lunes, 27 de agosto de 2012

Fractales


Fractal

Un fractal es un objeto geométrico cuya estructura básica, fragmentada o irregular, se repite a diferentes escalas.[1] El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del Latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal. La propiedad matemática clave de un objeto genuinamente fractal es que su dimensión métrica fractal es un número no entero.

Si bien el término "fractal" es reciente, los objetos hoy denominados fractales eran bien conocidos en matemáticas desde principios del siglo XX. Las maneras más comunes de determinar lo que hoy denominamos dimensión fractal fueron establecidas a principios del siglo XX en el seno de la teoría de la medida.

Geometría Fractal

Es geometría que no distingue entre conjunto matemático y objeto natural. Este nuevo paradigma engulle paradigmas anteriores proyectando un modelo que inagura una nueva zona o región de lo real.

Tómese un número complejo, multiplíquese por sí mismo y súmese el número inical; tómese el resultado, multiplíquese por sí mismo, súmese el inicial... y así sucesivamente. A esta iteración en principio errática se le asignan puntos sobre un plano. Disponga papel, lápiz y moneda con cara y cruz, fijemos ciertas reglas para cada lanzamieno; por ejemplo desplazar el punto X centímetros al noreste si sale cara y acercarse un 50% al centro inicial si sale cruz. Se perfila, progresiva y sorprendentemente el dibujo de la hoja de helecho (véase fig. 1) mientras el ordenador hace esta tarea menos ardua en pantalla y en décimas de segundo.

Conjunto de julia

Los conjuntos de Julia, así llamados por el matemático Gaston Julia, son una familia de conjuntos fractales que se obtienen al estudiar el comportamiento de los números complejos al ser iterados por una función holomorfa.

El conjunto de Mandelbrot es el más conocido de los conjuntos fractales y el más estudiado. Se conoce así en honor al matemático Benoît Mandelbrot, que investigó sobre él en la década de los setenta del siglo XX.

Este conjunto se define así, en el plano complejo:
Sea c un número complejo cualquiera. A partir de c, se construye una sucesión por inducción:


Si esta sucesión queda acotada, entonces se dice que c pertenece al conjunto de Mandelbrot, y si no, queda excluido del mismo.

Por ejemplo, si c = 1 obtenemos la sucesión 0, 1, 2, 5, 26… que diverge. Como no está acotada, 1 no es un elemento del conjunto de Mandelbrot.

En cambio, si c = -1 obtenemos la sucesión 0, -1, 0, -1,… que sí es acotada, y por tanto, -1 sí pertenece al conjunto de Mandelbrot.

A menudo se representa el conjunto mediante el algoritmo de tiempo de escape. En ese caso, los colores de los puntos que no pertenecen al conjunto indican la velocidad con la que diverge (tiende al infinito, en módulo) la sucesión correspondiente a dicho punto. En la imagen de ejemplo, observamos el rojo oscuro indica que al cabo de pocos cálculos se sabe que el punto no está en el conjunto mientras que el blanco informa de que se ha tardado mucho más en comprobarlo. Como no se puede calcular un sinfín de valores, es preciso poner un límite y decidir que si los p primeros términos de la sucesión están acotados entonces se considera que el punto pertenece al conjunto. Al aumentar el valor de p se mejora la precisión de la imagen.

Por otra parte, se sabe que los puntos cuya distancia al origen es superior a 2, es decir, no pertenecen al conjunto. Por lo tanto basta encontrar un solo término de la sucesión que verifique |zn| > 2 para estar seguro que c no está en el conjunto.

 

Fractales en la naturaleza

Las formas de la naturaleza son fractales y múltiples procesos de la misma se rigen por comportamientos fractales.Esto quiere decir que una nube o una costa pueden definirse por un modelo matemático fractal que se aproxime satisfactoriamente al objeto real. Esta aproximación se realiza en toda una franja de escalas , limitadas por valores mínimos y máximos.

EJEMPLOS DE MODELOS FRACTALES:

LORENZ turbulencias atmosféricas y corrientes marinas.
HENON oscilaciones sufridas por cuerpos celestes que hacen que su trayectoria no sea completamente elíptica.
CURVAS DE KOCH ALEATORIA fronteras de un país, trazado de una costa, trazado de un río.
FRACTALES tipo ARBOL sistema arteriales y venosos.
 
 
 

Triángulo de Sierpinski


El triángulo de Sierpiński es un fractal que se puede construir a partir de cualquier triángulo.

Mediante homotecias

Como en la mayoría de los fractales, existen varias maneras de obtener la misma figura (triángulos). En este caso, todos los procesos implican las tres homotecias centradas en los vértices del triángulo, de razón 1/2. Notémoslas ha, hb y hc.
Es fácil observar que ésta figura contiene tres reducciones de sí misma: El triángulo ADE con todo su contenido es una reducción exacta del triángulo ABC, y lo mismo se puede decir de CDF y de BEF. Estos tres clonos son justamente las imágenes de ABC por ha, hb y hc. Y como no quedan puntos del fractal fuera de éstas tres reducciones, se puede escribir (T designa el triángulo de Sierpiński):

T = ha(T) hb(T) hc(T)

En otras palabras, T es invariable por la aplicación del plano definida así: f(M) = {ha(M), hb(M), hc(M)}, donde M es un punto cualquiera del plano. Ésta aplicación es más abstracta de lo que parece pues su conjunto de llegada (codominio) no es el plano mismo sino las partes de él, o sea el conjunto de todas las figuras posibles del plano. Se puede extender el dominio de f a las partes del plano así: f(F) = ha(F) hb(F) hc(F) donde F es una figura cualquiera del plano.
Visto así, T es un punto fijo de f. El único, aparte del conjunto vacío, de escaso interés geométrico.
T es también un atractor de la aplicación f: si se considera una figura (de preferencia sencilla) T0, y se construyen su imágenes sucesivas T1 = f(T0), T2 = f(T1) = f 2(T0) ... Tn = f n(T0)... entonces la sucesión Tn se aproxima al triángulo de Sierpiński.

En la figura siguiente se ha tomado como figura inicial el triángulo ABC:

6 comentarios:

  1. quita esa porqueria de Estas en el block, las letras del cursor, estorban esa mierda

    ResponderEliminar
  2. quita esa porqueria de Estas en el block, las letras del cursor, estorban esa mierdax2

    ResponderEliminar
  3. Están bien mamalonas las letras del cursor jsjsjs

    ResponderEliminar