point in the functional integral (4.7) becomes unstable,
i.e., some of the eigenvalues of the corresponding stability matrix have the wrong sign. It
is clear from their approach why replica symmetry breaking is expected to be of second
order. Indeed, the eigenvalues of the Hessian matrix are continuous with respect to
the thermodynamic parameters, and change sign just at the critical line. Therefore, for
T slightly below the critical temperature, the saddle point which gives the dominant
contribution to the functional integral is close to the replica-symmetric one and moves
away smoothly from it, as temperature is lowered. This is in contrast with the situation
one encounters in the case of first order phase transition where, changing for instance the
value of temperature, the new relevant saddle point suddenly appears far from the old
one, which is still locally stable.

From statistical mechanics we expect, in correspondence of a second order phase tran-
sition, some derivative of the free energy to be singular, denoting divergence of physical
quantities like specific heat or magnetic susceptibility. However, except for h = 0, the
replica symmetric solution is analytic at the transition line, as it is easy to verify from the
definitions (4.25), (4.28) of § and agk. As we shall see in Chapter 8, the forecast of the
replica symmetry breaking phase transition from the side of the replica symmetric region
is the divergence of the suitably rescaled overlap fluctuations, as the Almeida-Thouless
line is approached. This can be equivalently seen as the divergence of the susceptibility
with respect to a field coupling two replicas of the system.

As we have already stated, from the mathematical point of view the problem of
proving that replica symmetry holds is far from being trivial and Eq. (7.4) has been
established so far only for 3, h belonging to a subset of the expected region of validity
(7.3). Before we illustrate our results, we give a brief summary of previous work by
other authors. The best studied case is that of the Sherrington-Kirkpatrick model at
zero magnetic field and § < 1. In this case, not only replica symmetry holds, but the
quenched free energy coincides with the annealed one, in the infinite volume limit. This

1)

above” and “below” refer to the phase diagram in the (3, h) plane, as in see Fig. 4.1
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was first proven (among other more refined results, like a central limit theorem for free
energy fluctuations) by Aizenman, Lebowitz and Ruelle in Ref. [65], employing cluster
expansion techniques. Later, their results were extended by Comets and Neveu [66], using
stochastic calculus, and by Guerra [74], who exploited essentially only convexity of the
free energy and positivity properties of fluctuations. Other recent results are those of
Talagrand [21], by means of the so called second moment method. All these approaches
give a quite satisfactory picture of the high temperature phase of the model when the
magnetic field is absent, but unfortunately they can not be immediately extended, as
far as we know, to the general case where h # 0. The case with external field was
also studied in the literature, for instance by Scherbina [75] and Talagrand (see [9] and
references therein), but the control of the entire region (7.3) was not obtained.

A very innovative idea was introduced recently by M. Talagrand [76], [77], based on the
very sound physical idea that the spontaneous replica symmetry breaking phenomenon
can be understood by exploring the properties of the model, under the application of
auxiliary interactions, which explicitly break permutation symmetry among replicas. This
is somewhat similar to the idea of studying ordinary spontaneous symmetry breaking by
means of external fields which break the symmetry, as discussed at the beginning of
Chapter 4. In particular, Talagrand considered two replicas of the system, coupled by
a term depending linearly on the mutual overlap, and was able to prove Eq. (7.4) in
a subset of the entire region above the Almeida-Thouless line. The importance of the
result in [77] is not just that it allows to prove replica symmetry in a larger region
with respect to previous works, but rather that it shows the power of the replica coupling
approach in obtaining a strong and rigorous control of the system. It must be emphasized,
however, that the idea of coupling replicas had been already employed for a long time in
the theoretical physics literature (see, for instance, [78]), even if it seems to have been
somewhat overlooked by mathematical physicists, until [76] appeared.

In a joint work with F. Guerra [79], we extended Talagrand’s idea by coupling two
replicas of the Sherrington-Kirkpatrick model by means of an interaction term which
is just the square of the deviation of the overlap of the two replicas from its replica
symmetric value §. We call this method quadratic replica coupling. We believe that
our method is quite instructive and paradigmatic, since it is technically very simple and,
above all, is connected in a clear way with the sum rules and lower bounds for the free
energy we illustrated in the previous chapter. However, it must be said that even our
result does not allow to control the whole region above the Almeida-Thouless line. This
is still an open problem from the rigorous point of view.

For pedagogical reasons, we start by illustrating our quadratic coupling method in the
technically simpler case of zero external field, and then we proceed to the more general
situation.

7.2 Quadratic coupling for zero external field
The high temperature region (5 < 1) of the zero external field Sherrington-Kirkpatrick

model is a very particular case where everything can be computed. As it is well known,
in this case annealing is exact in the infinite volume limit, i.e., the quenched and the
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annealed free energies coincide for N — oof. In fact, for 3 < 1 we have

2

. 1
lim NEln Zn(B;J) = ask(5,0) =In2 + % = ]\}1_r>noo N InEZn(B;J). (7.6)

N—00

In this section we give a new proof of Eq. (7.6), based on sum rules for the free energy.
Our method is very simple and can be easily extended to the case of nontrivial external
field, as shown in the next section.

When A = 0 and 8 < 1, the only solution of the equation (4.25) defining the
Sherrington-Kirkpatrick order parameter is ¢ = 0. Consider the Boltzmann-Gibbs state
defined by the partition function

[t
ﬂ,t J Zexp ( N Z JZ']'O','O']') s (77)
{o} 1<i<j<N

and define also the auxiliary function?
1 .
OéN(ﬂ,t) = NE]DZN(ﬁ,t, J), (78)

in analogy with Eq. (3.3), related to the free energy fn(53) by

ow(8,1) = B Zn(5;.J) = ~6x(B). (7.9)

As in the previous sections, 0 < ¢ < 1 plays the role of an interpolating parameter. By
successive derivation and integration of ay (3, t) with respect to ¢, one finds the sum rule,
closely related to (6.9)

an(B,t) = 1n2+5—t— —/ (qia), dt'. (7.10)

fRecall the definitions (3.5), (3.6) of the quenched and annealed free energies. We say that annealing
holds, in the infinite volume limit, if

. 1 1
]\;gnoo <NEln ZnN — Nln EZN> =0. (7.5)
Notice that it is only for h = 0 and 8 < 1 that the annealed and the replica symmetric approximations
coincide, since in this case § = 0:

g1
aSK(ﬂvo) 1n2+__NlE>nooN1nEZN

For h # 0, one has
ask(B,h) < lim — lnEZN =In2+ % + In cosh(Bh).

N—oo N

fnotice that ay (3, h) in Chapter 3 has the inverse temperature and the magnetic field as arguments,
while the a function we define here depends on 8 and on the interpolating parameter ¢. To be precise,
we should introduce a different symbol for this new auxiliary function, but we think that our choice will
not generate confusion, also because ay (8,t) appears only in this section.
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The presence of (¢%)y in Eq. (7.10), as source of the difference between the replica
symmetric (or annealed) free energy and the true one, suggests to couple two replicas
with a term proportional to the square of the overlap, the corresponding partition function
being

- t A
ZnBMt )= D exp (ﬁ\/ﬁ > Jij<oia§+a?a?)+§Nﬁ2q%2), (7.11)

{ot,0%} I<i<j<N

with A > 0. The effect of the added term is to give a larger weight to the configurations
having ¢12 # 0, thus favoring non-selfaveraging of the overlap. Of course, the system
is spin-flip invariant also for A # 0, so that (g12) = 0. Therefore, if (¢7,) # 0 then the
overlap is not self-averaging. It is important to realize that now, when we replicate the
system, we have to take copies of the two coupled replicas. We will denote these copies
as (1,2), (3,4), (5,6) and so on, where replica 1 is quadratically coupled with replica 2,
replica 3 with 4, and so on but, for instance, 1 is not coupled with 3. The situation is
pictorially illustrated in Fig. 7.1. Notice that now full permutation symmetry among
replicas is explicitly broken so that, for instance, {g12) # {(q13)-

2 4 6
A A A
1 3 )

Figure 7.1: Quadratic replica coupling. Circles denote replicas, and replicas joined by a
line are coupled.

The basic idea of our method is to show that, as long as 5 < 1 and A is small enough,
the term ANg?, does not change the value of the free energy in the thermodynamic
limit. Therefore, “most” configuration must have ¢;o=0 and the overlap must be self-
averaging. In order to implement this intuitive idea, one introduces the A\ dependent
auxiliary function

1 ~
&N(ﬁa)‘at) = WEanN<B’ Aata '])a

where the normalization factor 1/2 is chosen so that ay(5,0,t) = ax(8,t). It is inter-
esting to observe that, thanks to the results of Section 5.5.3, the infinite volume limit of
ay exists, for any 5, A, t. Through a simple explicit calculation, we can easily find the ¢
derivative in the form

52

dian (B, A1) = T (14 (gfa)ae — 2{aia)ne) » (7.12)

where now all averages (.) involve the A-dependent state with Boltzmann factor given in
agreement with (7.11). Moreover, it is obvious that
62

han (B, A1) = Z<Q%2>A,t-
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Starting from some point Ay > 0, consider the linear trajectory A(t) = )Xo — ¢, with
obvious invertibility in the form \g = A(t) + ¢. Let us take the ¢ derivative of ay along
this trajectory

d BB

@azv(ﬁ, (t),t) = (9 = Oz) aw = 1 = 7<Qf3>A(t),t-

Notice that the term containing {(q%,), which would give a contribution with the “wrong
sign” in the sum rule, has disappeared. By integration on t we get the sum rule and the
inequality

2 2 2
dN(ﬁa /\a t) = &N<Ba /\01 0) /th - % / <q13> A, ¢ dtl S dN(/BJ )‘07 0) %t (713)

Next, we compute the initial condition ax (53, Ag,0). We introduce an auxiliary unit
Gaussian random variable z, and perform simple rescaling, in order to obtain

an(f,X,0) = —ln Z e 0B Naly — 2N —1In Z/ PvroNa2z q () (7.14)
{0’0”} {o’o”}

= 1n2+—1n/(coshzﬁ\/7) du(z
= 1n2+—1n/dy\/—expN( )\0—+1ncosh( ﬁ/\o)) (7.15)

where we used the identity
e = /e“d,u(z) (7.16)

in the first step, and we performed the change of variables z — y+/N )¢ in the last one.
It is immediately recognized that the integral in (7.15) appears in the ordinary treatment
of the well known ferromagnetic mean field Curie-Weiss model. The saddle point method

b)  /(a)

Figure 7.2: Plot of the function at the exponent of Eq. (7.15), for Ay smaller (a) or larger
(b) than the critical value A\, = 2.

gives immediately

1 2
lim ay (8, A, 0) =1In2+ — max (—)\oy— +1In cosh(yﬁ)\o)) . (7.17)
N—o0 2y 2
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The situation is illustrated in Fig. 7.2. The critical value for Ay is A = 1/8%. For
B%2Xo > 1 we have

lim an(53, Ao, 0) > In 2,

N—oo

while for 52\ < 1, one can use the elementary property 2Incoshz < 22 to find

1 1
In2 < an(B,X,0) <In2+-—1In

R W (7.18)

Notice that, when 32\, approaches the value 17, the term of order 1/N diverges, since
Gaussian fluctuations around the saddle point become larger and larger.
Thanks to (7.18), the inequality in (7.13) becomes
. 52 1 1
M) <In2+—t+-—In—F—
aN(/B) 7)—n +4 +4Nn1—AOB2’
which holds for 0 < 5%)\g < 1, i.e., for 0 < B%(t + \) < 1.
Next, we use convexity of an (3, A, t) with respect to A and the fact that

3 B,
AN (B, A1) = Z<(I12>t
to write
A3, B B3? 1 1
S < < —_ E— _—
OzN(ﬂat) + 4 <Q12>t = aN(ﬂa /\at) = ll’l2+ 4 t+ AN In 1— (t+)\)52

Notice that, here, (¢7,); refers to the system defined by the partition function (7.11),
without the interaction between the two replicas. For 0 < f < g < land 0 <t <1,
choose

1 -
A= 5(572—1) >0,
so that )
Bt +A) < Ao = 5(1‘1‘52) <1

and ) . 52 . .

), < = ) — — —. .

< 3 (W24 0 —an(6.0) + i (7.19)
Recalling Eq. (7.10), one has
d 8 B, ., 1 5 1
= LA N =2 <= - —.
o ((ln2+ 1 t) ozN(ﬁ,t)> 1 (gi5) < ;) (In2 + 1 t) — an(B,t) +4N)\ In Ty

(7.20)

For t = 0, it is easily checked that
OéN(ﬂ, 0) =In 2,

since in that case the interaction in (7.11) disappears and one is left with a system of N
free Ising spins with partition function Zy = 2¥. Then, Eq. (7.20) soon implies

ay(B,t) =In2+ %Qt + O(1/N)
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uniformly for 0 < ¢ <1 and 0 < B < B < 1. In particular, choosing ¢t = 1 one has

%Eln Zn(B:J) = an(B,1) =In2 + %2 +O(1/N), (7.21)

for < 1, which proves Eq. (7.6). Of course, from Eq. (7.13) and convexity of ay one
also has
,62
ay(B,\t)=In2+ Zt + O(1/N),
(ai3)rs = O(1/N)
(@i2)rs = O(1/N),

for )
0<Bt+N) < N<1. (7.22)

As we have stated above, what happens is that for A sufficiently small the infinite
volume free energy does not feel the quadratic coupling, and this implies self-averaging
to zero of the overlaps.

We have gained a complete control of the system in the region (7.22). Notice that we
have not only proved Eq. (7.6) but we also shown that the leading correction to annealing
is of order at most 1/N.

7.3 The general case

The method we follow to prove replica symmetry in the general case, where an external
magnetic field h is present, is a direct generalization of the one explained in the previous
section. In the zero external field case, the way how to couple the two replicas was
suggested by the sum rule (7.10). In the same way, in the present case we consider the
sum rule 52

av(Buht) = as(6.0) = 5 [ (s =507, at, (7.23

which is soon derived from (6.8) by integration over t. Here, we define

2

ask (B, h,t) =In2 + %t(l -q)*+ /du(z) In cosh(Bh + B2/q). (7.24)

Notice that ask (5, h,1) is just the usual replica symmetric solution agk (S, h), defined
in (4.28). Recall that an(f, h,t) and the average (.), refer to the auxiliary partition
function (6.3), depending on the interpolating parameter 0 < ¢ < 1, which corresponds
to the situation where the two-body coupling has strength ¢ and the one-body random
field has strength g(1 —t). Moreover, for t = 1, a is related to the quenched free energy
In by

a’N(ﬁa h’? 1) = _ﬁfN(ﬂa h’)a

so that in this case (7.23) reduces to the sum rule (6.9). In analogy with the zero magnetic
field case discussed in the previous section, we are led to introduce the auxiliary function

1 .
any(B,h, A\ t) = WEln Zn(Byhy A\t ),
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where Zy is the partition function for a system of two replicas of the system defined by
the partition function (6.3), coupled by the term

B2 N g - (6,

with A > 0. Now the ¢ derivative is given by

B /82 2@
Oy = 4 (1 + <q%2>>\,t - 2<q%3>>\,t) Ty (1+ <Q12>)\,t —2 <QI3>)\,t)’
while the \ derivative appears as
B o
oy = 1 <(C]12 - q) >>\,t' (7.25)

Starting from points A\ > 0, consider the linear trajectories A(t) = A\g — t, with obvious
invertibility as explained before. As for the total ¢ derivative of &y, one finds

D (B A(8), ) = (3 — On) éy = o

d T2 - (a1,

Notice that in this case the term containing ((¢q12 — 7)?) disappeared.
By integration, we get the sum rule and the inequality

- B B y /
aN(ﬁa ha )‘7 t) = (57 h A07 ) 4 ( q) t—— /0 <(Q13 - Q)2>)\(t’),t’ dt
2

S &N(ﬂu h7 /\0) 0) + %(1 - q_)zta
where ((g13 — §)*) ) refers to
At)=do—t' = A+t—t.

If Q; is the product state for two replicas with the original Boltzmann factor associated
0 (6.3), then we can write

1 2\
—FEInQy <exp %N(qlz — q)2> i

&N(ﬁahaAat)_aN(ﬁahat) = IN

Therefore, by exploiting Jensen inequality, we have, for A > 0,

? {(r2— ), _ o0 < N (B A1) = aw (B, by ).

Let us also define, for given values of 3, h,

2
~ A _
0 S AN(AO) = &N(ﬁa h> >‘0>O) - &N(ﬁa h>O) 2NE1DQO (exp BQ ON(QI? - Q)Z
(7.26)
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where we have introduced the state QY for two replicas, corresponding to ¢t = 0 in (6.3).
Notice that QY is a factor state over the sites i, since the two body interaction .J;;
disappears for ¢ = 0. By the definition (6.3), one has

ayn(B,h,0) =1n2 —l—/d,u(z) In cosh(Bh + 524/q).

By collecting all our definitions and inequalities we have

2
% {(qu2 — (7)2>t < An(Xo) + ask (B, h,t) — an(B, h,t).

Let us now introduce the critical value A, such that, for any Ay < A., one has
N—oo

Of course, A\. depends on [ and h, since Ay does. Then, by the same reasoning already
exploited starting from (7.19), and taking into account (7.23), we obtain the proof of the
following

Theorem 19 For any 0 < A+t < A(B,h), with A > 0 (see Fig. 7.8), we have the
convergence

A}i_I)DOOONéN(ﬂ, h, )\,t) = O[SK(,B,h, t) (727)

and
((qr2 - §)2>/\7t < O(1/N) (7.28)
((q13 — §)2>,\7t < O(1/N). (7.29)

In particular, if A\.(B, h) > 1, then we can reach the pointt =1, A =0 and

. ) 1
A}linoo ay(B,h) = ]\}gnoo NEln Zn(Byh; J) = ask (B, h). (7.30)

For the specification of )., we can easily establish the complete characterization of
the Ay limit. In fact, the following holds:

Theorem 20 The infinite volume limit of Ay is given by

N—o0

Here, A()) is defined through the variational expression

2

A(X) = %mgx (/ In(cosh v + tanh?(Bh + B2+/q) sinh v)du(z) — vg — #52) , (7.31)

where du(z) is the centered unit Gaussian measure.
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A
Ac
t+ X=X
0 Ae t

Figure 7.3: The triangular region in the (¢, A) plane, where we prove replica symmetry
for the two-replica system. The value of A\. depends on /5 and h.

It is easy to check that the expression (7.31) is in agreement with (7.17), when there
are no external fields.

The proof of the Theorem 20 is easy. First of all let us establish the elementary bound,
uniform in N,

Ax(Xo) > A(No). (7.32)

In fact, starting from the definition of Ay (g, Ao) given in (7.26), we can write, for \g # 0
and any v,

v

2
(g2 — q)* > 252)\0(6112 -q)— (521/)\()) ;

and conclude that

y2

An(Xo) > ap(v) — 1570’

(7.33)

where we have defined

1

2N
1 1

= 3 /ln (coshv + tanh*(Bh + Bz1/q) sinhv) du(z) — Eucj.

Eln QY (expvN(gi2 — 7))

CY()(V)

Of course, it is convenient to take the maximum over v in the right hand side of (7.33),
so that the bound in (7.32) is established. The proof that the bound is in effect the limit,
as N — oo, can be obtained in a very simple way by using a Gaussian transformation on
(7.26), as it was done in (7.14). In fact, now we have

1 2\ 1
—FEIn QY (exp 52 ON(q1s — q)2> = ﬁEln/Qg (exp BV AN (12 — (j)Z) du(z).

2N
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Therefore, by exploiting the fact that also QY factorizes with respect to the sites i, we
can write

An(X) = %EIH/H (coshﬁ %z + tanh®(3h + BJ;1/q) sinh B@z)
X exp (—B /\ochz) du(z). (7.34)

Now, we find convenient to introduce a small € > 0, so that

1 1

Notice that A\g < Aj. We also introduce the auxiliary (random) function

1

on(y, N\y) = I Z In (cosh y + tanh®*(Bh + B3J;1/q) sinh y) —qy —

1 y2
2 82

By the strong law of large numbers [13], as N — oo, for any y, we have the J almost
sure convergence of ¢y (y, \j) to ¢(y, Ay) defined by

2
oy, Ny) = /ln (coshy + tanh®(Bh + B2y/q) sinhy) du(z) — qy — 1y

2 2N,

Here du(z) performs the averages with respect to the J; variables. Let us also remark
that the convergence is J almost surely uniform for any finite number of values of the
variable y. Now we can go back to (7.34), write explicitly the unit Gaussian measure
du(z), perform the change of variables y = 25y \gN~!, make the transformation (7.35),
take the sup, for the ¢y, and perform the residual Gaussian integration over y. We end
up with the estimate

1 1
In

+— :
2N AV /\06

Since the J-dependent sup, is reached in some finite interval, for any fixed \j, and the
function ¢y is continuous with respect to y, with bounded derivatives, we can perform
the sup, with y running over a finite discrete mesh of values, by tolerating a small error,
which becomes smaller and smaller as the mesh interval is made smaller. But in this
case the strong law of large numbers allows us to substitute ¢ with ¢, in the infinite
volume limit N — o0o. On the other hand, the second term in the right hand side of
(7.36) vanishes in the limit. Therefore, we conclude that

1
An (20, Ao) < 5 Esup on (Y, \o) (7.36)
Yy

1
limsup Ay (Ag) < 3 SuP By, Xo)-
)

N—o0

From continuity with respect to Ay and arbitrariness of €, we can let A approach Aq, and
the theorem is proven. O
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(b)

(2)

Figure 7.4: Plot of the function whose maximum over v defines A()g), through the
variational principle (7.31). The function is asymmetric, for h # 0. The three curves
correspond to: (a) Ag < A, (b) A\g = A, (¢) Ao > A.. Notice the typical first order
character of the transition.

It is easy to realize that the region in the (f,h) plane, where Theorem 19 allows to
prove replica symmetry for the Sherrington-Kirkpatrick model, is strictly smaller than
the expected high temperature or high external field region defined by the condition (7.3),
which arises from the stability analysis of de Almeida and Thouless [54]. This can be seen
either studying numerically the maximum in the definition (7.31) of A(\g), or computing
it perturbatively as a power series in /3, h in the neighborhood of the point 5 =1,h =0,
where the expression for A()\g) can be written down explicitly. On the contrary, in the
zero external field case our quadratic coupling method allows us to reach the point § =1,
which is known to be the true critical point of the theory.

Before we conclude this chapter, we wish to discuss the possible physical meaning of
the line in the (5, h) plane, which marks the boundary of the region where Theorem 19
gives a proof of replica symmetry. To this purpose, let us summarize the situation in the
two quite different situations of zero and non-zero magnetic field, anticipating also some
of the results of next chapter.

e For h = 0 the result of Theorem 19 is optimal, that is, we prove replica symmetry
up to the point 5 = 1, beyond which the overlap cannot be self-averaging (see
for instance Section 6.5). Moreover, for 8 < 1 one finds that the rescaled overlap
vV/Ngqi» behaves as a Gaussian random variable, for N going to infinity, and its
variance diverges for § — 17. This is typical of second-order phase transitions,
which are forecasted by the divergence of the rescaled fluctuations of the relevant
order parameter (in this case, the overlap).

e On the other hand, for h # 0 we can prove replica symmetry only up to a critical
inverse temperature [5.(h) which is strictly smaller than the one predicted by de
Almeida and Thouless. For § < S.(h), the rescaled fluctuations of the overlap
around ¢, defined as VN (g12—q), tend also to Gaussian variables, but their variance
does not diverge for 5 approaching B.(h)~. If the B.(h) we find is the real transition
point of the model, after which replica symmetry is broken (which we do not prove),
then the transition must be one of first order type, which is not forecasted by a



92

7. Quadratic replica coupling and the high temperature region

divergence of the fluctuations. It has to be emphasized that the prediction of
Almeida and Thouless is based on the analysis of the local stability of the replica
symmetric saddle point in the functional integral (4.7), and therefore it would not
be able, as far as we understand, to detect the occurrence of a discontinuous (first
order) transition. However, even if the possibility of a first order phase transition
above the Almeida-Thouless line cannot be in principle excluded, all numerical
indications and theoretical arguments within Parisi theory seem to show that the
true critical line is the Almeida-Thouless one, where overlap fluctuations diverge
and the transition is of second order. This would mean that the appearance of 5.(h)
is just an artifact of our method of proof, without a precise physical meaning.



Chapter 8

Central limit theorems for the
fluctuations at high temperature

8.1 Introduction

In the previous chapter, we focused on the Sherrington-Kirkpatrick model and we showed
that, in a region of high temperature or high magnetic field, replica symmetry is not
broken. In other words, the overlap ¢;5 between two different replicas is self-averaging
and its typical value is the Sherrington-Kirkpatrick order parameter g. However, this
result gives no sharp information on how fast overlap fluctuations decay with the system
size, and about their asymptotic (for large N) probability distribution. A similar question
may be posed about the free energy: we know it converges almost surely to the replica
symmetric solution, but we would like to investigate more precisely the behavior of the
fluctuations around the limit.

Here, we prove that the fluctuations of the free energy and of the overlaps are Gaus-
sian, on the scale 1/ VN, for N large. Namely, we show first of all that the suitably
rescaled fluctuations of the disorder dependent free energy around the replica symmetric
solution,

Fv(B.hs J) = VN (—NLB In Zy (8, ki J) — fsx (5, h)) , (8.1)

tend to a Gaussian random variable in the thermodynamic limit. The proof is quite
simple, and it relies on an interpolation scheme which is similar, in many aspects, to the
one we used to prove the existence of the thermodynamic limit and Guerra’s bounds in
the previous chapters. As a byproduct, we also recover a well known result by Aizenman,
Lebowitz, Ruelle [65] and by Comets, Neveu [66] for the free energy fluctuations in the
high temperature region of the zero-external field Sherrington-Kirkpatrick model.

As a second result, we show that, defining

,% = \/N<Qab - (j), <82)
the random variables &,;, behave as correlated centered Gaussian variables in the thermo-
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dynamic limit, and we compute explicitly the covariance structure. Recall that

N O'QO'I? =
gy = 2=l v D (8.3)

and that, owing to the two body interaction J;;j0;0;, the different terms in &N are not
statistically independent. Therefore, what we are proving is a central limit theorem for
the sum of weakly dependent identically distributed random variables. The reason why
we speak of “weak dependence” is that, since replica symmetry is not broken, the “cluster
property” (7.2) holds. The central limit theorem for the overlap fluctuations £, in the
high temperature region, has been independently proved also by M. Talagrand [11], with
a somewhat different method. In any case, our proof is based essentially on concentration
of measure inequalities for the free energy, and on a rigorous version of the cavity method,
previously developed by M. Talagrand himself [76], [9], which is particularly appropriate
for the study of the high temperature region.

The Gaussian character of the fluctuations and the scaling v/N are of course not
surprising. Indeed, from statistical mechanics [1] we expect that, away from critical
points , intensive physical quantities like magnetization and energy per site have Gaussian
fluctuations on the scale 1/4/|A[, where |A| is the volume of the system. Moreover, the
variance is just given by the susceptibility of the system, with respect to a suitable
external field. For instance, for an Ising ferromagnet in a uniform magnetic field h, the

“block variable”
A[T2Y (05 = {o3))
ieA
tends to a centered Gaussian random variable, with variance given by the magnetic
susceptibility
om(h)  0{o1)
h) = = .
x(h) =5 oh

Here, m(h) is the average magnetization, A is a finite region of Z% and the limit we
consider is A — Z?. This has been proved in the past years for a wide class of models,
see for instance Refs. [80], [81]. While the methods introduced in those papers are
very beautiful and elegant, they don’t seem to be applicable to our case, where one has
neither informations on the position of the Lee-Yang zeroes of the partition function [82],
as required by [80], nor any form of the FKG ferromagnetic correlation inequalities [83],
as required in [81].

The present chapter is organized as follows. In Section 8.2 we state our results and
comment briefly on them. In Section 8.3 we prove the central limit theorem for the
rescaled free energy fluctuations. Then, in Section 8.4 we turn to the central limit theorem
for the overlap fluctuations: We begin by illustrating, in Sections 8.4.1 and 8.4.2, the
phenomenon of exponential suppression of overlap fluctuations and (Talagrand’s version
of) the cavity method, respectively, and, in Sections 8.4.3-8.4.4 we prove the limit theorem
for the fluctuations of the overlaps. The proof is quite long and technical, so we divide it
into intermediate steps, with the hope to make it more readable.
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8.2 The main results

First of all, it is convenient to recall shortly some notations and results of Chapter 7. We
denote by ay(f, h,t) the auxiliary function

1 ~
aN(ﬁa hat) = NEIDZN<ﬂa hvta J)7

where Zy is defined in Eq. (6.3), for 0 <t < 1. Recall that

OfN(ﬁa hal) = Q5N(/Ba h)a (84)
where ay (8, h) was defined in (3.3). With Theorem 19 we proved that, given 5 and h,

there exists a critical value A.(3, h) and a constant C' such that, for ¢t < A,

(8.5)

and

OzN<B,h,t) = OzSK(ﬁ,h,t)—i‘O(l/N) <86)

2

= In2+ %t(l —q)° + /d,u(z) Incosh(Bh + Bz1/q) + O(1/N).

Let us consider free energy fluctuations first. Aizenman, Lebowitz and Ruelle [65]
proved that, in the case of zero external field and 5 < 1, the variable

InZn(B;JJ) —InEZN(B; J) (8.7)

tends in distribution to a non-zero mean Gaussian random variable whose variance di-
verges at § = 1. In the general case the situation is quite different. Indeed, the following
result holds, which refines the convergence (8.6) of the free energy per site:

Theorem 21 /8] Define the rescaled fluctuations of the disorder dependent free energy
as

fu(B,ht; ) = VYN (anN(ﬁ, mtd) aSK(BJ%O) :
B3 N
Ift < A\(B, ) then
fN(/B7 h7ta J) LN«)?O-Q(ﬁv hvt))u

where convergence holds in distribution and
7t

(B, h,t) = %Var (In cosh(Bzv/q + Bh)) — R (8.8)

Here, Var(.) denotes the variance of a random variable and z is a standard unit Gaussian
variable N'(0,1).
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Notice that fluctuations of the extensive free energy In Zy are of order 1 at zero external
field (notice the rescaling in (8.7)) and of order /N otherwise.

Analysis of free energy fluctuations in mean field spin glass models has been performed
also by several other authors. For instance, Bovier et al. [85] considered the high tem-
perature region of the p-spin model and of its p — co limit, the Random Energy Model.
For finite p, they also found a Gaussian behavior for the fluctuations. For the REM, the
picture is not so simple and one finds that two different regimes exist. At very high tem-
perature, one has again Gaussian fluctuations, while at lower temperature (but always
above the transition temperature where annealing breaks down) there are non-Gaussian
fluctuations driven by the Poisson process of the extreme values of the random energies.
We refer to [85] for details and further results.

As for the overlap fluctuations, the following theorem* refines the result (8.5):

Theorem 22 [84] If t < A.(B,h), the rescaled overlaps &N defined in (8.2) tend in
distribution, for N — oo, to jointly Gaussian variables &y, with covariances

< gb) = A(Ba hat)
<§ab§ac> = B(ﬁa h, t)
<§ab§cd> = C(ﬂ, h, t),

where the indices a, b, c,d are all distinct. A, B and C are explicitly given by

A(B,h,t) = (1 + 2R+ 4R*)Y + ¢ R? (8.9)
B(B,h,t) = (1 +4R)RY + coR? (8.10)
C(B, h,t) = 4R?Y + ¢ R?, (8.11)
where
1

Y(B,ht) = —r 8.12
(B,1t) = g7 (8.12)

R(Bh,1) b

T Y, T+ 2d - B

and Yo(B, h), co(5,h) and do(B, h) are chosen in such a way that A, B, C satisfy the initial
conditions

A(ﬂ,h,O):l—(jQ
B(B,h,O):g—(f

C(B,h,0) = /tanh4(ﬁz\/§_+ Bh) du(z) — ¢°.

In particular, one has

Yy = / cosh™4(82y/ + Bh) du(z). (8.13)

*as we already stated in the introduction to the present chapter, a similar result has been recently
proved by M. Talagrand, and will appear in the forthcoming book [11]. Both results are based on a
rigorous version of the cavity method, previously developed by Talagrand himself in [76], [9]. In the
following, we follow our method of proof.
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For h = 0, one has the initial conditions A(f3,0,0) =1, B(j,0,0) = C(5,0,0) = 0, which
imply R = 0. As a consequence, (&) and (€qupéeq) vanish for any ¢, as it is clear from
Eqgs. (8.10)-(8.11), and the limit variables £,, are independent Gaussian variables with
variance

(€)=Y (8,0,t) =1/(1 - 15?), (8.14)

which is well known to hold! [65], [66].

The expressions for A, B and C were first given by Guerra in Ref. [53] where he
showed that, provided that the variables &,, are Gaussian in the infinite volume limit,
their covariance structure is given by Eqgs. (8.9)-(8.11). It is instructive to sketch the
proof here. First of all one shows, through a direct long computation, that the averages
of the rescaled overlaps satisfy the streaming equation

d _52 Ny2 - N o2, Ss+1) N 2
@(F% =5 <F( > (Ew _S;(ga,s—l—l) + T<§s+l,s+2) )> , (8.15)

1<a<b<s

where F is any smooth function of the £ variables, with a,b < s, and the ¢ dependent
thermal averages refer, as usual, to the system defined by the partition function (6.3).
Notice that the equations (8.15) are in themselves independent of N. Of course, the
initial conditions at ¢t = 0 do depend on N. It is very easy to control the limit N — oo
at t = 0, by an elementary application of the central limit theorem, since the interaction
there factorizes, and the spin variables at each site become independent. Indeed, one
finds that at £ = 0 the rescaled overlaps tend in the thermodynamic limit to centered
Gaussian variables with covariances given by

(&) = A(B.h,0) (8.16)
<£ab§ac> = B(ﬁ, h, 0) (817)
<€ab€cd> = C(ﬁa ha 0)7 (818)

in accord with Theorem 22. Moreover, through a direct calculation, it is possible to show
that the centered Gaussian variables &, with covariances defined by (8.9)-(8.11) satisfy
both the streaming equations (8.15) and the initial conditions (8.16). Of course, this does
not prove that the variables &Y tend to &, as N — oo, for ¢ > 0. For this to be true, we
should prove that the limit N — oo and evolution in ¢ commute.

If one assumes that the validity of Theorem 22 can be extended to the entire high
temperature region defined by (4.26), then one has a clear characterization of the Almeida-
Thouless critical line, as the line where the fluctuations of the rescaled overlap fluctuations
diverge. In fact, Y (8, h,t) as defined in Eq. (8.12) is singular when t32 =Y, !, i.e.,

t3? / cosh™(Bzy/q + Bh) du(z) = 1, (8.19)

fActually, in order to recover the known result, one has to make the identification v/t — 3 in (7.11).
In this case, one finds that the variance of £ tends to 1/(1 — 8?) for B < 1, which was found in Refs.
[65], [66].
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which is nothing but the definition of the Almeida-Thouless critical linet. It is interesting
to notice that, on the contrary, free energy fluctuations on the scale 1/\/N , as given
by Eq. (8.8) in Theorem 21, show no singularity at the same point. Again, this shows
the qualitative difference between the Sherrington-Kirkpatrick model with external field
and the zero-field one, where the fluctuation of the rescaled overlap and of the (suitably
rescaled) free energy (8.7) diverge at the same critical point 5 = 1.

One can also easily check from the expressions for A, B, C' that, when the Almeida-
Thouless line is approached, the following relations hold [53]:

B (el 1
hmz = lim <(Z]\£)2§’> =3 (8.20)
L C L (NG 1
hmz = lim ((eX)2) =3

These relations seem to be the forecast, from the side of the replica symmetric region, of
the ultrametric equalities [6]

((q12 — {q12))(q23 — {(qo3))) = <(C]12 — <C]12>)2> (8.21)

((q12 = {(q12))(g34 — (g34))) = 3 <(Q12 - <Q12>)2> )

which have been proved to hold also in the low temperature region [44, 86, 87].
As a last remark, notice that the estimate (8.5) we proved in Theorem 19 of the
previous chapter gives a uniform bound only for the second moment of the £ variables,

(€ <c.

In order to transfer this information into bounds for higher order moments, we need to
employ the cavity method, as illustrated in Section 8.4.2.

el B

8.3 Free energy fluctuations

In this section, we prove Theorem 21. As it is well known [13], in order to prove conver-
gence in distribution it is enough to show that the characteristic function of fy converges
to that of N(0,0%(B, h,t)), i.e.,

) 2
lim Fetv/NBhE) — exp (—u—az(ﬁ,h,t)) . (8.22)
N—oo 2

Define for simplicity
fN(t) = fN<ﬁ7h7t; J)
aSK<t) = aSK(ﬁa ha t)
1
(n(t) = ¥ In Zn (B, b, t; J).

¥In fact, recall that the the original Sherrington-Kirkpatrick model defined in Chapter 3, without the
one-body random interaction J;, is recovered when ¢ = 1.
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The values of § and A will be held fixed in the course of the proof. The characteristic
function of fy can be written as

R R t R
EeiuinBhtd) — g eiufn@Brod) i B / tufn(t) dt'. 8.23
e e +iu L€ dt’fN( ) (8.23)

From definitions (7.24), (6.3) one finds

d B3?

- 1—

ﬁ%ﬂw 4< 0k

_CN( ) Z ngwt 010] “ ijt Oz
dt 2\/_N3 /2 1<i<j<N 2N 1-

and, through integration by parts on the Gaussian disorder,

E {ezu_CN(t)thN(t)} = %QE{ 7w£ [1 - QJ((]u) 7(1 - QJ(Q12))]}(8-24)

o {0, () — 209 0e) - N7}
By using (8.24) in Eq. (8.23), one finds
EuinBhrt)) —  peiufn(Bh07) @E/t ctufn(t) gy (8.25)
w2 [t ! ’

_ﬁ Eewa ( ((512) ) — 1) dt’

;ﬁ_ B eI, (€47 dt.

At t = 0, all sites are decoupled and the central limit theorem for independent identically
distributed random variables implies that

Fn(B,h,0;J) =2 N(0,02(B, R, 0)), (8.26)

so that )

The last two terms in Eq. (8.25) clearly vanish for N — oo. In fact, for instance,

N2 BNOQ,((€h)?)| < NPBEQ,((E)?) = N2 ((6))?), = O(N7?)

I

thanks to (8.5). Therefore, Eq. (8.25) yields the following linear integral equation for the
characteristic function:

. R 222 t
EwWnBht]) — peiufn(B:h07) 4 “wa E/ et uIN(BAST) gyt o o(1)
4 0 ’



100 8. Central limit theorems for the fluctuations at high temperature

whose unique solution is, keeping into account the initial condition (8.27) and the defini-
tion (8.8) of o2,
E eZqu(ﬂ,h,t,J) — 67%02(ﬂ:h:t) + O(l).

d

Before we conclude this section, we wish to note that from Eq. (8.25) one can also

obtain in a very simple way a well known [65, 66] result for free energy fluctuations at
zero external field and 8 < 1, i.e.,

1 1

nN(,B;J)EanN(B;J)—N<ln2+ﬁ2> —>Y5——ln (8.28)

- B

where Yj is a centered Gaussian random variable of variance

1 1 )
<ln - - B ) )
First of all notice that, for 0 <t <1,
v (BVE T) £ —VNBfy(8,0,5.7),
where equality holds in law, and that
nn(0;J) =0,

since for § = 0 the interaction disappears and we are left with a system of free spins.
Therefore, setting u = —sv/ N5 and h = 0 in Eq. (8.25), one obtains the equation

202 t
Eeian(ﬁx/i;J) - 1- Sf / EeiSnN(ﬁ\/y) (QJ((&IJ\;)Q) — 1) dt (829)
0

18 2 ¢ ; 7
- /oEe“"”‘MmA(fﬁ)Q)df

Theorem 22 implies, for vanishing external field and ¢3? < 1, that the limit variables &,
are independent if the indices are different, i.e., (€.&pc) = (Eapea) = 0, so that

E (2((65)%) — (EX)2:)" = ((€8)? (6570 — ((€X)%)2 = o(1),

thanks to Wick’s theorem. Then, Q;((£{%)?) can be replaced by (€2}, = (1 —t3?%)~* (see
Eq. (8.14)), and Eq. (8.29) yields

) 82ﬁ2 t ) 1
B s BVED) / EesmGVD (— 1) af  (3.30)
4 Jo 1—tp32
7:852 t ; 7.
S B PG — V()
1 /0 e e +0(1)

Derivation with respect to t reduces the last relation to a linear differential equation, and
the result (8.28) easily follows. O
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8.4 Overlap fluctuations

8.4.1 Exponential suppression of overlap fluctuations

In Chapter 7 we proved that, in a certain region of the (3, h) plane, the overlap fluc-
tuations around the Sherrington-Kirkpatrick order parameter g are of order 1/ VN (the
mean square fluctuations are of order 1/N). Here, we prove that the results of Theorem
19, together with the concentration of measure arguments of Section 5.3, allow to get
a bound, exponentially small in N, on the probability that the difference between the
overlap and § is greater than some given value. We learned this nice argument in [77]. To
this purpose, recall Theorem 2 on the self-averaging of the free energy, which in particular
implies that

1 2 2
P ( WIHQJ <6N¥(ql2—‘ﬂ ) — (an(B, h, A\, t) — an(B, h, t))‘ > u) < exp(—NKu%8.31)

where K is a number which depends on f3,%, h but not of NV, and €2, is the t-dependent
Boltzmann-Gibbs average corresponding to the partition function (6.3). The bound (8.31)
can be derived from Eq. (5.22), observing that (2N)™'In€2;(...) can be written as the
difference of two disorder dependent free energies,

1 B2 . 1 1
ﬁh’lQJGXp <N7(qlg—q) ) —ﬁanN(ﬁ,h,)\,t,J)—ﬁanN(ﬁ,h,o,t,J),
(8.32)

and that
&N(ﬁa ha )" t) - aN(ﬂa h’a t)

is just its disorder average. From Theorem 19 we know that, for fixed values of 5 and h,
in the triangular region® B
0<t+ A< A< A(B,h) (8.33)

the following bounds hold uniformly:

0 < an(B,h,\t) — an(B,h,t) < (8.34)

2l

for some constant C. Therefore, with probability at least 1 — exp(—N Ku?) one has

2
Qy (exp %N(qu — 5)2) < exp(2Nu + 20). (8.35)

By employing Tchebyshev’s inequality one finds

_B2X ny2 B2 ~ y B2%,2
Qr (Ygra-gizey) < €72 "7 (eXp — Nla — q)2> < 2N@="70) 420 (g 36)
so that, choosing
-
u= %02 (8.37)

Ssince t and \ are restricted to be non-negative, Eq. (8.33) defines a triangle in the (¢, A) plane.
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one has

v2 B2\
4

Qy (1{\q12—q|2v}) < exp (—N + 20) , (8.38)

with probability at least 1 — exp(—NK'v*), where

54 5\2
64

K' =K
is a positive constant. Finally, the estimate we are looking for easily follows:

_N©2A _NvtK'
(Migr-ai>01) = BQs (1jgrygzvy) < e VT 720 47V (8.39)

Of course, this is much more than just self-averaging of the overlaps. This estimate is go-
ing to be important in controlling the infinite volume limit of the probability distribution
of the fluctuations by means of the cavity equations.

8.4.2 The cavity method in the replica symmetric region

The cavity method [6] allows to express thermal averages of physical quantities defined
on the N-spin system as functions of averages on a system of N — 1 spins, at a slightly
higher temperature. In a sense, it is induction on N. The cavity method was introduced
in [55] as an alternative to the replica trick and, while the mysterious n — 0 limit does
not appear here, the results it gives and the Ansatz on which it is based are equivalent.
The cavity method has been widely applied not only in the theoretical physics literature
but also in the mathematical physics one (see, for instance, Refs. [74], [88], [64], [11]).

Here, we discuss a version of the cavity method developed by M. Talagrand [76], [11],
where a careful control on error terms is obtained. This method has been employed with
success by Talagrand to obtain detailed results on the replica symmetric region of the
Sherrington-Kirkpatrick model, and we will follow a similar strategy to prove Theorem
22.

Consider a generic number £ of replicas of the N-spin system, and single out the
N —th spin, letting

o = (n% €, a=1,2,....k (8.40)

where
n* e {-1,1}¥! (8.41)

is the configuration of a system with the last spin deleted, and
€ =0y = £1.

Then, the Hamiltonian corresponding to the partition function (6.3) can be rewritten as

Hy(o%t,h;J) = Hy (0 t,h;J) — € (h+ Va1l —1t)go + t/Ngn“), (8.42)
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where H),_, is the Hamiltonian of the N — 1-spin system, with the two-body coupling J;;
replaced by J;jy/1 — 1/N. The random variables

9o = Jn (8.43)
gi:JN’ia Z.:]_,Z,...,N—]_, (844)

are independent identically distributed standard Gaussians, independent also of the ran-
dom variables appearing in Hy_;. Here and in the following, gn® denotes the (N — 1)-
dimensional scalar product
N-1
gn" = ginf-
i=1

The weakening of the the couplings J;;, when going from N — 1 to N sites, corresponds
in a sense to lowering 3, or raising the temperatureY. It is interesting to notice that
only the two body interaction term is modified in H};, while the external (random and
non-random) magnetic field is left unchanged.

If we let €/,(.) denote the Boltzmann-Gibbs average for a system of N — 1 spins, with
Hamiltonian given by H)_;, Eq. (8.42) implies

Y (AU F(nt e, ..., ek)\If(k))
- <, (Av ) !

Q; (F(o',...,0%) (8.45)

where F'is a generic function of the configuration of the & replicas, Av denotes the average
over the spin variables € = +1 and

k
T =expfy e (h\/t/Ngna + /31— t)go + h) . (8.46)
a=1

In the region where the overlap self-averages, the cavity equations (8.45) can be sim-
plified, expanding ¥*) both in the numerator and in the denominator for n° close to
its thermal average ;(n®). This idea was introduced by M. Talagrand in [76], and fur-
ther employed in [9], [11]. In order to state Talagrand’s result, we need some additional
preliminary definitions. First of all, we define

b= (") (8.47)

to be the thermal average of n® (of course, it does not depend on the replica index a),
with respect to the Boltzmann-Gibbs state ;. Moreover, we let

n*=n*—>b (8.48)
X =B(\t/Ngb+ /31 —t)go+ h)

\Ilék) = exp(X Z %)
a=1

9To be precise, this analogy is correct only for vanishing external field, since a change in the temper-
ature would reflect also on the one-body interaction.
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and we rewrite
F(o',....,o" = F(nt, e, ... 0% ), (8.49)
with a slight abuse of notation. Then, the following holds:

Theorem 23 [76] For any value of the thermodynamic parameters, and for any smooth
function F,

1
Flo',...,0")) = B——q (AUF\IJ(’“)> 8.50
(F(o a*)) oF Y 0 (8.50)
R E— o [ AvFo® > e (8.51)

COShk X ! ’ 1<a<c<k N .

1 b
2 ! (k) a.cll
+t5 Eicoshk Q; (AUF\IJO E e N) (8.52)

1<a#c<k
k )
tanh X n*b
—ktBPE— Q[ A F TP e+ (853
B cosh® X J( 0 — N ( )

and the “error term” S can be estimated as

S| < wi(B, b, H)E Y, (AU|F\ (ki (%%)QJF 3 (77]\7[7)2» . (8.54)

a=1 1<a<c<k+2

where wy, 1s a smooth function of its arquments, independent of N.

With respect to Theorem 3.2 of [76], the last sum in the right hand side of (8.54) is
performed on a < ¢ instead of a < ¢. However, the proof of Theorem 23 proceeds exactly
as in [76].

Theorem 23 is a sort of Taylor expansion of the cavity equations around n® = b.
Increasing orders in the expansion carry increasing powers in /t/N and, owing to sym-
metry of the distribution of the variables g;, only integer powers of ¢ appear. The real
“expansion parameter”, however, is 7,b/N, which is small in the high temperature region,
since n® fluctuates very little, as shown by Eq. (8.39). Moreover, in this region S vanishes
as N — 00, so what the theorem says is that the only terms that matter in the expansion
are the zeroth and first order ones. This will be explained more precisely in the following.

8.4.3 A preparatory example: zero external field

For simplicity, we discuss separately the cases of zero and non-zero external field. The
former is much simpler and is of course a particular case of the latter. The reason why
we treat them separately is simply of pedagogical character, since when A = 0 one can
easily get an idea of how the proof works. In the general case, the strategy is the same
but the proof is technically more complicated.
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For the Sherrington-Kirkpatrick model with A = 0, Theorem 22 states that, for ¢5% <
1, the rescaled overlaps &Y converge in distribution to statistically independent centered
Gaussian variables whose variance

A(B,h=0,8) = 1/(1 — 15%)

diverges at the critical point ¢3? = 1. In order to prove this, it is convenient to work
with the characteristic function of the random vector £V = (&, &%, ...). What we have
to show [13] is that it tends to the characteristic function of the product of independent
Gaussian variables N'(0, A) @ N'(0, A) ®.... An alternative (equivalent) approach is that
of showing convergence for all polynomials of the form

()™ (&5)™ ... ) (8.55)

to the expression given by Wick’s theorem. The result is therefore the following:

Theorem 24 Let oy (u),u = (Ua, . .., Us—1,5) be the characteristic function of the rescaled
overlaps £ for a,b < s:

¢N(U)=<eXpi > uabéifb>. (8.56)

1<a<b<s
Then, for tp? < 1
2
. ua
lim ¢n(u) = H exp—2(7b (8.57)

— +£32)°
N—o00 1<a<b<s 1 tﬁ )

Remark This result was also obtained by Aizenman et al. in [65], and by Comets
and Neveu in [66], where the authors studied the fluctuations of free energy, energy and
overlaps in the high temperature regime for the zero field Sherrington-Kirkpatrick model,
using techniques of stochastic calculus.

Proof) We give here only the main ideas about the proof and skip some technicalities,
which are analyzed in greater detail in next section, where the more general case h # 0 is
considered. The strategy we follow is to employ the cavity equations and self-averaging
of the overlaps, which we know to hold for t3? < 1 (see Section 7.2), in order to obtain
a linear differential equation for the characteristic function. The linear equation can be
then solved explicitly, giving the wanted result.

First of all, owing to symmetry among spins one can write

Ou¥iy(u) = VN (ol et (8.58)

Next we notice that, in the particular case of zero external field, the thermal average of
each spin variable o; vanishes so that b= 0 in (8.47), and Theorem 23 reduces to

Proposition 2 For any smooth function F,

(F(o',...,d"%) = EQ; (AvF(n',€,... 0" ) (8.59)

tBREQ, [ AvF(t e, . 0k, e 0T 4 g
s, (k) B el s

1<a<c<Lk
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where Av denotes average over €* = +1, and

S| < wi(B,0)ESY, (Avm 3 ("J\?) ) (8.60)

1<a<c<k+2

Here, wy is a smooth function of its arquments, independent of N.

By applying Proposition 2 to Eq. (8.58) and using the fact that
exp(iu/VN) = 14 iu/V'N + O(1/N), (8.61)
one finds

c,d !
Ou,ON(U) = —uUg <exp7j Z ucd%> (8.62)

1<c<d<s

a b cnd !

. nmn . nn

+it% ( ~——=exp i E Ueg—= ) + S+ 0(1)
< N 1<e<d<s N

= —Ua N (u) + 8% Oy, dn(u) + S +0(1) (8.63)

where, of course, (.)' denotes the double average E,(.). In Eq. (8.63) we were quite
sloppy, and we performed substitutions of the kind

c,nd !

<exp i Z ucd%> — ¢n(u) +o(1) (8.64)
1<c<d<s

and similar, which are not self-evident. The replacement (8.64) can be rigorously justified

by applying once more Proposition 2, but here we skip details for simplicity, since analo-

gous estimates will be proved in next section. Finally, the error term S can be estimated

by means of inequality (8.60), which gives

S| < CNT (') . (8.65)

Using formula (8.5), i.e., the uniform bound on the second moment of &, one easily sees
that

S| = O(N~?). (8.66)
Therefore, apart from terms which are negligible in the thermodynamic limit, ¢x(u)
satisfies the set of linear differential equations

(1= B°) Dy o (1) = —tuap o (u) (8.67)
with the initial condition
on(0) = 1. (8.68)
Condition (8.68) is obvious if one recalls the definition of ¢ (u) as characteristic function
of a random variable. Clearly, this implies that ¢ (u) factorizes as a product of functions
of the different u,;,’s and the solution is easily found to be

lim ¢n(u) = H exp—z(

uab
N—o00
1<a<b<s

TR (8.69)

O
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8.4.4 The general case

The case with non-vanishing external field is similar to that considered in the previous
section, but it is technically more involved. The additional complication arises from the
fact that, while for vanishing field the distribution of £ is symmetric about &2 = 0, in the
general case there is no reason why this should hold for finite N. Indeed, symmetry holds
only in the ergodic region for N — oo. This implies that some of the terms appearing
in the expansion in Theorem 23 are no more identically zero and have to be kept into
account, therefore increasing the algebraic complexity of the equations. This is also
reflected in the fact that the limit Gaussian variables are characterized by a non-diagonal
correlation matrix.

To prove Theorem 22, it suffices to show that for any integer s, the characteristic
function

on(u) = <expiu§N> — <expi Z uabf(%>
1<a<b<s

converges for N — oo to

1 -

é(u) = exp {—5 (Lu, u)} , (8.70)

where (., .) denotes scalar product and L is the s(s—1)/2 x s(s—1)/2 dimensional matrix
of elements

Liap) (ab) = A(B, h, 1)
L(ap) (ac) = B(B, h, 1)
Lap),(cay = C(B, hy ).

The idea of the proof is to obtain a set of closed linear differential equations for ¢y (u),
which determine uniquely the solution as (8.70), for N — oo. Some of the calculations
involved in the proof are quite long, although straightforward, and are therefore just
sketched.

In order to prove Theorem 22, we first exploit symmetry among site indices to write

Ou,on(u) = i (€3 ") = iV/N (ool —q) ") (8.71)
A () =i (& @) =iVN ((ohost —q) ™€) (8.72)
V() =i (€ o) = iVN (031032 =) ), (8.73)

and then employ the cavity equations to express these quantities as functions of ¢, ¢,y
themselves. For instance, apply Theorem 23 to the right hand side of Eq. (8.71) and
consider the term arising from (8.50). After averaging on the dichotomic variables €, one
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is left with
i(VN —i Z ua §)E {(tanh® X — ) exp (iu/ V1) } + (8.74)

1<a<b<s

— B {(1 — gtanh® X)Q exp (iv' £V 71)}
—(1-19q) Z (Uar + Uar ) E {tanh® X Q) exp (i N7}

aFr,r!
— Z Ucq E {tanh® X (tanh® X — q) ) exp (iv' ¥ } + o(1)
1<c<d<sc,d#r,r!

where v/ = uy/1 —1/N. The term o(1) arises when exp (iu/v/N) is expanded around
u=0 and the terms of order u? or higher are neglected. Indeed, one has

i (i - )(, LY )

1<a<b<s

<2V/N e

i 1<a<b<s %(UNJN ) E Uab q)

\/— UNUN

Now, rewrite £/ as £/ Ej, where F, denotes the average only with respect to the random
variables ¢go and g¢;,i = 1,..., N — 1, and notice that the thermal average 2, does not
depend on go, g;. Computation of Ey(...) would be simpler if, instead of X, there were

X =B(v/t/Ngb+ /q(1 —t)go + h),

=O(N /).

1<a<b<s

where ;
AL

and ¢ is, as usual, the Sherrington-Kirkpatrick order parameter defined by Eq. (4.25).
Of course, one has

X £ B2y/7 + Bh,

where z is a standard unit Gaussian variable and equality holds in distribution so that,

for instance, ~
E, tanh? X =

The idea is, therefore, to expand in X — X. As a preliminary fact, notice that the second
moment of the random variable (b — b) is bounded uniformly in N. Indeed,

Ellb— b|1* = B(|[b]| - v/Ng)* < qiNEmbH? ~ Ngp (8.75)
- §< NNy 1 O(1/N) = O(1), (3.76)

thanks to Eq. (8.5). As an example, let us examine in detail the first term in (8.74), that
is,

iVNE E,(tanh? X) @ exp (1 '€V ) —i gV NEQ exp (iu/€V 1) . (8.77)
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By a simple second order Taylor expansion in X — X and an integration by parts on the
Gaussian quenched disorder g, one finds

E, tanh® X = E, tanh® X + — (b b)bE, 82tanh2x| (8.78)
t/3? =0\ 2

+2NE98§ anh2x| X 48(X_X) (9(b—1)) (8.79)

2
— g+ %{b _B)(b+B)E, 0% tanb X (8.80)
2

tﬁ ||b—b||2E (82 tanh® x| _R+0(X-X) —aﬁtanhQX) (8.81)
’%415 9 tanh? x| (b= B)(5+6(b— b)) (8.82)
2N2 anh Tl _xro(x—x) :

where 0 < § < 1. Let analyse each term separately. Recalling the definitions of b and b,
the second term in (8.80) equals

;f\jgl( s+1 s—|—2 NC] /52tanh2(ﬁh+ﬁz\/_)d,u( ) (883)
= ﬁﬂl 5( +E s+2)(3YO +23—2)+O(1/N), (8.84)

where Y was defined in (8.13). Another application of Taylor expansion and integration
by parts, together with Cauchy-Schwarz inequality and the fact that the derivatives of
the function # — tanh®2z are bounded, shows that the terms (8.81) and (8.82) can be
bounded by

k B
bl
Therefore, using the estimate (8.76), the expression (8.77) reduces to
i B°t(3Yo +2q — 2)E QY [€5q1512exp (1w €N 7)) + O(NT2),
and
iVNE {(tanh? X — ) exp (i '€¥1)} = B%(27 — 2 + 3Yo)¢' + o(1),
where
_ /N iw eN-1\
=i (€Y (8.85)

Recall that v’ = uy/1 —1/N. The other terms in (8.74) are much simpler than (8.77),
and can be dealt with in the same way. Finally, the whole expression (8.74) can be
rewritten as

/BQt(ch -2+ 3Yy) ¥ — upp (1 — ch) ¢ (8.86)
@@= Y War +ua)d = Yo—(1=9% Y, tad +o(1),
a#r,r! 1<e<d<s:c,d#r,r!

where ¢’ is defined in analogy with 1/, as

¢ = <ei“'fN_1>l.
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The steps leading to expression (8.86) can be repeated with minor changes for the re-
maining terms (8.51) to (8.53). These terms, although they look more complicated than
(8.50) at first sight, are actually simpler to treat, since a first (instead of second) order
Taylor expansion in X — X is sufficient. This is due to the presence of terms like 7,7, /N
or 1,b/N, which are small with large probability, thanks to (8.5). Also in this case, one
finds that terms (8.51) to (8.53) give quantities linear in ¢', d¢’, ¢, 1), apart from terms of
order o(1). As for the “error term” S which appears in Theorem 23, one can easily check
that it vanishes in the thermodynamic limit. This is a consequence of the exponential
decay of overlap fluctuations, as expressed by (8.39).

Next, we show that ¢', ¢’ and ¢’ can be substituted by ¢, ¢ and 1, apart from negligible
error terms. Indeed, for instance,

on(u) = <exp(iu'§N_1—|—iu(0}V012V—cj)/\/]v)>
= (expin €1 (14 0(1)) = & +o(1).

In the last step, we used Theorem 23. Therefore, Eq. (8.71) reduces to a linear relation
between ¢, ¢ and 1, apart from a remainder which becomes irrelevant in the thermody-
namic limit. In the same way, one sees that also Egs. (8.72), (8.73) yield linear equations
for ¢, ¢,1. Putting everything together, in the thermodynamic limit one has a set of
coupled linear differential equations of the form

®(u) = p(u) v(u) + 5> M ®(u) (8.87)
where ®(u) is the vector

@(u) = (Quy $(), -, Bu, 1, S(u), M (), ..., 0 (), ().

v(u) is a vector whose components are homogeneous linear functions of the variables u,
while M is a real square matrix with elements depending on ¢, Y, alone. We do not report
here the explicit expressions of v(u) and M , which are quite complicated. However, it is
instructive to check that, for instance, the term (8.86) is in agreement with this structure.
In fact, the coefficient of ¢’ is a homogeneous linear function of the u variables, while the
coefficient of ¢ is linear in 3%t and depends only on Yy and ¢. As will be clear in the
following, only the structure (8.87), and not the specific form of v and M, are needed to
conclude the proof of the theorem.

Assume at first that the matrix (1 — 5% M ) is invertible, which in principle can fail
only for a finite number of values of ¢ (for fixed 5, h) since M is finite dimensional. In
this case, Eq. (8.87) can be reduced to a first order differential system in normal form:

®(u) = ¢(u)(1 — 57t M) v(u), (8.88)
which can be easily integrated. The most general solution for ¢(u), compatible with the

initial condition

is of the form

o(u) = exp {—%(Ku, u) + (p, u)} , (8.89)
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where p is some s(s — 1)/2 dimensional u-independent vector, and K is a s(s — 1)/2 x
s(s —1)/2 real symmetric positive definite matrix. The symmetry and non negativity of

K derive from the obvious property of permutation symmetry among replicas, and from
the bound

o(u)] <1,

which holds for any characteristic function. The quadratic dependence on u of the expo-
nent of ¢(u) stems from the linear dependence of the components of v(u). Clearly, Eq.
(8.89) means that the random variables {£N} converge to some Gaussian process {4}
Moreover, it turns out that the identification

p=0

and

K=1L
are straightforward. Indeed, as we discussed in Section 8.2, it was shown by Guerra in
[563] that, if the limit process is Gaussian, then it is centered and its covariance function
is exactly L.
In order to conclude the proof, it remains to show convergence of the characteristic
function for those possible values ¢ where (1 — 3%t M) is singular. For any § > 0 one can
write

ONliei = ONlimis T 00 ONlmigy s
where 0 < 0y < 1. After a straightforward computation one finds that

2 S
at¢N = % <€m§N ( Z (5%)2 - S Z(gcjb\,]s—l—l)Z + @(fﬁuw?) > .
1<a<b<s a=1

By exploiting the uniform bound (8.5) and the arbitrariness of ¢, one finds therefore that
the theorem holds also for ¢ = 7. O






Chapter 9

Conclusions

In the present work I have reported some new results obtained, mostly in collaboration
with Francesco Guerra, in the context of the rigorous study of mean field spin glass
models. Our first main result is the existence of the infinite volume free energy and
ground state energy per site for a wide class of models, which includes the well known
Sherrington-Kirkpatrick model and Derrida’s p-spin. Many generalizations have been
considered, for instance to models with non-Gaussian random interactions, with non-
Ising spin degrees of freedom, and to systems composed of several interacting replicas
of the original mean field spin glass model. In the second place, we concentrated on
the study of the high temperature region of the Sherrington-Kirkpatrick model, where
we were able to obtain a quite detailed picture, proving replica symmetry and central
limit theorems for the rescaled fluctuations of overlaps and free energy. As regards the
low temperature region, as a consequence of Guerra’s “broken replica symmetry bounds”
for the free energy, we proved that replica symmetry is broken in the whole region of
parameters below the Almeida-Thouless line.

Many of the above results can be expressed as comparisons, or sum rules, involving
the free energies of two different systems. For instance, to prove subadditivity of the free
energy one compares the free energy of the NV spin system with that of two subsystems of
size N1 and Ny, with N = N7+ N,. As a second example, the extension to non-Gaussian
couplings is performed by showing that the difference between the free energy of the
Gaussian model and that of its non-Gaussian counterpart vanishes in the thermodynamic
limit. Again, in order to prove replica symmetry at high temperature we compare the
free energy of the system with that of an auxiliary exactly solvable system of two replicas,
where the two-body disordered interaction is replaced by a random one-body interaction
plus a non-random quadratic coupling between the two replicas. In all these cases, the idea
we employed is that of suitably interpolating between the Hamiltonians of the systems we
wish to compare, and of estimating the derivative of the free energy as the interpolating
parameter is varied. Even the proof of Guerra’s bounds, which we illustrated in Chapter
6, is based on an interpolation technique of this kind, though more complicated.

Notwithstanding the many recent developments in the rigorous study of mean field
spin glasses, many fundamental questions remain open. For instance, one would like to
extend the proof of replica symmetry for the Sherrington-Kirkpatrick model up to the
Almeida-Thouless line, and to understand what is the infinite volume behavior of the
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fluctuations on the critical line.

Of course, the ultimate goal is to compute the infinite volume free energy in the
whole range of thermodynamic parameters, and possibly to prove that Parisi solution
holds. To this purpose, one should prove that the auxiliary states (.),, which appear in
Guerra’s sum rules discussed in Chapter 6, are able to concentrate the overlap around
the non-random values ¢, given by the optimal Parisi functional order parameter. A
difficulty one encounters in this task is that these states do not appear in Parisi theory,
and therefore one has little physical intuition about their properties. In the case of the
high temperature region, we saw that the computation of the infinite volume free energy
can be actually performed, as a consequence of lower bounds for the free energy of a
system of two quadratically coupled replicas. We believe that this fact should guide us
when trying to attack the more general problem of showing that Parisi solution holds for
all values of thermodynamic parameters, and in particular in the low temperature region.
However, it is not clear yet how to couple replicas in this case, and how to obtain lower
bounds for the free energy of the coupled system. This will be one of the main subjects
of our future research, and we hope to report on this soon.

It would also be very interesting to extend the techniques we illustrated in this work,
to the more general situation of finite connectivity spin glasses and neural networks. A
first step was performed in [57], but a lot of work remains to be done.
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