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Definitions

Integration of f (x), in the sense of determining a formula F (x)
such that F ′(x) = f (x), or proving that no such F (x) exists in a
suitable class, is a process of differential algebra. There is then
a question of whether this formula actually corresponds to a
continuous function R→ R.
This is an important (and under-studied) question in terms of
usability of the results, but a rather different one than we wish
to consider here: see [JD93, Mul97].

James H. Davenport Integration



Introduction
Transcendental Integrands

Algebraic Functions

Questions

Two questions can be asked.
1 What is the computational complexity of the integration

process?
2 If f (x , c1, . . . , ck ) is not integrable, for what special values

of the ci is it integrable?
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Setting

In order to use differential algebra, the integrand f is written
[Ris79] in a suitable field K (x , θ1, . . . , θn) where each θi is
transcendental over K (x , θ1, . . . , θi−1) with K (x , θ1, . . . , θi)
having the same field of constants as K (x , θ1, . . . , θi−1) and
each θi being either:

l) a logarithm over K (x , θ1, . . . , θi−1), i.e. θ′i = η′i/ηi for
ηi ∈ K (x , θ1, . . . , θi−1);

e) an exponential over K (x , θ1, . . . , θi−1) , i.e. θ′i = η′iθi for
ηi ∈ K (x , θ1, . . . , θi−1).
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Special cases (of Risch Structure Theorem)

This process may generate special cases: for example
exp(a log x) lives in such a K (x , θ1, θ2) with

θ′1 = 1
x (θ1 corresponds to log x) and

θ′2 = a
x θ2 (θ2 corresponds to exp(a log x)),

except when a is rational, when in fact we have xa. However,
this is generally not what is meant by the “special values”
question, and in general we assume that parameters are not in
exponents.

Q0 Is this really legitimate?
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Rational Functions (1)

To illustrate these points, consider the following examples.∫
5x4 + 60x3 + 255x2 + 450x + 274

x5 + 15x4 + 85x3 + 225x2 + 274x + 120
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x + 120)
= log(x + 1) + log(x + 2) + log(x + 3) + log(x + 4) + log(x + 5)

(1)
is pretty straightforward, but adding 1 to the numerator gives∫

5x4 + 60x3 + 255x2 + 450x + 275
x5 + 15x4 + 85x3 + 225x2 + 274x + 120

dx

= 5
24 log(x24 + 72x23 + · · ·+ 102643200000x + 9331200000)

(2)

= 25
24 log(x + 1) + 5

6 log(x + 2) + 5
4 log(x + 3)+

5
6 log(x + 4) + 25

24 log(x + 5)
(3)

We presumably want the second form!
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Rational Functions (2)

Adding 1 to the denominator is pretty straightforward,∫
5x4 + 60x3 + 255x2 + 450x + 274

x5 + 15x4 + 85x3 + 225x2 + 274x + 121
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x + 121),
(4)

(but notice that the argument of the logarithm doesn’t factor)
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but adding 1 to both gives∫
5x4 + 60x3 + 255x2 + 450x + 275

x5 + 15x4 + 85x3 + 225x2 + 274x + 121
dx

= 5
∑
α

α ln
(

x +
2632025698

289
α4 − 2086891452

289
α3+

608708804
289

α2 − 4556915
17

α +
3632420

289

)
,

(5)
where

α = RootOf
(

38569 z5 − 38569 z4 + 15251 z3 − 2981 z2 + 288 z − 11
)
.

(6)
In the dense model, the complexity is (only) polynomial!
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Rational Functions (4)

Nevertheless, we want an algorithm that generates, if not the
“shortest” form, at least a short form, so (3) rather than (2). We
also want running time “commensurate” with this, which implies
that we should be in output-sensitive complexity territory.
The Trager–Rothstein resultant [Rot77, Tra76] seems to satisfy
this.

Q1 Formalise this.
Q2 What about the sparse model?
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Elementary Transcendental Functions

Here we have a decision procedure [Ris69]. The proof
proceeds by induction on n: we suppose that we can:

a) “integrate in K (x , θ1, . . . , θn−1)”, i.e. given
g ∈ K (x , θ1, . . . , θn−1), either write

∫
gdx as an elementary

function over K (x , θ1, . . . , θn−1), or prove that no such
elementary function exists;

b) “solve Risch differential equations in K (x , θ1, . . . , θn−1)”,
i.e. given elements F ,g ∈ K (x , θ1, . . . , θn−1) such that
exp(F ) is transcendental over K (x , θ1, . . . , θn−1) (with the
same field of constants), solve y ′ + F ′y = g for
y ∈ K (x , θ1, . . . , θn−1), or prove that no such y exists.

We then prove that (a) and (b) hold for K (x , θ1, . . . , θn).
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Logarithmic Functions (1)

If θn is logarithmic, the proof of part (a) is a straightforward
exercise building on part (a) for K (x , θ1, . . . , θn−1) : see, e.g.
[DST93, §5.1]. Unintegrability manifests itself as the insolubility
of certain equations, and any special values of the parameters
will be found as special values rendering these equations
soluble.
It is also straightforward (though as far as the author knows, not
done) to prove that, if all θi are logarithmic, then the degree in
each θi of the integral is no more than it is in the integrand, and
that the denominator of the integral is a divisor of the
denominator of the integrand. Hence, in the dense model, the
integral is, apart from coefficient growth, not much larger than
the integrand, and the compute cost is certainly polynomial.
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Logarithmic Functions (2)

In a sparse model, the situation is very different.∫
logn xdx = x logn x − nx logn−1 x + · · · ± n!x ,

so an integrand requiring Θ(log n) bits can require Ω(n) bits for
the integral. The same is true for

∫
xn logn xdx , but∫

xn logn(x + 1)dx shows that Ω(n2) bits can be required.
Q3 Is the problem even in EXPSPACE?
C3 It probably is.
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Logarithmic Functions: Unintegrability

∫ (
x4 (ln (x + 1))2 − 2 ln(x+1)

5 x+5

)
ln (x)− 137 ln(x+1)

150 x dx =

(30 x5 ln(x)−6 x5−6)(ln(x+1))2

150 +
ln(x+1)

150

[
−12 x5 ln (x) + 15 x4 ln (x)− 20 x3 ln (x) + 30 x2 ln (x)

−60 ln (x) x + 24 x5

5 − 27 x4

4 + 32 x3

3 − 21 x2 + 72 x − 137 ln (x)
]

+2 x5 ln(x)
125 − 9 x4 ln(x)

200 + 47 x3 ln(x)
450 − 77 x2 ln(x)

300 + 137 ln(x)x
150 − 6 x5

625 +
61 x4

2000 −
2273 x3

27000 + 4903 x2

18000 −
15133 x

9000 + 6913 ln(x+1)
9000

but any number other than 137 gives “unintegrable” after doing
all this work , so “output-sensitive” isn’t quite right.
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Exponential Functions (1)

Suppose θn = exp(F ).
∫

g exp(F )dx = y exp(F ) where
y ′ + F ′y = g (and can be nothing else if it is to be an
elementary function).
Hence solving (a) in K (x , θ1, . . . , θn) reduces (among other
things) to solving (b) in K (x , θ1, . . . , θn−1).
The solution to (b) proceeds essentially by undetermined
coefficients, which is feasible as y ′ + F ′y is linear in the
unknown coefficients. Before we can start this, we need to
answer two questions:

what is the denominator of y , and
what is the degree (number of unknown coefficients)?
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Exponential Functions (2)

In general, the answers are obvious:
if the denominator of g has an irreducible factor p of
multiplicity k , y ′ will have the same, so the denominator of
y will have a factor of (at most) pk−1, and F ′ can only
reduce this.
Similarly, if g has degree d , y ′ will have degree at most d ,
so y will have degree d + 1, and again F ′ can only reduce
this.

The complication is when there is cancellation in y ′ + F ′y , so
that this has lower degree, or smaller denominator, than its
summands. [Ris69] shows how to resolve this problem, and
does not pay it much attention, not being interested in the
complexity question.
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Exponential Functions (3)

These come from “eccentric” integrands [Dav86]. For example

y ′ +
(

1 +
5
x

)
y = 1 (7)

has solution

y =
x5 − 5x4 + 20x3 − 60x2 + 120x − 120

x5 , (8)

but this comes from ∫
exp(x + 5 log x)dx , (9)

which might be more clearly expressed as∫
x5 exp(x)dx . (10)
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Exponential Functions (4)

However, the integrand in (9) has total degree 1, whereas that
in (10) has total degree 6, consistent with the degrees in (8).
The dense model is not applicable when we can move things
into/out of the exponents at will.
We do have a result [Dav86, Theorem 4] which says that,
provided K (x , θ1, . . . , θn) is exponentially reduced (loosely
speaking, doesn’t allow “eccentric” integrands) then we have
natural degree bounds on the solutions of (b) equations. As
stated there, “this is far from being a complete bounds on
integrals, but it does indicate that the worst anomalies cannot
take place” here.

Q4 Is the problem even in EXPSPACE?
C4 It probably is (but less certain than C3!).
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Exponential Functions: Special Values

These come in two kinds:
1 As in the logarithmic case, we can get proofs of

unintegrability because certain equations are insoluble.
For example (x + a) exp(−bx2 + cx) is integrable if, and
only if, c = −2ab, and this equation arises during the
undetermined coefficients process.

2 More complicated are those that change the “exponentially
reduced” nature of the integrand. For example,∫

exp(x + a log x)dx does not have an elementary
expression except when a is a non-negative integer, when
we are in a similar position to (9). These values are similar
to those that change the Risch Structure Theorem
expression of the integrand.
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Algebraic Functions (1) [Dav81, Tra84]

If f ∈ K (x , y) where y is algebraic over K (x), the integral, if it is
elementary, has to have the form v0 +

∑
ci log(vi), where

v0 ∈ K (x , y), the ci are algebraic over K , and the vi ∈ L(x , y)
where L is the extension of K by the ci .
So far, the same as rational functions
The

∑
ci log(vi) term represents the logarithmic singularities in∫

f dx , which come from the simple poles of f : in a power series
world ci would be the residue at the pole corresponding to vi .
So the trick would seem to be to combine the poles to make vi .
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Algebraic Functions (2)

Hence an obvious algorithm would be
1 Compute all the residues rj at all the corresponding poles

pj (which might include infinity, and which might be
ramified: the technical term would be “place”). Assume
1 ≤ j ≤ m.

2 Let ci be a Z-basis for the rj , so that rj =
∑
αi,jci .

3 For each ci , let vi be a function ∈ L(x , y) with residue αi,j at
pj for 1 ≤ j ≤ m (and nowhere else). The technical term for
this residue/place combination is “divisor”, and a divisor
with a corresponding function vi is termed a “principal
divisor”.

* Returning “unintegrable” if we can’t find such vi .
4 Having determined the logarithms this way, find v0 by

undetermined coefficients.
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Algebraic Functions (3)

But it is possible that Di is not a principal divisor, but that 2Di , or
3Di or . . . is principal.
In this case, we say that Di is a torsion divisor, and the
corresponding order is referred to as the torsion of the divisor.
If, say, 3Di is principal with corresponding function vi , then,
although not in L(x , y), 3

√
vi corresponds to the divisor Di , and

we can use ci log 3
√

vi , or, more conveniently and fitting in with
general theory, ci

3 log vi as a contribution to the logarithmic part.
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Algebraic Functions (4): Complexity

There are three main challenges with complexity theory for
algebraic function integration.

1 It is far from clear what the “simplest” form of an integral of
this form is. The choice of ci is far from unique, and a “bad”
choice of ci may lead to large αi,j and complicated vi .
Recall (3) rather than (2) for rational functions.

2 The rj are algebraic numbers, and there are no known
non-trivial bounds for the rj , or the αi,j .

3 Very little known is about the torsion.
Hence it appears unrealistic to think of complexity bounds in
the current state of knowledge.
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Don’t we know about the torsion?

Surely there’s Mazur’s bound [Maz77].
This does indeed show that, if the algebraic curve defined by y
is elliptic (has genus 1) and the divisor is defined over Q, then
the torsion is at most 12.
The trouble is that this requires the divisor to be defined over Q,
and not just f .
For elliptic curves, a recent survey of the known bounds is
given in [Sut12].
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Special Values; two meis culpis (1)

In [Dav81]) we considered the question of whether f (x ,u)dx , an
algebraic function of x , could have an elementary integral for
specific values of u, even if the integral were not elementary.
How might this happen?Transcendental u trivial.

1 The curve can change genus: look at the canonical divisor.
2 The [geometry of the] places at which residues occur can

change: look at values of u for which
numerator/denominator cancel, or roots coincide.

3 The dimension of the space of residues can collapse.
4 A divisor may be a torsion divisor for a particular value of

u, even though it is not a torsion divisor in general. These
cases can be detected . . .

5 the algebraic part may be integrable for a particular u,
though not in general. Hence the contradicting equation in
FIND_ALGEBRAIC_PART collapses.
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Special Values; two meis culpis (2)

As a potential example of case 3, consider

1
x
√

x2 + 1
+

1
x
√

x2 + u2

whose residues are ±1,±u and therefore every rational u is
apparently a special case.
[Dav81, Lemma 6, page 90] claims to prove that, if there are
enough special ui , the the general integral must also be
integrable.
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Special Values; two meis culpis (3)

[Mas16] observes that
xdx

(x2 − u2)
√

x3 − x
is not elementarily

integrable, but is integrable whenever the point (u, ?) is of order
at least three on the curve y2 = x3 − x , and this can be
achieved infinitely often, at the cost of extending the number
field. When u = i , (i ,1− i) is of order 4 and we have∫

xdx
(x2 + 1)

√
x3 − x

=

1 + i
16

ln

(
x2 + (2 + 2 i)

√
x3 − x + 2 ix − 1

x2 − (2 + 2 i)
√

x3 − x + 2 ix − 1

)

+
1− i
16

ln

(
x2 + (2− 2 i)

√
x3 − x − 2 ix − 1

x2 − (2− 2 i)
√

x3 − x − 2 ix − 1

)
Unfortunately neither Maple (2016) nor Mathematica (10.0) nor
Reduce (build 3562) can actually integrate this elementarily.
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Special Values; two meis culpis (4)

The assertion that the case of transcendental u is trivial, if true
at all, is certainly not trivial, and probably false, if we also allow
transcendental constants in f , for they and u can then “collide”.
[Mas16].
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Summary

For a proper treatment
1 We need the sparse model, and output-sensitive

complexity analysis
2 But this doesn’t handle “unintegrable”.
3 Special values wait for [MZ16].
4 Never forget to check that the output is a continuous

function
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