KINETICS -2 RATE LAW AND HALF LIFE

Dr. Sapna Gupta

RATE LAW

- Rate of reaction is dependent on the concentration of reactants.
- Rate of reaction is then given by the rate law. This is an equation that relates rate of reaction to the concentration of a reactant raised to various powers. The proportionality constant, *k*, is the rate constant.

For the generic reaction

$$aA + bB + cC \rightarrow dD + eE$$

the rate law is

Rate =
$$k[A]^x[B]^y[C]^z$$

- Where *k* = rate constant (specific for the reaction at a particular temp.)
- *xyz* are integers and called order of reaction (calculated experimentally)
- *x+y+z* is the overall order of reaction.

ORDER OF REACTION

- **0 order** changing the conc. of reactants does not affect rate of reaction.
- **1st order** rate directly proportional to concentration i.e. if you double the conc. you double the rate of reaction.
- **2nd order** exponential relationship i.e. if you double the conc. you quadruple the rate of reaction.
- Sum of exponents (order) indicates overall reaction order

For example, for the reaction below:

$$2NO_2 + F_2 \longrightarrow 2NO_2F$$

Rate = $k [NO_2][F_2]$

Order of reactions are 1 for both NO_2 and F_2 (we can write either 1 or no integer to represent 1)

Overall order is 2.

DETERMINING ORDER OF REACTION

- To obtain order of reaction, a series of reactions have to be performed.
- Depending on the number of reactants, one has to keep one reactant constant and change the concentration of the other and observe what happens to the rate of reaction.
- The process is then reversed i.e., keep the second one constant and change the first one and observe for change of rate of reaction.
- Once data is obtained calculate the order of reaction.
- The value of "k" can also be calculated after obtaining the orders of reaction.

EXAMPLE: ORDER OF REACTION

For a reaction between F_2 and ClO_2 , reaction rate data was collected as given in the table below. Calculate the order of reaction.

Experiment	[F ₂] (<i>M</i>)	[CIO ₂] (<i>M</i>)	Initial Rate (M/s)
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

• Find order (exponents) by comparing data Exp. 1 and 2: [F₂] is held constant

$$\frac{[\text{ClO}_2]}{[\text{ClO}_2]}_{1} = \frac{0.040 \text{ }M}{0.010 \text{ }M} = 4 \qquad \frac{[\text{rate}]}{[\text{rate}]}_{1} = \frac{4.8 \times 10^{-3} \text{ }M/\text{s}}{1.2 \times 10^{-3} \text{ }M/\text{s}} = 4 \qquad \frac{\text{Rate increases 4 times when conc.}}{\text{increases by a factor of } 4 - 1^{\text{st}} \text{ order with respect to } ClO_2.}$$

• Find order (exponents) by comparing data Exp. 1 and 3: [ClO₂] is held constant

$$\frac{F_2}{F_2}_{1} = \frac{0.20 M}{0.10 M} = 2 \qquad \frac{[\text{rate}]}{[\text{rate}]_{1}} = \frac{2.4 \times 10^{-3} M/\text{s}}{1.2 \times 10^{-3} M/\text{s}} = 2$$

Rate increases 2 times when conc. increases by a factor of $2 - 1^{st}$ order with respect to F_2 .

- Rate = *k*[F₂]¹[ClO₂]¹ overall order = 2
- $k = \text{Rate}/[\text{F}_2]^1[\text{ClO}_2]^1 = 1.2 \times 10^{-3}/(0.1)(0.01) = 1.2 \text{ M}^{-1}\text{s}^{-1}$

EXAMPLE: ORDER OF REACTION

• Lets do this one without detailed calculations.

Ехр	[A]	[B]	Initial Rate (M/s)
1	0.10	0.015	2.1 x 10 ⁻⁴
2	0.20	0.015	4.2 x 10 ⁻⁴
3	0.10	0.030	8.4 x 10 ⁻²

- In experiment 1 and 2; [B] is constant; [A] doubles and rate doubles the reaction is 1st order with respect to [A]
- In experiment 1 and 3; [A] is constant; [B] doubles but the rate quadruples! This means that the reaction is 2nd order with respect to [B]
- Rate = $k[A] [B]^2$

$$k = \frac{[\text{rate}]}{[\text{A}] [\text{B}]^2} = \frac{2.1 \times 10^{-4} M/\text{s}}{(0.10 \text{ M}) (0.015 M)^2} = 9.3 M^{-2} \cdot \text{s}^{-1}$$

UNITS OF RATE CONSTANT

Note that the units on the rate constant are specific to the overall order of the reaction.

- For a zero-order reaction, the unit is *M*/s or mol/(L · s).
- For a first-order reaction, the unit is 1/s or s^{-1} .
- For a second-order reaction, the unit is $1/(M \cdot s)$ or $L/(mol \cdot s)$.

If you know the rate constant, you can deduce the overall rate of reaction

DEPENDENCE OF REACTANT CONC. OVER TIME

- As the reaction proceeds the concentration of the reactants decrease; one can figure out what the new concentrations will be over time.
- Integration of rate law is done via calculus.
- This is done via integrating the rate laws. The rate laws are different for first, second and third order reactions.

Order	Rate Law	Integrated Rate Law
0	Rate $= k$	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$
1	Rate = k [A]	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$
2	Rate = $k[A]^2$	$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$

EXAMPLE: CONC. OVER TIME

Cyclopropane is used as an anesthetic. The isomerization of cyclopropane to propene has a rate constant of 9.2/s. If an initial sample of cyclopropane has a concentration of 6.00 *M*, what will the cyclopropane concentration be after 1.00 s?

Solution:

Rate = k[cyclopropane]

$$k = 9.2/s; [A]0 = 6.00 M; t = 1.00 s, [A]t = ?$$

The reaction is first order (look at the units for k)

$$\ln \frac{[A]_{t}}{[A]_{0}} = -kt \qquad \qquad \ln \frac{[A]_{t}}{[A]_{0}} = -\frac{9.2}{s} \bullet 1.00 \ s = -9.2$$

(Note: ln is natural log)

$$\begin{bmatrix} A \end{bmatrix}_{0}$$
 s
 $\frac{\begin{bmatrix} A \end{bmatrix}_{t}}{\begin{bmatrix} A \end{bmatrix}_{0}} = e^{-9.2} = 1.01 \times 10^{-4}$

 $[A]_t = 1.01 \times 10^{-4} (6.00 M)$

 $[A]_t = 6.1 \times 10^{-4} M$

HALF LIFE OF REACTION

- Half life, $t_{1/2}$, of a reaction is when half the reactants are consumed.
- By substituting $\frac{1}{2}[A]_0$ for $[A]_t$, we solve the integrated rate law for the special case of $t = t_{\frac{1}{2}}$.

Order	Rate Law	Integrated Rate Law	Half-Life
0	Rate $= k$	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\frac{[A]_0}{2k}$
1	Rate = k [A]	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$	0.693/k
2	Rate = $k[A]^2$	$\frac{1}{\left[\mathbf{A}\right]_t} = kt + \frac{1}{\left[\mathbf{A}\right]_0}$	$1/(k[A]_0)$

EXAMPLE: HALF LIFE

Ammonium nitrite is unstable because ammonium ion reacts with nitrite ion to produce nitrogen: $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$. In a solution that is 10.0 *M* in NH_4^+ , the reaction is first order in nitrite ion (at low concentrations), and the rate constant at 25°C is 3.0×10^3 /s. What is the half-life of the reaction?

Solution:

The rate is first order in nitrite, NO₂⁻: $k = 3.0 \times 10^{-3}/s$

For first-order reactions: $kt_{\frac{1}{2}} = 0.693$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{\frac{3.0 \times 10^{-3}}{\text{s}}}$$

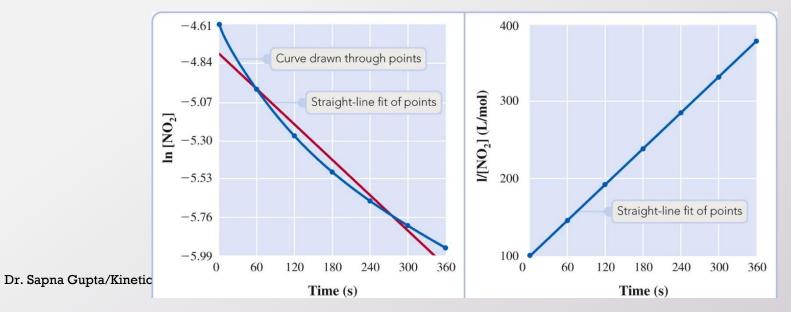
 $t\frac{1}{2} = 2.3 \times 10^2 \text{ s} = 3.9 \text{ min}$

GRAPHING RATE OF REACTION DATA

- A reaction is followed in a number of ways, however, one way of telling the rate of reaction without doing detailed calculations is by graphing the data or the change of concentration over time.
- For zero-order reactions, [A] versus *t* is linear.
- For first-order reactions, ln[A] versus *t* is linear.
- For second order reactions, 1/[A] versus *t* is linear.

Left: Plot of $\ln[NO_2]$ versus *t* is not linear, so the reaction is not first order.

Right: Plot of $1/[NO_2]$ versus *t* is linear, so the reaction is second order in NO₂.



MORE ON GRAPHING

In each case, the rate law is in the form of y = mx + b, which lets us to use the slope and intercept to find the values.

y = mx + b

Table 13.2 Relationships for Zero-Order, First-Order, and Second-Order Reactions				
Order	Rate Law	Integrated Rate Law	Half-Life	Straight-Line Plot
0	Rate $= k$	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\frac{[\mathbf{A}]_0}{2k}$	[A] vs t The y-intercept is [A] ₀ .
1	Rate = $k[A]$	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$		ln[A] vs <i>t</i> e graph crosses the origin
2	Rate = $k[A]^2$	$\frac{1}{\left[\mathbf{A}\right]_t} = kt + \frac{1}{\left[\mathbf{A}\right]_0}$	$1/(k[A]_0)$ (0)	$\frac{1}{[A]}$ vs t

The y-intercept is $1/[A]_0$.

EXAMPLE: CALCULATING CONC. 1

The rate constant for the reaction $2A \rightarrow B$ is 7.5 x 10^{-3} s⁻¹ at 110°C. The reaction is 1st order in A. How long (in seconds) will it take for [A] to decrease from 1.25 *M* to 0.71 *M*?

Solution:

For 1st order - $\ln \frac{[A]}{[A]} = -kt$

$$\ln \frac{(0.71 \text{ M})}{(1.25 \text{ M})} = -7.5 \times 10^{-3} \text{ s}^{-1}(t)$$

t = 75 s

EXAMPLE: CALCULATING CONC. 2

The following reaction is second order and has a rate constant of 7.0 x 10⁹ M^{-1} s⁻¹ at 23°C: I(g) + I(g) \rightarrow I₂(g).

a) If the initial [I] is 0.086 *M*, calculate the concentration after 2.0 min.

b) Calculate the half-life of the reaction when the initial [I] is 0.60 *M* and when the [I] is 0.42 *M*.

Solution:

a) Using 2nd order rate eq.
$$\frac{1}{[A]} = (7.0 \times 10^{9} M^{-1} s^{-1}) 120 s + \frac{1}{[0.086 M]}$$
$$\frac{1}{[A]} = kt + \frac{1}{[A]_{0}} = 8.4 \times 10^{11} M^{-1}$$
$$[A] = \frac{1}{8.4 \times 10^{11} M^{-1}} = 1.2 \times 10^{-12} M$$
b) Use the half-life eq.
$$t_{1/2} = \frac{1}{(7.0 \times 10^{9} M^{-1} s^{-1}) (0.60 M)} = 2.4 \times 10^{-10} s$$
$$t_{1/2} = \frac{1}{k [A]_{0}} \qquad t_{1/2} = \frac{1}{(7.0 \times 10^{9} M^{-1} s^{-1}) (0.42 M)} = 3.4 \times 10^{-10} s$$

KEY CONCEPTS

- Calculate order of reactions
- Calculating concentrations of reactants/products at different times
- Calculating half life
 - Here are ALL the formulas:

Order	Rate Law	Integrated Rate Law	Half-Life	Straight-Line Plot
0	Rate $= k$	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\frac{[\mathbf{A}]_0}{2k}$	[A] vs <i>t</i>
1	Rate = $k[A]$	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$	0.693/k	$\ln[A]$ vs t
2	Rate = $k[A]^2$	$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$	$1/(k[A]_0)$	$\frac{1}{[A]}$ vs t