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ABSTRACT

The expansions of algebraic functions can be computed fl fastff using the 

Newton Polygon Process and any "normal" iteration. Let M(j) be the number 

of operations sufficient to multiply two jth degree polynomials. It is 

shown that the first N terms of an expansion of any algebraic function de 

fined by an nth degree polynomial can be computed in 0(n(M(N)) operations, 

while the classical method needs 0(Nn) operations. Among the numerous ap 

plications of algebraic functions are symbolic mathematics and combinatorial 

analysis. Reversion, reciprocation, and nth root of a polynomial are all 

special cases of algebraic functions.
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1. INTRODUCTION

Let

TT ~\ = ^ \KJYi T ... T £\~\(1.1) P(W,z) = A (z)Wn + ... + A (z),

where the A.(z) are polynomials over a field A. In general we shall take A 

to be the field of complex numbers; an exception being Section 7 . (Many of 

the results hold for an algebraically closed field of characteristic 0.)

Without loss of generality we assume AQ(Z) P 0 and A^(z) p 0. Usually, but not 

always, capital letters will denote polynomials or series; lower case letters 

will denote scalars.

The zero of (1.1), a function S(z) such that P(S(z),z) = 0, is called 

the algebraic function corresponding to P(W,z). Let zn be an arbitrary 

complex number, finite or infinite. It is known from the general theory of 

algebraic functions that S(z) has n fractional power series expansions around 

ZQ. By the computation of an algebraic function we shall mean the computa 

tion of the first N coefficients (including zero coefficients) of one of its 

expansions. (This will be made precise in Section 3.) The problem we study 

in this paper is the computation of one expansion of the algebraic function. * 

Our results can be modified for computing more than one expansion or 

all expansions of the algebraic function.

As described in most texts, the classical method computes algebraic 

functions by comparison of coefficients. It is not difficult to show that 

the method can take 6(N ) operations, where n is the degree of P(W,z) with 

respect to W. Hence the classical method is very slow when n is large.

The main result of this paper is that every algebraic function can be 

computed fast. Let M(N) denote the number of operations sufficient to multiply 

two Nth degree polynomials over the field A. Let C(N) be the number of opera 

tions needed to compute any algebraic function. We prove that

C(N) = 0(nM(N)).



Since M(N) = 0(N2 ) (or M(N) = 0(N log N) if the FFT is used) , our algorithms 

are considerably faster than the classical method even for moderate n. It is 

an open problem whether or not a general algebraic function can be computed 

in less than 0(M(N)) operations.

The "fast computation11 of the title is because the coefficients of a 

"regular11 problem can always be computed fast by iteration (Section 5) and 

the general problem can be reduced to a regular problem (Section 6) with 

cost independent of N.

Brent and Kung [1976] showed that the cost for reversion of a polynomial,

which is a very special case of an algebraic function (see discussion later
"2 

in this section), is 0((N log N) M(N)). We stated above that the cost of

expanding an algebraic function is 0(nM(N)). These results are reconciled 

by the observation that we are considering the case that the degree n of 

P(W,z) with respect to W is fixed and independent of N, while Brent and Kung 

considered the case where n = N.

There are known examples of computation using Newton-like iteration in set 

tings such as algebraic number theory (Hensel [1908], Bachman [1964]), power 

series computation (Kung [1974], Brent and Kung [1976]), and the Zassenhaus con 

struction in p-adic analysis (Yun [1976]). Computation of algebraic functions
9

raises certain issues not present in these other settings; see especially

Section 6. As we will see in Section 5, there is nothing special about Newton-like

iteration; any "normal iteration" can be used.

Although the complexity results are stated asymptotically, Theorems 5.1 

and 6.1 give non-asymptotic analyses of the algorithms. Hence various non- 

asymptotic analyses can also be carried out.

We are interested in the computation of algebraic functions for a num 

ber of reasons. These include
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1. A number of problems where fast algorithms are known are special 

cases of algebraic functions. (More details are given below.)

2. There are numerous applications. For example, many generating 

functions of combinatorial analysis and functions arising in 

mathematical physics are algebraic functions. The integrands of 

elliptic and more generally Abelian integrals are algebraic func 

tions. See Section 9 for an example.

3. Algorithms for expanding algebraic functions are needed in systems 

for symbolic mathematics such as MACSYMA (Moses [1974]).

4. Algebraic functions are of theoretical interest in many areas of

mathematics. These include integration in finite terms (Ritt [1948]), 

theory of plane curves (Walker [1950]), elliptic function theory 

(Briot and Bouquet [1859]), complex analysis (Ahlfors [1966], Saks 

and Zygmund [1971]), and algebraic geometry (Lefschetz [1953]). 

Algebraic function theory is a major subject in its own right. See, 

for example, Bliss [1933] and Eichler [1966].

We exhibit special cases of algebraic functions where fast algorithms 

are known.

A. Reciprocal of a polynomial:

P(W,z) = AL (z)W - 1. (See Rung [1974].)

(Actually Rung uses P(W,z) = w" - A-(z) which is not of the form

(1.1), and allows A I (Z) to be a power series.)
«

B. nth root of a polynomial;

P(W,z) = Wn - AQ (z). (See Brent [1976, Section 13] where the AQ(Z) 

is allowed to be a power series.)
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C. Reversion of a polynomial:

Let F be a given polynomial with zero constant term. We seek a function G 

such thatF(G(z)) =* z. To see this is a special case of an algebraic func 

tion, let F (x) = a x + a -X + ... + ax. Then we seek G(x) 

such that anGT(z) -t- . .. -f a-G( z ) - z = 0. This is an instance of 

our general problem with A.(z) = a., i=l,...,n, An (z) = -z. 

See Brent and Kung [1976].

We summarize the results of this paper. In Section 2 we show that 

without loss of generality we can take z n = 0 and assume A (0) fi 0, Nota 

tion is established and a few basic facts from algebraic function theory 

are summarized in Section 3. The concept of normal iteration is introduced 

in Section 4 and convergence of normal iterations for regular problems is 

established in Section 5. In Section 6 we state and analyze the Newton 

Polygon Process, which reduces the general problem to a regular problem. 

A symbolic mode of computation with exact arithmetic

is introduced in Section 7. Section 8 shows that C(N) = 0(nM(N)). In Section 

9 we give a number of examples, several of which are more general than the 

theory of the preceding sections. The final section discusses 

extensions of the work presented here.

In this paper we analyze algorithms under the assumption that the coef 

ficient of power series are nnon-growing11 , e.g., all coefficient computations 

are done in a finite field or in finite-precision floating-point arithmetic. 

An analysis dealing with variable-precision coefficients is yet to be performed.
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2. PRELIMINARY TRANSFORMATIONS

Recall that we wish to compute one of the expansions around z^ of the 

algebraic function S(z) corresponding to

P(W,z) = An (z)Wn + ... + AQ (z),

i.e., P(S(z),z) = 0. In this section we show that after two simple trans 

formations we need only deal with the case that Z Q = 0 and An (0) £ 0. If we 

transform P(W,z) to P(W,z), then S(z) is defined by P(S(z),z) = 0. 

Consider first the case zn = °°. Let

(2.1) P(W;z) = zmP(W,-)
z

where m = max (deg A.)* By definition, an expansion of S(z) around zn = <»

is an expansion of S(z) around z n = 0.

Consider next the case that zn is any finite complex number . Define

P(W,z) » P(W,z-fz Q).

An expansion of S(z) around the origin is an expansion of S(z) around z = zn . 

For the remainder of this paper we shall therefore take zn = 0.

Let A (0) =0. Then the algebraic function S(z) corresponding to P(W,z) 

has one or more expansions with negative powers. Using the following trans 

formation, we need only deal with expansions with non-negative powers. It 

is convenient to use ord notation.

Definition 2.1. Let A(z) be an integral or fractional power series. If A(z) ^ 0, 

then ord(A) denotes the degree of the lowest degree term in A(z). If A(z) = 0, 

then ord (A) » °°.
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Choose non-negative integers p, and X to satisfy the following conditions:

p, -t- ord(An) = nX,

U + ord(A.) ^ iX, i=l,...,n-l.

Let

P(W,z) =

Then the coefficients of P(W,z), A.(z)> are polynomials with A (0) ^ 0, and 

S(z) has only expansions with non-negative powers. Since the expansions of 

S(z) are those of S(z) divided by z , it suffices to compute expansions of 

S(z) . For the remainder of this paper, we therefore assume that A (0) £ 0. 

(One should note, however, that the results of Section 5 hold without the 

assumption.)
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3. FACTS FROM ALGEBRAIC FUNCTION THEORY

We introduce some notation and state a basic result of algebraic func 

tion theory which characterizes the expansions of the algebraic function 

corresponding to

P(W,z) = An (z)Wn + ... + AQ (z).

There exist r positive integers dL,...,d such that d- + ... + d =* n and the 

expansions of the algebraic function are given by

I(3.D s i>j(Z ) => I-lfl gl*-A
£=0

for i=l,...,r and j=0,...,d.-l, where ^.is a primitive d.th root of unity 

and the s. - are complex numbers. For each i, the expansions S .,
1 y £ !> J

j^O,.... ,d.-l, are said to constitute a cycle.

The problem considered in this paper is to compute one expansion of an 

algebraic function. For notational convenience, let the expansion be denoted

by
JL

V d 
S(z) - I Sje   2 .

£=0

Hence our problem can be formulated as that of computing the value of d and 

the coefficients S Q ,S ,... . (In this paper S(z) represents either an alge 

braic function or one of its expansions, depending upon the 

context.) Note that since

. P(S(z),z) - 0,

we have
P(s,0) - 0.
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Thus, S Q is a zero of the numerical polynomial P(WiO).~We say our 

problem is regular with respect to s n if s is a simple zero of P(W,0). 

(In this definition, we allow A (0) to be 0 .) For a regular problem, we 

have d = 1, that is, the expansion S(z) is an integral power series. In 

Section 5, we shall show that a regular problem can always be solved by 

iteration. In Section 6, we shall show how the general problem can be 

transformed to a regular problem.
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4. NORMAL ITERATIONS

We introduce the concept of a normal numerical iteration. We give a 

novel definition of the order of a normal iteration which is convenient for 

the application to power series iteration. In the following section we will 

show that a normal iteration with order greater than unity will always con 

verge if used for a regular problem.

Let p(w) be the numerical polynomial P(W,0), let s be a zero of p(w), and 

let e = w - s denote the error of the ith iterate. To motivate the 

definition of normal iteration we first consider two examples.

Example 4.1'. Newton Iteration

(i)
TJ X ' SS TJ X '

From the Taylor series expansions

and f .^ , . ^
p'(wW)= P'(s) + P"(s) e u; + ...,

we have

(4.1)

where the c. are rational expressions of the derivatives of p at s, with 

powers of p 1 (s) as the denominators.

Example 4.2. Secant Iteration

(1+1) (i) w-w- , (i)V V -      —————— - V '
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Using the Taylor series expansions of p(w ) and p(w ) , we obtain 

(4.2) ,

where the c.. are rational expressions of the derivatives of p at s, with 
J^

powers of p 1 (s) as the denominators. 

Consider now a general iteration

  ~, (i+1) f/ (i) (i-1) (i-m), (4.3) w v = ty(w v ,w v ,...,w v ')i

which is defined in terms of rational expressions of p and its derivatives 

Assume that by using Taylor series expansions, we can derive

  ,v , v , -v (4.4) e v = ) c   (e v O ...(e v ')i t» ]«-- j-
where the c. . are rational expressions of the derivatives of p at s . V*"' Jm

Definition 4.1. § is said to be a normal iteration if the denominator of

each c. . is a power of p'(s). I 
V"'' Jm

From (4.1) and (4.2) we have that both Newton iteration and secant itera 

tion are normal. In fact, most commonly used iterations are normal. We 

prove that the classical one-point inverse interpolatory iterations i|r (see 

Traub [1964, Section 5.1]; in particular, ^ is the Newton iteration) are 

normal. Let q denote the inverse function to p and v = p(w ). Then

. . q(0 ) - ,(
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By definition of i|r ,

and

Note that

and that q (v ) is a rational expression of p(w) for k=l,...,j and 

has the denominator (p 1 (w )) . Expanding the p (w ) around s shows 

that i|r is a normal iteration. .

Definition 4.2. For a normal iteratio'n \|r defined by (4.3) and satisfying (4.4), 

we define the order p of t|r by

p = supr ^ J 0r+ j^" + ... + Jm for all (J 0 ,...,Jm)

such that c. ^ 0 for some polynomial p.)   
J 0""' Jm

By (4.1), it is easy to check that the Newton iteration has order 2. 

In general, it can be shown that the one- point inverse inter polatory iteration 

\|r has order p. Consider now the secant iteration. By (4.2), the order of 

the iteration is given by , ,

r\ 
p = sup{r|r £ jr + A for all j,£ £ l},

f\ 
which is equivalent to p = sup{r|r ^ r + l}. Hence p is the positive root

of r2 = r+1, i.e., p = <|) =
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5. REGULAR PROBLEMS: NORMAL ITERATIONS ON POWER SERIES

We show how normal numerical iterations with order greater than unity can 

always compute an expansion of an algebraic function for a regular problem. 

The main result is Theorem 5.1. As a corollary of this theorem we show that 

a Newton-like iteration always "converges quadratically11 . We also show the 

convergence of a secant-like iteration. We end the section with an example 

of a convergent first order iteration.

We begin with some definitions. Recall that a meromorphic series is a 

power series with a finite number of negative powers.

Definition 5.1. Given a meromorphic series A(z) and a real number a, then 

by the notation

B(z) s A(z) '(mod z0")

we mean B(z) is a finite series consisting of all terms of A(z) of degree < a.

Let i|r be a normal numerical iteration. Let the numbers w ,... ,w 

in (4.3), the defining relation for \|r, be replaced by meromorphic series 

W (l) (z),...,W (l~m) (z). Then the iterate W (l"fl) (z) defined by

is in general a meromorphic series, provided that it is well-defined. Let 

E^(z) = W^ (z) - S(z) denote the error of the ith iterate.

Definition 5.2. We say an iteration on meromorphic series converges if
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lim ord(E^)

Our main result for regular problems is given by the following theorem. 

Theorem 5.1. If

(i) P(s 0 ,0) = 0, P'(s 0 ,0) £ 0, 

(ii) t|i is a normal iteration with order p > 1,

(iii) VT 0) (z) = S Q , W (z) ,...,W (z) are polynomials in z such

that ord(E^ 0 ^ P for i=0,...,m, where S(z) is the expansion 

starting with the term s n ,

(iv) ' t(W (l) (z),W (l" 1) (z),...,W (l"m) (z)), i-m,mfl,..., is a well-defined 

meromorphic series ,

then the iterates

TT (i-f-l) , ^ _ l/TT (i)/ x TT (i-l)/ v TT (i-m) , NX , , p N W v (z) = \1;(W V y (z),W v / (z),...,W v (z)) (mod Z K )

satisfy the property that

(5.1) ordCE< 1+1) ) ^pi+1 ,

and hence the iteration converges.

Proof. Let i = m. By (iv) ,' t(W (m) (z) ,W (m" ̂  (z) , . . . ,W (0) (z)) is a well-defined 

meromorphic series. Since (4.4) is derived by Taylor series expansions and 

since the Taylor series expansion is valid over meromorphic series, we have 

that

(5.2) E**"^) - 7 C. . (E<n') ( 2))V..(E<0>(z)) J'''
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holds for meromorphic series. The constant term of P f (SXz)»z)" is P'fs/oOJ* which 

is non-zero by condition (i) . Thus by conditions (ii) and (iii) , (5.2) 

implies that

ord(E (mfl) ) ^ min( j() pm + J/" 1 + . . . + Jm>

where the minimum is taken over all the (j n ,«..,j ) such that C. .is
U m V**" Jm 

non-zero for some P(W,z) . By the definition of p in Section 4, we have

, ^- . mfl ord(E ) ^ p

By induction, (5.1) can be established for i=nH-l >mf2 , . . . , using similar argu

ments. The convergence of the iteration follows immediately from Definition

5.2.  

Remark 5   1   Thus well-defined normal 'iterations on regular problems always 

converge. This behavior is strikingly different from the behavior of these 

iterations on numerical polynomials where only local convergence is assured 

unless strong conditions are imposed. Note that the expansion S (z) may con 

verge in only a small disk around the origin; we shall not pursue the domain 

of convergence here. D

Remark 5.2. (5.1) shows that W is a power series with non-negative powers 

only rather than a meromorphic series. Until this fact was established it 

was necessary to work over the field of meromorphic series.  

Remark 5.3. Observe that we do not define order for power series valued 

iteration but only for normal numerical iterations.  
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Remark 5.4. Note that in Theorem 5.1 we need not assume that AR (0) £ 0. 

This fact will be used in the proof of Theorem 6.1.  

We apply Theorem 5.1 to two specific iterations. We begin with a 

Newton-like iteration, which is defined by (5.3) below. This iteration is ob 

tained from the numerical Newton iteration. In the power series setting we 

hesitate to call it Newton iteration, since Newton [1670] actually used a dif 

ferent method for computing the expansion. His method computes one coeffici 

ent per iteration and in general is not as efficient as the Newton-like 

iteration defined below. We will discuss the Newton-like iteration in some 

detail since we anticipate it will be the most commonly used iteration 

in practice. Here and elsewhere we use the notation P f (W,z) = -^-(W,z). Re 

call that the numerical Newton iteration is a normal iteration of order 2. 

From Theorem 5.1 we have

Corollary 5.1. If

(i) P(s Q ,0) = 0 and P'(s Q ,0)> 0, 

(ii) W (0) » S Q , i.e., ord(E (0) ) :> 1,

then the iterates W generated by the Newton-like iteration,

(5.3) w<z> S W(z) - , (mod Z
P'(W U; (z),z)

are well-defined and satisfy

(5.4) ord(E (i) ) :> 2 1

for 1=0,1,2,..., and hence the iteration converges.
* 
A result similar to Corollary 5.1 has been proven independently by
Professor J. Lipson (Lipson [76]).
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Proof. We need only show that the iterations W^ (z) are all well-defined. 

This holds since for all i the constant term "in'P 1 (W X ,z) is P ! (s Q ,0), 

which is non-zero.  

Remark 5.5. If we define the valuation of a power series A(z) to be b"°r - 

where b is any positive constant, then Corollary 5.1 follows from a known 

theorem in valuation theory (see Bachman [1964, Ch. II, Theorem 4.2]) .

It is easy to show that if S(z) is a polynomial of degree q, then itera 

tion (5.3) will compute it in LLogo <lJ + 1 iterations. By a slight modifica 

tion of the hypotheses of Corollary 5.1 we can replace the inequality (5.4) 

by equality.

Corollary 5.2. If

(i) P(s n ,0) » 0, P f (s n ,0) £ 0, P"(s n ,0) ^ 0,

(ii) W (0) = s 0 , ord <g w') = 1, 

then the iterates generated by the Newton-like iteration satisfy ord(E^ ) = 2\

Corollaries 5.1 and 5.2 can easily be generalized to any one-point in 

verse interpolatory iteration i|r .

As our second example we consider a secant-like iteration. One has to 

be somewhat careful in defining this iteration. A straightforward approach 

would generate iterates by

. 
(5.5) W ^W - ^   P(W) (mod"

where (() = (l+^/5)/2. Then W^ 14" ^ becomes undefined when W^ = W^ 1"" 1 . This 

happens when there is a "large11 gap between the degrees of two consecutive 

terms, in the expansion which we want to compute. A solution to the problem 

is given in the following Corollary. The idea is to use a perturbed W in
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(5.5) so that the denominator is guaranteed to be non-zero. 

Corollary 5.3. If

(i) P(s 0 ,0) = 0, P'(s 0 ,0) ^ 0, 

(ii) W (0) = 8, W (1) = S + s Z

then the iterates W generated by

(5.6) W ** - ' P(W) (modp(w u; )-P(w u~ i; )

are well-defined and satisfy

ord(E (i) ) 

where the F. is the ith Fibonacci number (i.e., F = 0,F 1 = 1 and F. 1 = F .+F . .)
-*- -r-i U J. 1"T~ J. JL jL"m J.

Proof . Consider the case i = 1. Clearly, VT ^ = W^ + z ^ W^°^ and 

ord(W -W ) ^ F«. Since by the Taylor series expansion,

and since P 1 (W ) has a non-zero constant term P f (s ,0), we have 

ord(P(W (1) ) - P(W (0) )) = ord(W (1) -W (0) ) ^F .

Hence P(VT ) ^ P(W^ '). This ensures that W^ is well-defined by (5.6). 

Note that for i = 1 (4.2) holds with E (1) replaced by E (1) = W (1) - S. 

Thus,
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ord(E<2) ) * ordO^V0') - ord(E(1) ) -I- ord(E< 0) )

£ min(ord(E (1) ),F3) + ord(E (0;) ) ^ FS + F2 = F^

By induction, one can similarly prove that for 1=2,3,..., W is well 

defined and ord(E (l) ) ^

Results similar to Corollary 5.3 hold for other suitably modified itera 

tions with memory, (i.e., iterations with m > 0 in (4.3)).

So far we have only dealt with iterations of order > 1. We now consider 

an iteration with order one. Define

for 1=0,1,2,... . Then

m= (l)(5.7) e
p'(s)

(0) (i) _ s^l (e (i>)2 + V 
p'(s) e 2p'(s) ( ^ L

where the c . are rational expressions whose denominators are powers of 
J » *

p 1 (s) . This implies that the iteration is normal and has order p = 1. We 

may use the iteration on power series and obtain the following theorem which 

is an easy consequence of (5.7):

Theorem 5.2. If

(i) P(s Q ,0) = 0, P'(s 0 ,0) / 0. 

(ii)
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then the iterates W generated by

(5.8) W(2) 5 W z)) (»odz1+2 )

are well-defined and satisfy

ord(E (l) ) ^ 

and hence the iteration converges.  

The iteration (5.8) can be used, for example, to find the initial iterates 

of an iteration with memory.
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6. THE GENERAL PROBLEM: NEWTON POLYGON PROCESS

Recall that our general problem is to compute the value of d and the co 

efficients s n ,s ,... of an expansion

S(Z)

of the algebraic function corresponding to a given

P(W,z) = A (z)Wn + ... + An (z). 
n U

In this section, we show that the general problem can be reduced to a regular 

problem by transforming P(W,z) to some P(W,z). The regular problem can then 

be solved by normal iterations, as described in Section 5.

Since P(s n ,0) = 0, s n can be obtained by finding a zero of the numerical

polynomial P(W,0). In this section we assume that finding a zero of a numer-

& 
ical polynomial is a primitive operation. (This assumption will be removed

in the next section by carrying the zeros symbolically.) If P 1 (s ,0) fi 0, 

we hdve a regular problem solvable by a normal iteration. Hence we assume 

that P 1 (s n ,0) = 0. Then s n is a multiple zero of the numerical polynomial 

P(W,0) and there is more than one expansion of the algebraic function start 

ing with s n * We would not expect an iteration starting with W = s to 

converge since the iteration would not "know" to which expansion it should 

converge. Intuitively the convergence of an iteration requires that it 

start with an initial segment of a unique expansion. This suggests that we 

find an initial segment of a unique expansion starting with s . The existence 

of the segment is guaranteed only if no two expansions coincide, i.e., the

I.e., zeros of a polynomial can be computed to any prespecified precision.
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discriminant D(z) of P(W,z) with respect to W is not identically equal to zero. 

Therefore, in this section we shall assume that

D(z) £ 0.

The assumption holds when P(W,z) is irreducible or simply when P(W,z) is 

square-free (Walker [1950, Theorem 3.5]). Hence we can make this condi 

tion hold by using factorization or square-free decomposition algorithms 

but do not pursue this here.

A classical method for finding an initial segment of a unique expansion 

uses a geometric aide known as the Newton Polygon, which provides a conveni 

ent tool fotr analyzing a set of inequalities. (Some authors refer to Puiseux 1 s 

Theorem because of the work of Puiseux [1850] but clearly the idea originated 

with Newton [1670, p. 50].) The method has not been subject to algorithmic 

analys is.

We state the Newton Polygon Process adapting, with some modifications, 

the description in Walker [1950]. In Theorem 6.1 we show that the Newton 

Polygon Process transforms the general problem to a regular problem. Theorem 

6.1 also gives the connection between the number of identical terms in at 

least two expansions and the number of Newton Polygon stages. Theorem 6.2 

gives an a priori bound on the number of stages which differs by at most a 

factor of two from the optimal bound. Example 6.1 shows that in general 

P(W,z) must be transformed to a new polynomial P(W,z); it is not enough to 

compute an initial segment of a unique expansion and use it as the initial 

iterate for a normal iteration on the original polynomial P(W,z).

In the following algorithm, let A^ k (z) be the coefficient of W 1 in

Pk (W,z). If Ai>k (z) £ 0, let a. )kzQ'i ' k be the lowest degree term in A. ( z ) .
i,k
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Newton Polygon Process

Nl. k «- 1, Pk (W,z) «- P(W,z).

N2. Plot the points f. , = (1,0-. ,) on the xy plane for i such that
1 y K. JL } K

A. v (z) p 0. Join f to f . with a convex polygon arc each i j K. u j K. n, K.

of whose vertices is an f. . and such that no f lies below any
1 > K- JL y K

line extending an arc segment.

N3. If k = 1, choose any segment y + y x = (3 of the arc. If k > 1, 

choose a segment with YU > 0. (Such a segment always exists.) 

Let g, denote the set of indices i for which f. , lies on the
K 1 ̂ K

chosen segment. Solve the polynomial equation 

(6.1) = 0.

Let c be any of the non-zero roots. (Such a non-zero solution 

always exists.)

N4. If c is a simple zero, go to N6; else go to N5.
 Pk \

N5. Pk+1 (W,z) *- z «P^z (W+ck),z), k <- k+1. Go to N2.

N6. t *- k. (Hence t represents the number of stages taken by the

Newton Polygon Process.)
-3 Y

P(W,Z) «- Z t • P fc ( z ^,2),

P(W,z) - P(W,zd),

where d is the smallest common denominator of y ,...,y . (y may
1 fc X 

be zero. If YI = 0 we assume that Y-I has one as its denominator.)

Terminate the proc.ess. I
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Lemma 6.1. After the Newton Polygon Process terminates, the following 

properties hold:

(i) The coefficients of P(W,z) are polynomials in z. 

(ii) c is a simple zero of the numerical polynomial P(W,0).

Proof. It is easy to verify (i) . To prove (ii) we show that

P(W,0) =

For notational convenience, let a. = a. , a = a. , p = 3, y = y> g = g
1,L 11, L It t t

and let g d'enote the set complementary to g with respect to {0,l,...,n}.

Let

V> /VT _\ _ X_ _ *•*•

where ord(Q.) > a.. Then

Qn (z))Wn + ... +(a0z + QQ (z)),

>- iv-B, a - z w + Z z
j<Eg 1=0

Since a± -f iy < ^ + j Y, vi   g, Vj 6 i,

P(W,0) = P(W,0) = a.W\
i

Theorem 6.1. After the Newton Polygon Process terminates, the following 

properties hold:

(i) The general problem of computing an expansion S(z) of the algebraic 

function corresponding to P(W,z) has been reduced to the following 

regular problem: Compute the expansion S(z) starting from c
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for the algebraic function corresponding to P(W,fc). Then 

let

,+...Y -i~z

,-t Y-L+...+Y-,
(ii) S(z) is the unique expansion with starting segment /c.z ,* '. i i i=l

-j .Yj+.-.+Yi 
(iii) There is more than one expansion which starts with ) c.z

i=l 
'for every j < t. That is, there are at least two expansions

which coincide in their first t-1.terms.

Proof, By Lemma 6.1, we conclude that the problem of computing S(z) is regular. 

(Note that the leading coefficient of P(W,z) may vanish at z = 0. See Remark 

5.4.) (i) follows from P(W^z) = P(W,z ) and

n.-., . ---

(ii) and (iii) hold since the Newton Polygon Process does not terminate 

until c is a simple zero.

Since there is only one expansion which starts with 

we might expect that if this segment is taken as the initial iterate 

for a normal iteration then .the iteration on the original polynomial P(W,z)



-25-

rather than on the transformed polynomial P(W,z) will converge. The follow

ing example shows this not to be the case; in general we must use the trans 

formed problem.

Example 6.1. This problem appears in Jung [1923, p. 29] although it is not 

used to illustrate the point we wish to make here. Let

P(W,z) = W2 - (2+z-fz 3)W + 1 -f z + ~z2 + z4 .
4

The two expansions are

S^z) = l + |z + z3/2 + ..., S2 (z) = 1 + |z - z3/2 -f ... .

Suppose that we want to compute S-(z) by the Newton- like iteration. If we 

take W (0) = 1 + |z + z3/2 in

W (1+D
(i) P'(W U; ,z)

we find W (1) » 1 + -z - |z5/ 2 + ... . W (1) differs from S l even in the co 

efficient of z I Though there is only one expansion starting with W^ , namely, 

sp the Newtort-like iteration starting from VP does not converge to S 1 . Q

We illustrate the Newton Polygon transformation, the transformations of 

Section 2 and the iterative process with another problem in Jung [1923, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding

3 2 to P(W,z) = -W 4- zW 4- z around z = °°. The first transformation of Section

2 3 
2 converts P(W,z) to -z W 4- zW -f 1, which is then converted by another

3 transformation to -W + zW + z. The Newton Polygon Process yields
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t - 1, P x = 1, YI = 1/3, c l = 1, d = 3 and P(W,z) » -W3 + zW + 1. Take 

W =1. Then the Newton-like iteration (5.3) applied to P(W,z) gives

W (1) = 1 + z/3, W (2) = 1 + z/3 - 23/81. 
Thus

Let T(z) = S(z)/z = z~ 2/3 + z~ l/ 3/3 - z^ 3/8l + ... . Then an expansion of 

the given problem is

z 3 81 

The other two expansions are

... ;

where 9 is the primitive third root of unity.

The following theorem gives an a priori bound on the number t of stages 

in the Newton Polygon Process which differs by at most a factor of two from 

the optimal bound.

Theorem 6.2.

(6.2) t £ ord(D) + 1

Furthermore for all t there exist problems for which t = ~ ord(D).

Proof. The theorem is trivial if t = 1. We assume that t ^ 2. Then by 

(iii) of Theorem 6.1, there are at least two series expansions S 1 and S2 

which agree in the first t - 1 aon~sero terms. Write
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a i

d2

1=1

where the [a.], [b . j are strictly increasing non-negative integer sequences

such that none of the s , s vanish and s = s , a./dn = b./dL
*-y3-^ ^>b^ ' a i 2,b^ il i 2

for i=l, . . . ,t-l. Without loss of generality, assume d ^ d . Note that the

cycle which contains S has the series:

_J:
r J«L d !

and the cycle which contains S has the series

CO
"

sn . =

where 2
d l d2 

5^ = e and ^ = e

Note that we do not rule out the possibility that $ l and S2 are in the same 

cycle and that therefore the cycles [s^} and {S2J } are identical. Since

ja. di J i

and  1/d 1 - b./d2 for l-l....,t>l. S^. and s^ agree in the first t-1 terms 

for j=0,».. ,d 1-l. Hence,
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-ord(S -S ) £ -i-- = -i 
1>J 2,j d2 d

Let
d l' 1

v(z) = n (s .(z)-s
j=0 >J >J 

Then

ord(D) ^ ord(V)

;> d (at=I + ( +

Since the [a.] is a strictly increasing non-negative integer sequence, 

a ^t-2. Thus, ord(D) ^t-1 which establishes (6.2). Let

= S 1 (z) - z t

j=0
and

P(W,z) = (W-S 1 (z))(W-S2 (z)).

2 
By Theorem 6.1, the Newton Polygon Process has t stages. ord(D) = ordCCS^-S^ ) = 2t

which completes the proof. B

Theorem 6.2 gives a computable a priori bound but requires the computa 

tion of ord(D). A very cheap bound is given by

Corollary 6.1.

t ^ m(2n-l) -t- 1

where m = max (deg A ) . 
0^i3i

Proof, D (z) is a determinant of order 2n-l whose elements are polynomials 

of maximal degree m. Hence- D(z) is a polynomial of degree at most m(2n-l). 

Since D(z) cannot vanish identically, ord(D) £m(2n-l).  
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7. A SYMBOLIC MODE OF COMPUTATION

The Newton Polygon Process involves computing roots of polynomial equa 

tions (6.1). Instead of actually solving the equations, in this section we 

carry the roots symbolically through their minimum polynomials. We assume 

that the underlying field A is one where exact arithmetic can be performed such 

as a finite field or the field Q of rational numbers. Then the expansions can 

be computed symbolically with exact arithmetic. The following example, where 

A is taken to be Q, will illustrate the idea.

Example 7.1.

P(W,z) = W3 + (z+z2 )W2 - 2z2W - 2z3 ,

We shall compute an expansion of the algebraic function corresponding to

P(W,z), using exact rational arithmetic. The first stage of the Newton

3 2 Polygon Process yields Y-I ~ 1> 3-, = 3 and c- + c - 2c -2 = 0, Since

c- + c - 2c 1 - 2 = (c -2) (c +1) , c- = J2, -Jl or -1. Suppose that we are 

interested in the expansion starting with JI or -Jl. Instead of using an

approximation to <J2 or -/\^, we carry c- symbolically through its minimal

2 polynomial M,(x) = x - 2. That is,

(7.1) c2 - 2 = 0.

Since the equation has only simple zeros, the Newton Polygon Process termi 

nates with t = 1, and

P(W,z) = z" 3 P(zW,z)

= W3 + (l+z)W2 - 2W - 2.

We use the Newton-like iteration (5.3) to compute S(z) such that P(S(z),z) = 0,
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Let W (0) (z) = C . Then

(1) c3-Kl-fz)c 2-2c -2 
W U; (z) ^ c - -i- - ——— i ——— ±— (mod z2 )

Using (7.1), we obtain

Similarly all coefficients of z in W (z) can be represented as linear 

polynomials in c^ with rational coefficients. By (il) of Theorem 6.1, a 

solution to the given problem is

12 S(z) = zS(z) = c z - -z -f ...,

which represents both the numerical expansions starting with Jlz and -A/?Z. •

In general, when the Newton Polygon Process is performed, c,, k~l,*..,t, 

can be carried symbolically through its minimum polynomial M, (x) over 

Q(c.j , . . . ,c, i) . Then all the coefficients of the expansion S(z) are in the 

extension field Q(c-,...,c ). To simplify the computation, one can compute 

from M, (x) the minimum polynomial M(x) for c, where c is a primitive element 

of the extension field Q(c., , . . . ,c ) , i.e., Q(c) = Q(c ,...,c ). Then the

coefficients of the expansion S(z) can all be represented by polynomials of h- 1

the form • q.c , where h =* deg M and q. € Q. S(z) can be computed entirely 

with exact" arithmetic . Furthermore, S(z) give a simultaneous representation 

pf h numerical expansions; S(z) can be used to produce h numerical 

expansions by substituting zeros of M(x) for c in the coefficients of S(z). 

(This implies that h £ n.)
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8. ASYMPTOTIC COST ANALYSIS

In this section we analyze the cost of computing the first N terms 

(including zero terms) of an expansion for large N. Since the Newton 

Polygon Process is independent of N a by Theorem 6.1 we can without loss of 

generality assume the problem is regular. Furthermore, since the asymptotic re 

sults will be the same for any normal iteration with order greater than one, 

we shall assume that the iteration (5.3) is used. Our cost measure is the 

number of operations used over the field A. If we carry zeros symbolically as 

described in Section 7, then we work over an extension field A(c) rather

than A. If the minimum polynomial for c is of degree h, then operations

2 in A(c) are more expensive than in A by a factor of 0(h) or 0(h ).

Since h is independent of N, in our analysis we shall not be concerned with 

whether or not zeros of polynomials are carried symbolically.

Let M(j) be the number of operations needed to multiply two jth degree 

polynomials over the field A. Assume that M(j) satisfies the following mild 

condition: there are a, 3 € (0,1) such that

(8.1) M(fcyjl) * pM(Tjl)

for all sufficiently large j. Observe that W (z) is a polynomial of degree 

at most 2 1 - 1, and that the computing Vr + ^ (z) by (5.3) takes 0(nM(2 1-l)) 

operations. Hence the total cost of computing N terms in the expansion is 

0(n(M(N) 4- M(TN/2l) + M(fN/4l) -f ...)), which is 0(nM(N)) by condition (8.1). (See 

Brent and Rung [ 1976, Lemma 1.1].) We summarize the result of this section 

in the following
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Theorem 8.1. The first N terms of an expansion of any algebraic function 

can be computed in 0(nM(N)) operations over the field A.
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9. EXAMPLES

We choose as our examples calculation of the Legendre polynomials 

through their generating function, solution of an equation with transcen 

dental coefficients, and calculation of the expansion of a complete ellip 

tic integral. Although the first two examples are not covered by the theory 

of this paper, they are covered by easy extensions of our results. Examples 

9.1 and 9.3 are illustrations of the many applications of algebraic function 

expansions.

We use the Newton-like iteration (5.3) in all three examples with the 

notation:

P = P(W (1) (z) ,z) , PI = P' (W (i) (z) ,z) = -2L- (W (i) .z 1 ) , 6. = P./P' . . 
1 x dww 111

Within each iteration step we exhibit "enough terms so that W (z) can be 

computed to 2 - 1 terms.

Example 9.1. Legendre Polynomials

The generating function for Legendre polynomials,

.1 *
(l-2tz+z2 ) 2 = / L.(t)z 1 >—> i

i=0 
satisfies

P(W,z,t) = (l-2tz+z2)W2 - 1. 

Take W (0) = 1. Then

PQ = -2tz, PJ = 2, 6 Q = -tz, W (1) - 1+tz.

Pt = (l-3t2 )z2 + (2t-2t3)z3 , P^ = 2(l-tz), 8 1 = |(l-3t2 )z2 + |(3t-5t3 )z3 ,

12213 3 VT = 1 + tz + |(3t -l)z + |(5t -3t)z .
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Hence the first four Legendre polynomials are

L0 (t) = 1, L x (t) = t, L2 (t) = |(3t2-l) and

B. Neta, a student at CMU, computed the first 32 Legendre polynomials 

by this iteration using MACSYMA:

This example is for illustration; this may not be the best way to compute 

Legendre polynomials. H

Example 9.2

2 
P(W,z) = W 4* (z-M)W + sin z.

2 2 Z fO")Note that sin z = z - -^7- -f — -—+... . Take W vw = 0. Then
•

PQ - z, P£ = 1, 60 = z, W (1) = -z,

Example 9.3. A Complete Elliptic Integral 

Define the integral by

TT

f(t) = f2 (l-t2 sin2 6)' 1/2d9.
0 

Let

P(W,z) = (l-z)W2 - 1, z = t2 sin2 9.

Take W = 1. Then

p = -7 P 1 = 9 A = «~ U^ ^ = 14.—
0 ' 0 ' 0 2* -1 + 2*

32 13 39 S ^ PI . _|Z 2 . |z3> p , . 2 . Zf fii . .|22 . I_z3>

..(2) . ^ z ^ 3 2 J 5 3 W - = 1 + - + -z + _z .

(2) W is an initial segment of the algebraic function S(z) corresponding to

P(W,z). Since
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TT

22 2f(t) = JS(t sin 9)de, 
0

f(t) =
where

TT

2i
\ = Sin0d9.

For this simple example the result can be obtained directly by a binomial 

expansion but this cannot of course be done in general.
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10. EXTENSIONS

Our aim in this paper has been to show that algebraic functions form 

an interesting and useful domain in which to do algorithmic and complexity 

analysis and to exhibit fast algorithms for computing any expansion of an 

algebraic function. In this initial paper we have restricted ourselves to 

the "pure" case of algebraic functions where P(W,z) is a polynomial in W 

with polynomial coefficients. We list some additional problems which we 

hope to discuss in the future. For a number of these our results (especi 

ally on regular problems) apply with minor modifications; others will require 

major new results.

1. Let W be a scalar variable but take z to be a vector variable. Re 

sults similar to those in Section 5 should hold. We have seen this 

case in Example 9.1.

2. Let the coefficients of P, A.(z)> be power series (rather than poly 

nomials) . Results similar to those in Section 5 should hold. See 

Example 9.2.

3. Let both W and z be vector variables. This is the fully multivari- 

ate case, which, except for regular problems, is in general very 

difficult.

4. The domain over which we have worked is not algebraically closed

since problems with polynomial coefficients lead to solutions repre 

sented by fractional power series. If the coefficients are frac 

tional power series, the domain is algebraically closed (Puiseux f s 

Theorem, see, e.g., Lefschetz [1953]) and this is therefore a

natural setting. The Newton-like iteration is still valid on frac-
* * 

tional power series for regular problems.
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5. The field A need not be restricted to the complex number field. 

It is of particular interest to extend all the results to finite 

fields.

6. An important computational model is the "fully symbolic" one where 

the coefficients of the expansion series are expressed as functions 

of the input coefficients,

7. Perform complexity analysis which includes the cost due to the 

"growth" of coefficients.

ACKNOWLEDGMENTS

We thank H. Wozniakowski, R. Fateman, B. Neta, and A. Werschulz for 

their comments on the manuscript.



-38-

BIBLIOGRAPHY

Ahlfors [1966] Ahlfors, Lars V., Complex Analysis, Second Edition, McGraw- 
Hill, New York, 1966.

Bachman [1964] Bachman, G., Introduction to P-Adic Numbers and Valuation 
Theory, Academic Press, New York, 1964.

Bliss [1933] Bliss, Gilbert Ames, Algebraic Functions, Amer. Math. Soc. 
Colloquium Publications, Volume XVI, 1933.

Brent [1976] Brent, Richard P., "Multiple-Precision Zero-Finding Methods 
and the Complexity of Elementary Function Evaluation/1 in Analytic Com 
putational Comftexity, edited by J. F. Traub, Academic Press, New York, 
1976, 151-176.

Brent and Rung [1976] Brent, R. and Rung, H. T., Fast Algorithms for
Manipulating Formal Power Series, Technical Report, Computer Science 
Department, Carnegie-Mellon University, January 1976.

Briot and Bouquet [1859] Briot, C. and Bouquet, J., Theorie des Fonctions 
Elliptiques, Mallet-Bachelier, Paris, 1859.

Eichler [1966] Eichler, M., Introduction to the Theory of Algebraic Numbers 
and Functions, translated by G. Striker, Academic Press, New York, 1966.

Hensel [1908] Hensel, K., Theorie der Algebraischen Zahlen, Teubner, 
Berlin, 1908.

Jung [1923] Jung, Heinrich W. E., EinfUhrung in die Theorie der Algebraischen 
Funktionen einerVer&nderlichen, Walter de Gruyter, Berlin, 1923.

Kung [1974] Kung, H. T., "On Computing Reciprocals of Power Series," Numer. 
Math. 22, 1974, 341-348.

Kung and Traub [1976] Kung, H. T. and Traub, J 9 F., "Fast Algorithms for 
Algebraic Functions" (Abstract), in Algorithms and Complexity, edited 
by J. F. Traub, Academic Press, New York, 1976, 473.

Lefschetz [1953] Lefschetz, S., Algebraic Geometry, Princeton University 
Press, Princeton, New Jersey, 1953.

Lipson [1976] Lipson, J. "Newton 1 s Method: A Great Algebraic Algorithm," 
in SYMSAC 76, edited by R. D. Jenks, 1976.

Moses [1974] Moses, J., "MACSYMA - The Fifth Year," SIGSAM Bulletin 31, 
August 1974, 105-110.

Newton [1670] Newton, Isaac, "Methods of Series and Fluxions," in The
Mathematical Papers of Isaac Newton Volume III, edited by D. T. Whiteside, 
Cambridge University Press, 1969.



-39-

Puiseux [1850] Puiseux, V. A. , nRecherches Sur Les Fonctions Algebriques, 11 
J. Math. 15 (1850), 365-480.

Ritt [1948] Ritt, J. F., Integration in Finite Terms, Columbia University 
Press, 1948.

Saks.and Zygmund [1971] Saks, S. and Zygmund, A., Analytic Functions, Third 
Edition, Elsevier, New York, 1971.

Traub [1964] Traub, J. F., Iterative Methods for the Solution of Equations, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

Walker [1950] Walker, Robert J., Algebraic Curves, Princeton University 
Press, Princeton University, 1950.

Yun [1976] Yun, David Y. Y., "Hensel Meets Newton - Algebraic Constructions 
in an Analytic Setting, 11 in Analytic Computational Complexity, edited 
by J. F. Traub, Academic Press, New York, 1976, 205-216.


