
2. GLOBAL CLIMATE—K. M. Willett, D. F. Hurst,  
R. J. H. Dunn, and A. J. Dolman

a. Overview—K. M. Willett, D. F. Hurst, R. J. H. Dunn, and  
A. J. Dolman
Following the warmest year on record in 2014 

according to most estimates, 2015 reached record 
warmth yet again, surpassing the previous record 
by more than 0.1°C. The considerable warmth, 
protracted strong El Niño, and new record levels of 
greenhouse gases provided climatological highlights 
for the year.

The progressing El Niño is a common theme wo-
ven throughout the essential climate variables (ECVs) 
presented here; its characteristic signature in tempera-
ture and water-related ECVs is clear across the maps 
in Plate 2.1. Having appeared in some indicators in 
2014, and maturing in early 2015, this now-protracted 
event became the strongest since the 1997/98 El Niño. 
Indeed, many sections in this chapter compare the two 
events. Although strength-wise there are similarities, 
their characteristics are quite different (see Sidebar 1.1).

Atmospheric burdens of the three dominant 
greenhouse gases (CO2, CH4, N2O) all continued to 
increase during 2015. The annual average CO2 mole 
fraction at Mauna Loa, Hawaii (MLO), exceeded 
400 ppm, a milestone never before surpassed in the 
MLO record or in measurements of air trapped in 
ice cores for up to 800 000 years. The 2015 global 
CO2 average at Earth’s surface was not far below, at 
399.4 ± 0.1 ppm. The 3.1 ppm (0.76%) increase in CO2 
at Mauna Loa during 2015 was the largest annual 
increase observed in the 56-year record. Global aver-
age surface methane increased 11.5 ± 0.9 ppb (0.6%) 
from 2014 to 2015, the largest annual increase since 
1997–98. Many ozone-depleting substances (ODS) 
continued to decline, lowering the stratospheric 
loading of halogen and the radiative forcing associ-
ated with ODS. Recent ozone measurements in the 
extra-polar upper stratosphere (~40 km) show a small 
increase that may be a first sign of long-term ozone 
layer recovery. Despite this, the 2015 Antarctic ozone 
hole was near-record in terms of size and persistence. 
Stratospheric water vapor just above the tropical 
tropopause increased 30% from December 2014 to 
December 2015, likely due to the combined changes in 
phase of the quasi-biennial oscillation (QBO) (cold to 
warm) and the El Niño–Southern Oscillation (ENSO) 
during 2015. The strong El Niño in 2015 produced ex-
tremely dry conditions in Indonesia, contributing to 
intense and widespread fires during August–Novem-
ber that produced anomalously high abundances of 
carbonaceous aerosols, carbon monoxide, and ozone 
in the tropical troposphere (Sidebar 2.2).

Significant forest fires were noted in many of 
the terrestrial variables, with emissions from tropi-
cal Asian biomass burning almost three times the 
2001–14 average. Drier-than-average conditions were 
also evident over the global landmass. Soil moisture 
was below average for the entire year, and terrestrial 
groundwater storage was lower than at any other time 
during the record, which began in 2002. Areas in “se-
vere” drought greatly increased, from 8% at the end 
of 2014 to 14% by the end of 2015. In keeping with the 
prevailing theme of warmer/drier, the global average 
surface air temperature record was accompanied by 
record high frequency of warm days and record low 
frequency of cool days. The lower troposphere was also 
close to record warmth.

Despite drier conditions on the ground, there was 
generally more moisture in the air as shown by the 
peaks in surface specific humidity and total column 
water vapor. These peaks were especially high over 
oceans, consistent with the generally warmer air. 
These warmer, moister conditions tend to lag El Niño 
by a few months, and the event was ongoing at year 
end.

In the cryosphere, Northern Hemisphere snow cov-
er extent was slightly below average. However, alpine 
glacier retreat continued unabated and, with an update 
to the now 41-reference glacier dataset, 2015 became 
the 36th consecutive year of negative mass balance.

In addition to the strong El Niño, 2015 saw 
mostly positive Antarctic Oscillation (AAO) condi-
tions throughout the year, contributing to stronger 
wind speed anomalies both at the surface and aloft 
(850 hPa). This typically leads to reduced west Ant-
arctic Peninsula (WAP) sea ice extent, but it was 
opposed in 2015 by the El Niño, which is more often 
associated with a weaker polar jet stream. The North 
Atlantic Oscillation (NAO) was broadly positive for 
the fifth year in a row. Land wind speed continued 
a slight increase, similar to 2014, following a long, 
steady decline over the entire record from 1973.

The lake temperatures section returns this year 
after two years of unavailability. Additionally, two 
sidebars are included: Sidebar 2.1 explores our ability 
to monitor evaporation over land, a crucial missing 
link for studying the hydrological cycle; Sidebar 2.2 
provides an overview of atmospheric chemical com-
position changes in 2015 as a result of El Niño–related 
forest fires.

Time series and anomaly maps for many EVCs are 
shown in Plates 1.1 and 2.1 respectively. Supplementary 
online figures can be found at: http://journals.ametsoc 
.org/doi/suppl/10.1175/2016BAMSStateoftheClimate.1.
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Pl ate 2 .1. (a) ERA-Interim lower stratospheric 
temperature; (b) ERA-Interim lower tropospheric 
temperature; (c) NOAA/NCEI surface tempera-
ture (contoured) and lake temperatures (circles); 
(d) GHCNDEX warm day threshold exceedance 
(TX90p); (e) GHCNDEX cool day threshold exceed-
ance (TX10p); (f) ESA CCI soil moisture; (g) GRACE 
2015 difference from 2014 water storage; (h) GPCP 
precipitation; (i) ELSE system runoff; (j) ELSE system 
river discharge; (k) HadISDH (land) and NOCSv2.0 
(ocean) surface specific humidity; (l) ERA-Interim 
surface relative humidity; (m) PATMOS-x cloudiness; 
(n) HIRS upper tropospheric humidity; (o) Microwave 
radiometer retrievals (ocean), COSMIC GPS-RO data 
(land), and GNSS (circles, land) total column water 

vapor; (p) sc-PDSI drought annual average 2015 anomaly; (q) GOME-2 (using GOME, SCIAMACHY, and 
GOME-2 for the climatology) stratospheric (total column) ozone; (r) ERA-Interim 850-hPa wind speed; (s) 
ERA-Interim (worldwide grids) and HadISD (points) surface wind speed; (t) HadSLP2r sea level pressure; 
(u) Tropospheric ozone; (v) CAMS total aerosol optical depth; (w) CAMS aerosol optical depth from dust; 
(x) CAMS aerosol optical depth from biomass burning; (y) SeaWiFS/MERIS/MODIS fraction of absorbed 
photosynthetically active radiation (FAPAR); (z) Surface visible-light albedo from MODIS White Sky broad-
band; (aa) Surface near-infrared albedo from MODIS White Sky broadband; (ab) GFASv1.3 carbonaceous 
emissions from biomass burning; (ac) CAMS total column CO anomalies.
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b. Temperature
1) Surface temperature—A. Sánchez-Lugo, C. Morice, and 

P. Berrisford
The 2015 global land and ocean temperature set 

new records, exceeding the previous records set in 
2014 (and 2010 depending on the in situ dataset) by 
a wide margin of 0.13°–0.18°C. Much-warmer-than-
average conditions across much of the world’s sur-
face and a strong El Niño contributed to the highest 
temperature since records began in the mid- to late 
1800s, according to four independent in situ analy-
ses (NASA–GISS, Hansen et al. 2010; HadCRUT4, 
Morice et al. 2012; NOAAGlobalTemp, Smith et al. 
2008; JMA, Ishihara 2006). The 2015 globally aver-
aged surface temperature was 0.42°–0.46°C (Table 2.1) 
above the 1981–2010 average. Note that ranges of 
temperature anomalies provided in this summary 
are ranges of best estimates for the assessed in situ 
datasets. These ranges do not include additional 
uncertainty information from each in situ analysis, 
which can be found in Table 2.1.

The last time a record high temperature surpassed 
the previous record by such a wide margin was 1998, 
which surpassed the previous 1997 record by 0.12°–
0.16°C. Similar to 2015, a strong El Niño developed 
during the latter half of 1997, reaching its maturity 
during the first part of 1998 (see Sidebar 1.1). The 
presence of El Niño typically increases concurrent 
global temperatures and those in the year following 
its onset.

The year 2015 also marked the first time the global 
average surface temperature reached more than 1°C 
above the average of the mid- to late 19th century, a 
period in which temperatures are commonly taken 
to be representative of pre industrial conditions. The 
best-estimate global average surface temperatures 
were 1.03°–1.09°C above the mid- to late 19th cen-
tury average in assessed datasets. Fourteen of the 
15 warmest years on 
record have occurred 
since the beginning 
of the 21st century, 
with 1998 the only 
exception (ranking 
between third and 
eighth warmest year, 
depending on the da-
taset).

Every estimate of 
global average tem-
perature has inher-
ent uncertainty. The 
main sources of un-

certainty in observational datasets tend to be associ-
ated with changes in measurement practices and with 
sparse spatial sampling, both of which can vary with 
time. When taking into consideration the estimated 
uncertainty of the global land and ocean annual 
temperature in the annual ranking, following the 
method of Arguez et al. (2013), it is virtually certain 
that 2015 was the warmest year since records began, 
with a probability >99%, according to the NOAAGlo-
balTemp dataset (see Arguez and Applequist 2015).

The near-surface temperature analyses assessed 
here are derived from air temperatures observed at 
weather stations over land and sea surface tempera-
tures (SST) observed from ships and buoys. While 
each analysis differs in methodology, all four analyses 
are in close agreement (Fig. 2.1). Plate 2.1c and Online 
Figs. S2.1, S2.2, and S2.3 show the differences between 
the datasets, which are mainly due to how each meth-
odology treats areas with little to no data and how 
each analysis accounts for changes in measurement 
methods [for more details see Kennedy et al. (2010); 
Hansen et al. (2010); and Huang et al. (2015)].

Global average surface air temperatures are also 
estimated using reanalyses, which blend information 
from a numerical weather prediction model with 
observations. Reanalysis produces datasets with 
uniform spatial and temporal coverage, but suffers 
from model biases and problems arising from time 
variations in amount and/or quality of assimilated 
observations. Surface temperatures from reanalyses 
are consistent with observations in regions of good 
observational coverage at the surface, due in part to 
the large volumes of assimilated observations (e.g., 
more than 40 billion to date in the ERA-Interim 
reanalysis).

According to ERA-Interim (Dee et al. 2011), the 
2015 globally averaged, analyzed 2-m temperature 
was the highest since records began in 1979. The 

table 2.1. Temperature anomalies (°C) and uncertainties (where available) for 
2015 (base period: 1981–2010). The uncertainties indicate the scope of the range 
around the central value. For ERA-Interim, the values shown are the analyzed 
2-m temperature anomalies (uncorrected). Note that the land values computed 
for HadCRUT4 used the CRUTEM.4.4.0.0 dataset (Jones et al. 2012), the ocean 
values were computed using the HadSST.3.1.1.0 dataset (Kennedy et al. 2011a, 
2011b), and the global land and ocean values used the HadCRUT4.4.0.0 dataset. 
Uncertainty ranges are represented in terms of a 95% confidence interval, with 
the exception of JMA which has a 90% confidence interval. 

Global NASA–GISS HadCRUT4
NOAA-

Global Temp
JMA ERA-Int

Land +0.64 +0.66±0.14 +0.72±0.18 +0.70 +0.65

Ocean +0.36 +0.39±0.07 +0.37±0.16 +0.33 +0.28

Land and 
Ocean

+0.44±0.05 +0.45 ±0.08 +0.46 ±0.08 +0.42±0.13 +0.38
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temperature was 0.38°C above the 1981–2010 aver-
age (Table 2.1) and 0.10°C above its previous record 
set in 2005. The magnitude of the anomaly would be 
larger had the temperature analyses been corrected 
for changes in the source of the prescribed SST, which 
was uniformly cooler by about 0.1°C relative to Had-
CRUT4 from 2002 onwards (Simmons and Poli 2014).

The only land areas with temperatures below 
average, according to the in situ datasets, were parts 
of southern South America, eastern Canada, Green-
land, and Antarctica. Overall, the globally averaged 
annual temperature over land [including the land-
only Berkeley Earth analysis (Rohde et al. 2013)] was 
0.61°–0.72°C above average—the highest on record. 
This exceeds the previous 2007 record (and, depend-
ing on the in situ dataset, 2010) by 0.12°–0.26°C.

The strong El Niño maturing during 2015 resulted 
in record high SSTs across much of the tropical Pa-
cific Ocean. However, areas in the North Atlantic, 
South Pacific, and the waters south of South America 
experienced below-average conditions (Plate 2.1c). 
The globally averaged annual temperature across the 
oceans was 0.33°–0.39°C above average—the highest 
on record according to the in situ datasets, surpassing 
the previous record set in 2014 by 0.10°–0.12°C (see 
section 3b for more detailed SST information).

Similarly, ERA-Interim for 2015 shows warmer-
than-average conditions over many, but not all, 
regions of the world (Online Fig. S2.1). The average 
analyzed 2-m temperature over land was 0.65°C above 
average (0.09°C above the previous 2007 record), and, 
over the oceans, it was 0.28°C above average (0.10°C 
above the previous 2005 record).

2) Lower and midtropoSpheric temperatureS— 
J. R. Christy

The 2015 globally averaged annual temperature 
of the lower troposphere (LT, the bulk atmosphere 
below 10 km altitude or roughly the lower 70% by 
mass) was approximately +0.3°C above the 1981–2010 
mean. This placed 2015 first to fourth warmest of 
the past 58 years, depending on the dataset, and 
was on average about 0.2°C cooler than the warmest 
year, 1998, varying from just above the 1998 value in 
two radiosonde datasets to 0.1°–0.3°C below in the 
remaining datasets (Fig. 2.2).

Direct measurement of the LT bulk temperature 
utilizes radiosonde datasets since 1958, comple-
mented by satellites since late 1978. The datasets are 
described in Christy (2015) with new additions of 
the UNSW radiosonde dataset from Sherwood and 
Nishant (2015) and, for use in the tropical midtropo-
sphere, two satellite datasets with similar construc-

tion methods [NOAA (Zhou and Wang 2011) and UW 
(Po-Chedley et al. 2015)]. Previously utilized datasets 
from UAH and RSS have been updated (UAHv6.0, 
Spencer et al. 2016 submitted to Asia-Pacific J. Atmos. 
Sci.; RSSv4.0 for the midtroposphere, Mears and 

Fig. 2.1. Global average surface temperature anoma-
lies (°C, 1981–2010 base period). In situ estimates are 
shown from NOAA/NCEI (Smith et al. 2008), NASA–
GISS (Hansen et al. 2010), HadCRUT4 (Morice et al. 
2012), CRUTEM4 (Jones et al. 2012), HadSST3 (Ken-
nedy et al. 2011a, b), JMA (Ishihara 2006), and Berkeley 
Earth (Rohde et al. 2013). Reanalyses estimates are 
shown from  ERA-Interim (Dee et al. 2011), MERRA-2 
(Gelaro et al. 2016; Bosilovich et al. 2015), and JRA-55 
(Ebita et al. 2011).
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Wentz 2016). In addition, three reanalyses products 
are also shown. There is close agreement in the inter-
annual variability between all products; ERA-Interim 
is used here to provide the spatial depictions (Plate 
2.1b and Online Fig. S2.4).

The global LT anomaly at any point in time is 
closely tied to the phase of the El Niño–Southern 
Oscillation (ENSO). The year 2015 is analogous to 
1997 in that a warm ENSO phase began and peaked in 
the Pacific Ocean. The year 1998 was approximately 
+0.5°C warmer than 1997, and thus a comparison of 
2016 with 1998 will indicate how similar the ENSOs 
evolved, having been quite similar for 1997 vs. 2015.

Regionally, warm anomalies extended from the 
Arctic equatorward to the eastern Pacific and much 
of Europe. The midlatitude belt in the Southern 
Hemisphere was mostly warmer than average. Cool-
er-than-average temperatures occupied northeast 
North America–Greenland, portions of Russia, and 
the far Southern Ocean (Plate 2.1b). The latitude–time 
depiction of the LT temperatures beginning in 1979 
indicates tropical warming that is particularly strong 
during 2015, associated with the ongoing El Niño 
(Online Fig. S2.4).

The long-term global LT trend based on radio-
sondes (starting in 1958) is +0.15° ± 0.02°C decade−1 
and based on both radiosondes and satellites (start-
ing in 1979) is +0.13° ± 0.03°C decade−1. The range 
represents the variation among the different datas-
ets, which then serves as an estimate of structural 
uncertainty in Fig. 2.2. When taking into account 
the magnitude of the year-to-year variations, there 
is a statistical confidence range of ± 0.06°C decade−1, 
meaning that the trends are significantly positive. 
Major volcanic events in 1963, 1982, and 1991 con-
tributed to cooler temperatures during the early part 
of the LT record, especially in the satellite era, thus 
increasing the upward trend to some extent.

With this edition we introduce the midtropo-
spheric temperature (MT, surface to around 70 hPa) 
product for the tropical atmosphere (Fig. 2.3). The 
MT profile extends higher than that of LT, enter-
ing the stratosphere, but only slightly in the tropics 
where the tropopause is at approximately 16-km 
altitude. The dominant signal of this product is in 
the mid- to-upper troposphere, thus capturing the 
layer in the tropics which represents the maximum 
response to forcing (e.g., increased greenhouse gases, 
warm surface waters from El Niño, volcanic cooling, 
etc.). MT is constructed from the Microwave Sound-
ing Unit (MSU) channel 2 and the Advanced MSU 

Fig. 2.3. Tropical (20°S–20°N) anomalies of midtro-
pospheric temperature relative to the 1981–2010 base 
period. Data sources are as described in Figs. 2.1 and 
2.2 with the addition of NOAA (Zhou and Wang 2011), 
UW (Po-Chedley et al. 2015) and RSSv4.0 (Mears and 
Wentz 2016).

Fig. 2.2. Global average lower tropospheric tempera-
ture annual anomalies (°C; 1981–2010 base period) for 
the MSU LT equivalent layer. (a) Radiosonde: RATPAC 
(Free et al. 2005; 85 stations), RAOBCORE and RICH 
(Haimberger et al. 2012; 1184 stations), and UNSW 
(Sherwood and Nishant 2015, 460 stations). (b) Satel-
lites: UAHv6.0 (Spencer et al. 2016 submitted to Asia-
Pacific J. Atmos Sci) and RSSv3.3 (Mears and Wentz 
2009). (c) Reanalyses: ERA-Interim, MERRA-2, and 
JRA-55 are shown as described in Fig. 2.1.
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channel 5 (Christy et al. 2003). MT tropical trends 
are inf luenced by lower stratospheric cooling by 
approximately 0.03°–0.04°C decade−1, which is fully 
accounted for in comparison with theory.

Examining the various datasets of tropical MT 
trends (1979–2015), there are two clusters of results: 
+0.08°C decade−1 (most radiosonde datasets and 
satellite UAH) and +0.12°C decade−1 (RICH radio-
sonde dataset and satellite datasets of RSS, NOAA, 
and UW; Table 2.2). A significant difference between 
UAH and the other satellite datasets is evident over 
the oceans. This suggests the disagreement is due to 
differing assumptions regarding basic calibration 
issues rather than corrections for the diurnal drift 
of the spacecraft, and is an active area of research.

The MT time series and trends (Fig. 2.3, Table 
2.2) through 2015 continue the characteristic noted 
in past State of the Climate reports that observed MT 
trends tend to be below estimates anticipated from 
basic lapse-rate theory—the theory that indicates a 
magnification of trend with height (Christy 2014). 
This is especially true in the tropics where theory 
suggests amplification by a factor of 1.4 ± 0.2 of the 
mid tropospheric trend over the surface trend. The 
range of trends for 1979–2015 from the different ra-
diosonde datasets is +0.07° to +0.11°C decade−1 and 
from satellites is +0.07° to +0.14°C decade−1 compared 
with the tropical surface trend (average of NOAAGlo-
balTemp and HadCRUT4) of +0.12°C decade−1. The 
median trend of all observational datasets examined 

here is between +0.09 and 0.10°C decade−1. Thus, the 
current tropical MT/surface ratio from observations 
since 1979 (0.8 ± 0.3) continues to be less than theory.

3) Lower StratoSpheric 
temperature—C . S . 
Long and J. R. Christy

The globally averaged 
temperature in the lower 
stratosphere (TLS) for 
2015, as measured by ra-
diosonde and satellite and 
analyzed by reanalyses, 
ranged from slightly above 
to approximately 0.5°C be-
low the 1981–2010 clima-
tology (Fig. 2.4). All TLS 
estimates agree that glob-
ally 2015 was about the 
same as 2014. This year’s 
persistence of last year’s 
annual temperatures only 
slightly impacted the near-
neutral to very gradual 
warming trend observed 
from 1995 to present.

table 2.2. Linear trends (°C decade−1) in lower tropospheric (LT) and  
midtropospheric (MT) temperatures. The tropics region spans 20°S–20°N.

Global LT Tropics MT

Start Year 1958 1979 1958 1979

Radiosondes

RAOBCORE +0.15 +0.13 +0.13 +0.08

RICH +0.15 +0.15 +0.10 +0.11

RATPAC +0.15 +0.15 +0.09 +0.07

UNSW +0.17 +0.16 +0.10 +0.07

Satellites

UAHv6.0 x +0.11 x +0.07

RSSv3.3 x +0.12 x +0.09

RSSv4.0 x x x +0.14

NOAAv3.0 x x x +0.13

UWv1.0 x x x +0.12

Reanalyses

ERA-I x +0.12 x +0.08

JRA-55 +0.16 +0.15 x +0.08

MERRA x +0.19 x +0.16

Fig. 2.4. Global mean annual temperature anomalies of 
the lower-stratosphere temperatures derived from (a) 
radiosonde, (b) satellite, and (c) reanalysis. Anomalies 
are from the 1981–2010 mean. Data sources are as 
described in Figs. 2.1 and 2.2, additional data sources: 
NOAA (Zhou and Wang 2010).
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Despite similarity in the global average value, 
spatial patterns are different than those of 2014. The 
annual averaged temperature analysis (Plate 2.1a) 
shows negative anomalies in both hemispheres’ polar 
latitudes. The Arctic negative anomalies extended 
into Siberia but positive anomalies were centered near 
Iceland. This strong positive anomaly was mirrored 
in the lower troposphere and surface by a strong cool 
anomaly (Plates 2.1b,c). The Antarctic had negative 
anomalies throughout the entire zone. In lower lati-
tudes, positive anomalies generally prevailed over the 
Atlantic and eastern Asia, with negative anomalies 
over the central Pacific. These anomalies were related 
to the El Niño that grew during the latter half of 2015. 
The northern polar region oscillated between cold 
and warm anomalies for the first five months of 2015 
(Online Fig. S2.5). The southern polar region was 
anomalously cold from August through December. 
These negative temperature anomalies coincided with 
the large and persistent ozone hole for 2015 (section 
2g4). The tropical warm anomalies were a result of the 
thermal response to the descending quasi-biennial 
oscillation (QBO) westerlies during 2015 and the 
upper troposphere warming from the El Niño in the 
latter half of 2015.

A cooler stratosphere is consistent with a warmer 
troposphere in the case of rising greenhouse gases, as 
more outgoing energy is trapped in the troposphere. 
The TLS is a weighted layer-mean temperature of the 
part of the atmosphere observed by specific channels 
from satelliteborne microwave sounding instruments. 
It ranges from around 200–20 hPa (12–27 km) and 
is entirely in the lower stratosphere polewards of 35°. 
But equatorward of this, it extends into the upper 
troposphere, which needs to be accounted for when 
assessing latitudinal trends. For further details see 
Long and Christy (2015).

All radiosonde datasets (RATPAC, RAOBCORE, 
RICH, NSW) show a cooling trend in the lower 
stratosphere from 1958 to 1995. However, after 1995 
there is not much of a trend to the present (Fig. 2.4). 
The pre-1995 cooling trend is only interrupted by 
several volcanoes [Agung (1963), El Chichón (1982), 
and Mt. Pinatubo (1991)], which imparted a warm 
pulse for about two years following each eruption. 
The satellite MSU channel 4 datasets (RSS, NOAA, 
and UAH) and four recent reanalysis datasets (CFSR; 
ERA-Interim; JRA-55; MERRA-2) also show general 
agreement with the radiosonde time series. Table 
2.3 provides the trends for various time periods for 
the radiosondes, satellites, and reanalyses. There is 
variability among the datasets in the cooling trend 
from 1979 to 1995, with RATPAC having the great-

est cooling of the radiosonde datasets and MERRA-2 
having the greatest cooling of the reanalyses, while 
ERA-Interim and JRA-55 have the least cooling. The 
post-1995 trends also vary considerably. All three 
satellite, JRA-55, RATPAC, and NSW trends are near 
neutral. The ERA-Interim and MERRA-2 reanalyses, 
RICH, and RAOBCORE have a slightly positive trend. 
As shown in Long and Christy (2015), the trends 
discussed above are not uniformly distributed across 
all latitudes, rather there is considerable variability 
with latitude.

Figure 2.5 shows time series of daily TLS anoma-
lies for the 60°–90°N and 60°–90°S bands for 2015. 
The southern high latitudes were exceptionally cold 
from August through December 2015. Monthly mean 
height analyses show that the polar circulation in late 
2015 was centered over the South Pole (not shown). 
Additionally, wave activity was minimal, keeping the 
circulation very zonal and cold. The low temperatures 
and persistent circulation aided the destruction of 
ozone, resulting in a larger ozone hole than in recent 
years (section 2g4). In the northern high latitudes, a 
few midwinter warmings affected the upper strato-
sphere but did not propagate down into the middle 
or lower stratosphere. A final warming in mid-March 
propagated down to the TLS region and increased 
the temperatures in the polar zone (Fig. 2.5). This 
warming is classified as a “final” warming as the 
atmospheric temperatures and circulation did not 
return to a winter pattern but continued to transi-
tion to a summer pattern. During the boreal autumn 
and early winter, Arctic TLS temperatures were well 
below normal.

Fig. 2.5. Daily time series (blue lines) for 2015 lower 
stratosphere temperatures from the CFSR (Saha et al. 
2010a) for the (a) northern high latitudes (60°–90°N) 
and (b) southern high latitudes (60°–90°S). The 1979–
2015 daily maximum and minimum temperatures for 
each latitude region are shown in black.
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table 2.3. Computed trends (°C decade−1) for radiosonde, satellite, and re-
analysis data for the periods: 1958–95, 1979–95, 1995–2015, and 1979–2015. 
1995 is chosen as an inflection point distinguishing the earlier downward 
trend from the near-neutral trend of recent years.

Global (82.5ºN–82.5ºS) TLS Temperature Anomaly Trends  
(1981–2010 base period)

Dataset 1958–95 1979–95 1995–2015 1979–2015

Radiosonde

RAOBCORE −0.117 −0.306 0.260 −0.208

RICH −0.282 −0.484 0.219 −0.278

RATPAC −0.257 −0.649 −0.010 −0.467

UNSW −0.330 −0.474 0.039 −0.317

Satellite

RSS × −0.336 −0.012 −0.261

STAR × −0.364 −0.002 −0.262

UAH × −0.399 −0.046 −0.312

Reanalysis

CFSR × −0.652 0.106 −0.348

ERA-Interim × −0.187 0.199 −0.119

JRA-55 × −0.235 0.018 −0.217

MERRA-2 × −0.300 0.171 −0.199

4) Lake Surface temperatureS—R. I. Woolway, K. Cinque,  
E. de Eyto, C. L. DeGasperi, M. T. Dokulil, J. Korhonen,  
S. C. Maberly, W. Marszelewski, L. May, C. J. Merchant, A. M. Paterson,  
M. Riffler, A. Rimmer, J. A. Rusak, S. G. Schladow, M. Schmid, K. Teubner,  
P. Verburg, B. Vigneswaran, S. Watanabe, and G. A. 
Weyhenmeyer

Lake summer surface water temperatures (LSSWT) 
in 2015 strongly ref lected the decadal patterns of 
warming noted in the scientific literature. North-
ern Hemisphere summer refers to July–September 
whereas Southern Hemisphere summer refers to 
January–March. A recent worldwide synthesis of 
lake temperatures (O’Reilly et al. 2015) found that 
LSSWTs rose by, on average, 0.034°C yr−1 between 
1985 and 2009, ~1.4 times that of the global surface 
air temperature (SAT) in general. Data from lakes 
in various regions collated here show that during 
2009–15 lake temperatures continued to rise.

During 2015, LSSWT of many lakes exceeded their 
1991–2010 averages by 1°C or more (Online Fig. S2.6; 
Plate 2.1c). Strong warm anomalies in LSSWT 
were most prominent in central Europe [Austria, 
Switzerland, and Poland (data from the Institute 
of Meteorology and Water Management, Poland)], 
where anomalies above 1°C were recorded. The hot 
central European summer (JJA) of 2015 (sections 
2b6 7f, and Sidebar 7.1) is reflected in relatively high 

mean LSSWTs in three 
Austrian lakes (Mondsee, 
Neusiedler See, Wörther-
see; Fig. 2.6; Online Fig. 
2.6) with anomalies up 
to +1.6°C. Similarly, satel-
lite-based LSSWT anom-
alies of 25 European lakes 
in and near the Alps were 
in excess of 1.0°C in 2015 
(Fig. 2.7a), the second 
warmest anomaly year 
since the record summer 
of 2003 (Beniston 2004). 
High LSSWTs were also 
observed in other regions 
of the world (Plate 2.1c; 
Online Fig. 2.6), with 
anomalies for lakes in Se-
attle [Washington (state), 
U.S.], for example, up to 
+1°C in 2015.

LSSWTs are inf lu-
enced by a combination 
of broad climatic vari-

ability and local characteristics, so regional and 
subregional differences in LSSWTs are common. 
LSSWTs in Britain and Ireland during 2015 were 
~0.6°C below average, in contrast to central Europe. 
This likely reflects cool anomalies in SAT in early 
and mid-2015 (e.g., www.met.ie/climate/Monthly 
Weather/clim-2015-ann.pdf).

Although the Great Lakes (United States and 
Canada) have warmed faster than SAT in recent de-
cades, the 2015 LSSWTs were relatively cool. This is 
attributable to above-average winter ice cover during 
2014/15, which shortened the warming season. The 
annual maxima of percent ice cover (Great Lakes 
Environmental Research Laboratory; www.glerl.
noaa.gov/) in 2014 (92.5%) and 2015 (88.8%) were 
substantially above the 1973–2015 average (53.2%). 
These were the first consecutive high-ice-cover years 
since the 94.7% maximum ice coverage recorded in 
1979. The strong El Niño conditions of 2015 lessen the 
chance that 2016 will imitate 2014 and 2015.

Despite these recent cooler LSSWTs, the average 
warming rate for the Great Lakes is approximately 
0.05°C yr−1 (1979–2015). This rate contrasts with 
the Dorset lakes in Ontario, Canada (surface areas 
<100 ha), which do not show a statistically significant 
trend in LSSWT between 1980 and 2015. In 2015, 
LSSWT anomalies in these lakes were ~+0.6°C. These 
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lakes display large interannual variation in LSSWT, 
mainly ref lecting interannual differences in SAT, 
with strong agreement in high and low years.

The relationship between SAT and LSSWT can 
be complicated by several processes. For Lake Erken, 
Sweden, LSSWT is strongly influenced by water col-

umn mixing and precipitation, leading to a relatively 
weak relationship between SAT and LSSWT. The 
LSSWT of New Zealand’s largest lake, Lake Taupo, is 
thought to be influenced by interannual variation in 
geothermal heating (de Ronde et al. 2002) and shows 
no significant trend. Furthermore, an analysis of the 
47-year record (1969–2015) of LSSWT from Lake 
Kinneret, Israel, reveals warming of ~1.65°C over the 
period (~0.036°C yr−1). Two factors explain most of the 
variability (r2 = 0.67): SAT and water levels (Rimmer 
et al. 2011; Ostrovsky et al. 2013).

In recent years there has been a strong emphasis 
on investigating LSSWT warming, with only a few 
investigations focusing on the winter months (e.g., 
Dokulil et al. 2014) due to a lack of available data. 
Winter temperature changes can be quite distinct 
from LSSWT trends. For example, the regional av-
erage warming rate for lakes in Britain and Ireland 
is substantially higher during winter (0.028°C yr−1; 
Fig. 2.7b) than in summer (0.018°C yr−1; Fig. 2.7d). 
Future assessments that focus on all seasons will 
provide a more complete picture.

Fig. 2.6. Lake summer (Jul–Sep in Northern Hemi-
sphere, Jan–Mar in Southern Hemisphere) surface 
water temperature anomalies relative to 1991–2010 
for (a) the United States (Washington, Sammamish, 
Union, and Tahoe); (b) the Laurentian Great Lakes,  
[Superior (buoys 45001, 45004, 45006), Michigan 
(buoys 45002, 45007), Huron (buoys 45003, 45008), and 
Erie (buoy 45005)]; (c) Dorset, Ontario, Canada [Blue 
Chalk, Chub, Crosson, Dickie, Harp, Heney Plastic, 
and Red Chalk (East and Main basin)]; (d) Britain and 
Ireland [Bassenthwaite Lake, Blelham Tarn, Derwent 
Water, Esthwaite Water, Lough Feeagh, Grasmere, 
Loch Leven, and Windermere (North and South ba-
sins)]; (e) Scandinavia (Erken, Inarijärvi, Kitusjärvi, 
Lappajärvi, Päijänne, Pielinen, and Saimaa); (f) central 
Europe (Charzykowskie, Jeziorak, Lubie, Mondsee, 
Neusiedler See, Wörthersee, and Zurich); (g) Israel 
(Kinneret); and (h) Australia and New Zealand (Burra-
gorang, Cardinia, Sugarloaf, Taupo, and Upper Yarra). 
Gray lines indicate the temperature for each individual 
lake and the thick black line indicates the average lake 
temperature for the specified region. The trend for 
the regionally averaged temperatures is shown in red, 
and the equation describing the change is presented. 
Note that the warming rates are not comparable 
among the different regions due to the different time 
periods shown.

Fig. 2.7. Satellite-derived lake surface water tempera-
ture anomalies for (a) summer (Jul–Sep; 1991–2015) 
for European Alpine lakes (all natural water bodies in 
or near the Alps larger than 14 km2; Riffler et al. 2015) 
and (b) winter (Jan–Mar, 1961–2015) for Britain and 
Ireland (base period: 1991–2010). Gray lines indicate 
the temperature for each individual lake and the thick 
black line indicates the average lake temperature for 
the region. The trend for the regionally averaged tem-
peratures is shown in red, and the equation describing 
the change is presented. The lakes included are the 
same as those shown in Online Fig. 2.6 and Plate 2.1c.
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5) Land Surface temperature extremeS—M. G. Donat, 
R. J. H. Dunn, and S. E. Perkins-Kirkpatrick

The year 2015 not only set the highest global an-
nual mean temperature on record, it also brought 
some extreme temperature events, most anomalously 
warm. Regionally, the frequencies of warm days and 
warm nights were the highest on record in western 
North America, parts of central Europe, and central 
Asia (Plates 2.1d,e). The GHCNDEX dataset (Donat 
et al. 2013) is used to monitor temperature extremes 
for 2015. GHCNDEX is a quasi-global gridded dataset 
of land-based observed temperature and precipitation 
extremes. A suite of temperature and precipitation 
extremes indices (Zhang et al. 2011) is first calculated 
for daily station time series from the GHCN-Daily 
archive (Menne et al. 2012), before interpolating the 
indices on global grids. At the time of writing, and 
similar to Dunn et al. (2015), some of the indices fields 
have limited spatial coverage for 2015, especially those 
derived from minimum temperatures across central 
and eastern Asia, compared to those calculated from 
maximum temperatures. This limited spatial cover-
age is related to an excessive number of missing values 
throughout the year, whereas monthly indices fields 
are more complete. For more details on the complete-
ness requirements see Zhang et al. (2011).

Here, results for TX90p (frequency of warm days, 
defined as number of days above the seasonal 90th 
percentile of daily maximum temperatures over the 
1961–90 base period), TX10p (frequency of cool days, 
defined as number of days with maximum tempera-
tures below the seasonal 10th percentile), TXx (the 
hottest daily maximum temperature) and TNn (the 
coldest daily minimum temperature) are presented.

Some of the extreme temperature indices showed 
global average records during 2015. For example, 
2015 had the largest number of warm days (TX90p, 
1.8 times compared to the 1961–90 baseline) and the 
smallest number of cool days (TX10p, 0.6 times the 
baseline; Fig. 2.8) in the GHCNDEX record going 
back to 1951. Note the limited spatial coverage of 
GHCNDEX; however, similar results also indicating 
the highest number of warm days and lowest number 
of cool days are found in the ERA-Interim reanalysis 
that provides complete coverage (see Online Fig. S2.7).

Several regions, including western North America, 
Europe, and large parts of Asia and Australia, expe-
rienced strong warm anomalies, i.e., high frequen-
cies of warm days and low frequencies of cool days, 
throughout much of the year (Plates 2.1d,e). As 
GHCNDEX has limited spatial coverage, the ERA-
Interim reanalysis product (Dee et al. 2011) is used to 
provide a more complete picture. ERA-Interim also 

shows anomalously high numbers of warm days and 
low numbers of cool days in Africa and large parts 
of South America, where GHCNDEX lacks coverage, 
suggesting that most global land areas saw warm 
anomalies in 2015 (see Online Fig. S2.8).

The first half of the year had some strong cold 
anomalies over the eastern United States, persisting 
after the cold winter 2014/15 into spring and even 
early summer. This resulted in comparatively lower 
values of warm extremes, though some cold extremes 
indices only showed cold anomalies during boreal 
winter (December–February; Fig. 2.9a). Similar be-
havior was observed during 2013 and 2014.

Notable extreme temperature events included the 
European summer heat waves (late June–early July 
and early August); a number of Asian heat waves 
in, for example, India, Pakistan, and Indonesia; and 
the warm spring and autumn in Australia, Alaska, 
and western Russia. Winter (December–February) 
showed strong warm anomalies over much of the 
Northern Hemisphere, including large parts of Eu-
rope, Asia, and western North America. Most of these 
events are evident in higher frequencies of warm days 
and lower frequencies of cool nights (TN10p) and 
they mainly occurred during the shoulder seasons. 
The heat waves of Pakistan, India, and Indonesia 
could not be monitored from GHCNDEX due to lack 
of coverage. However, results from the ERA-Interim 
reanalysis (see Online Fig. S2.8) indicate anomalously 
high annual frequencies of warm days and low fre-
quencies of cold nights over these areas during 2015.

The European heat wave is clearly evident in 
June–August hottest days (TXx), with anomalies 
of 4°–5°C, and to a lesser extent in corresponding 

Fig. 2.8. Global average time series of the number 
of (a) warm days (TX90p) and (b) cool days (TX10p) 
over land. The dashed line shows a 5-year binomial 
smoothed time series. (Source: GHCNDEX.) 
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coldest nights (TNn), with anomalies of 1°–2°C (see 
Online Fig. S2.9). The frequency of both warm days 
and nights were also about double the normal for this 
period (see Fig. 2.9 and Online Fig. S2.7).

The Australian spring (September–November) 
experienced frequencies of cool nights and warm days 
well below and above average, respectively (Fig. 2.9), 
although anomalies in the hottest day and coldest 
night were not as extreme. The Russian and western 
North American springs (March–May) were also no-
tably warm, similarly manifested in high frequencies 
of warm days and nights (Fig. 2.9).

The European autumn (September–November) 
also had anomalously high frequencies of warm 
days, whereas over northern North America and 
Greenland high frequencies of warm nights were 
more notable. Northern Russia and central Europe 
experienced warm days 3°–5°C warmer than normal 

during autumn. Interestingly, the northern central 
Asia autumn was relatively cold for both warm and 
cold extremes (Fig. 2.9).

c. Cryosphere
1) permafroSt thermaL State—J. Noetzli, H. H. Christiansen, 

M. Gugliemin, V. E. Romanovsky, N. I. Shiklomanov, S. L. Smith, 
and L. Zhao

The Global Terrestrial Network for Permafrost 
(GTN-P) brings together long-term records on per-
mafrost from permafrost regions worldwide (Smith 
and Brown 2009; Biskaborn et al. 2015). The two 
current observation elements are permafrost tem-
peratures and active layer thickness (ALT). The ALT 
is the layer that thaws and freezes over the seasonal 
cycle; it generally increases in warmer conditions.

Permafrost has warmed over the past 2–3 decades, 
and generally continues to warm across the circum-

polar north. Record-high temperatures 
were observed in 2015 on the Alaskan 
North Slope region and a noticeable 
warming has been recorded at several 
sites in the Alaskan Interior. Similar 
results have been obtained for north-
western Canada, Russia, and the Nordic 
regions. ALT for 2015 was generally 
greater than the long-term average. A 
detailed discussion of measurement 
results from Arctic terrestrial perma-
frost is provided in section 5i. In this 
section, results from the European Alps, 
central Asia, and continental Antarctica 
are summarized.

Mountain permafrost in the Euro-
pean Alps is patchy and its character 
and thermal conditions are spatially 
heterogeneous. The majority of per-
mafrost is found between 2600 and 
3000 m a.s.l. (Boeckli et al. 2012) in 
shady debris slopes and rock glaciers. 
There, permafrost temperatures have 
been measured for 1–2 decades and 
are typically above −3°C (Fig. 2.10). 
Recent installations on very high eleva-
tion shaded bedrock slopes show that 
the highest peaks can be significantly 
colder. For example, the Aiguille du 
Midi north face in the Mont Blanc area 
at 3840 m a.s.l. (see Figs. 2.10a,b), and 
the Matterhorn summit north slope at 
4450 m a.s.l. experience annual mean 
temperatures near the surface as low as 
−10°C (Paolo Pogliotti, Environmental 

Fig. 2.9. Seasonal anomalies of the frequency of (a–d) warm days 
(TX90p) and (e–h) cool nights (TN10p) for 2015 relative to the 
1961–90 base period. There must be at least two months of data 
present within each season. (Source: GHCNDEX.)
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Protection Agency of Valle d’Aosta, 20 February 
2015, personal communication). Records measured 
within the Swiss Permafrost Monitoring Network 
(PERMOS) during the past 10 to 25 years show a 
general warming trend at depths to 10 and 20 m, 
especially over the past seven years (Figs. 2.10a,b). 
The recent warming is accentuated in 2015, when 
the highest permafrost temperatures were recorded 
at most PERMOS sites. This is a cumulative effect of 
the continuously warm weather conditions in recent 
years rather than a result of the extremely warm sum-
mer 2015. ALT reached new record values in 2015 at 
many PERMOS sites. Absolute ALT changes depend 
strongly on surface processes—mainly snow cover 
duration and thickness—and subsurface ice content 
(PERMOS 2013). The recent warming of permafrost 

in the Swiss Alps since 2009 has been accompanied 
by an increase of rock glacier velocities, as observed 
at multiple sites within Switzerland.

In the warm permafrost of the higher elevations 
of central Asia, ground temperatures have increased 
by up to 0.5°C decade−1 since the early 1990s, and a 
general increase in ALT has been observed (e.g., Zhao 
et al. 2010). The ground temperature at sites along the 
Qinghai–Xizang Highway increased between 2004 
and 2014 by 0.04°–0.5°C decade−1 at 10-m depth, 
and about 0.01°–0.29°C decade−1 at 20-m depth (Fig. 
2.10c,d). Based on monitoring results extended by a 
freezing–thawing index model, the average increase 
of ALT was about 28 cm decade−1 from 1981 to 2015 
along the Qinghai–Xizang Highway (Fig. 2.11). The 
average ALT from 2011 to 2015 in Fig. 2.11 was about 

15 cm more than the 2001–10 
average. The mean annual air 
temperature in the Tibetan Pla-
teau region increased at an ave-
rage rate of 0.68°C decade−1 over 
the past 35 years (Fig. 2.11).

Permafrost temperature at 
20-m depth along the latitudi-
nal transect in Victoria Land, 
continental Antarctica between 
Wright Valley and OASI (Terra 
Nova Bay), has increased by 
about 0.5°C since 2008 (Balks 
et al. 2016; Fig. 2.10e). This in-
crease is independent of the air 
temperature, which has been 
stable since 1960. In contrast, 
there is no apparent trend in 
permafrost temperatures in 
maritime Antarctica (Rothera, 
Fig. 2.10e) despite recorded air 
warming in the area. ALT is 
strongly increasing in the coastal 
areas of continental Antarctica, 
between 5 cm year−1 at Marble 
Point (Balks et al. 2016) and 
0.8 cm year−1 at Boulder Clay 
(Guglielmin et al. 2014a). In 
maritime Antarctica, at Signy Is-
land, the active layer has ranged 
between 124 and 185 cm since 
2006 (Guglielmin et al. 2012), 
while at Livingstone Island be-
tween 124 and 145 cm (De Pablo 
et al. 2014), both without any 
trends despite air temperatures 
having increased in this area.

Fig. 2.10. Temperatures measured in permafrost boreholes. Boreholes for 
central and northern Europe at approximately (a) 10-m and (b) 20-m depth, 
with actual depths shown in parentheses; along Qinghai–Xizang Highway on 
the Tibetan Plateau at (c) 10-m and (d) 20-m depth; and (e) in Antarctica at 
20-m depth: WV = Wright Valley; MP= Marble Point; OASI in Continental 
Antarctica; and Rothera in Maritime Antarctica. (Sources: Swiss Permafrost 
Monitoring Network PERMOS; Norwegian Meteorological Institute and 
the Norwegian Permafrost Database, NORPERM; EDYTEM/University of 
Savoie; Cryosphere Research Station on Qinghai–Xizang Plateau, CAS.)
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2) northern hemiSphere continentaL Snow cover 
extent—D. A. Robinson

Annual snow cover extent (SCE; Table 2.4; 
Fig. 2.12) over Northern Hemisphere (NH) lands aver-
aged 24.6 million km2 in 2015. This is 0.5 million km2 
less than the 46-year average and ranks 2015 as having 
the 36th most extensive (or 10th least extensive) cover 
on record. This evaluation considers snow over NH 
continents, including the Greenland ice sheet. SCE 
in 2015 ranged from 
47.1 million km2 in 
January to 3.0 mil-
lion km2 in August. 
Monthly SCE is cal-
culated at the Rutgers 
Global Snow Lab from 
daily SCE maps pro-
duced by meteorolo-
gists at the National 
Ice Center (a U.S. joint 
NOAA, Nav y, and 
Coast Guard facility), 
who rely primarily on 
visible satellite imag-
ery to construct the 
maps.

SCE across  t he 
NH was close to aver-
age in January 2015, 
a ba lance between 
above-average cover 
in Eurasia (EU) and 
below-average over 
North America (NA). 
This reversed in Feb-

ruary, with SCE 1.1 million km2 below average, 
mostly due to the ninth lowest SCE over EU. Both 
continents ranked among their 10 smallest for SCE 
during March. Spring melt proceeded faster over NA 
than EU, with the overall NH April coverage in the 
middle tercile. May and June behaved like most years 
within the past decade, quickly losing continental 
snow cover. This resulted in the sixth lowest May NH 
SCE and second lowest in June within the satellite era.

Much as in the previous two years, snow arrived 
early over NH continents during autumn 2015, with 
SCE 14th highest in September. Coverage continued 
expanding quickly in October and November, each 
month ranking seventh most extensive. December 
saw the brakes put on this rapid expansion, with 
coverage 0.2 million km2 below average, or 32nd 
most extensive.

SCE over the contiguous United States was at the 
boundary of the middle and lower tercile in Janu-
ary 2015. It was within the middle tercile but nearer 
the above-normal side in February. The situation 
changed considerably in spring, with March SCE the 
fifth lowest on record and April ninth least extensive. 
Autumn 2015 SCE began building slowly in October, 
ranking ninth lowest. This changed in November 
and December, which ranked 19th and 22nd most 
extensive, respectively.

Fig. 2.11. Annually-averaged ALTs and MAATs along 
Qinghai–Xizang Highway on the Tibetan Plateau 
(modified after Li et al. 2012 based on new data). 
(Sources: Cryosphere Research Station on Qinghai–
Xizang Plateau, CAS.)

table 2.4. Monthly and annual climatological statistics on Northern Hemisphere 
and continental snow extent between November 1966 and December 2015. In-
cluded are: number of years with data used in the calculations, means, standard 
deviations, 2015 values, and ranks. Areas are in km2 (millions). 1968, 1969, and 1971 
have 1, 5, and 3 missing months, respectively, thus are not included in the annual 
calculations. North America (N. Am.) includes Greenland. Ranks are from most 
extensive (1) to least (ranges from 46 to 50, depending on the month).

 Years Mean
Std. 
Dev.

2015
2015

N. Hem
rank

Eurasia 
rank

N. Am. 
rank

Jan 49 47.1 1.6 47.3 22 18 32

Feb 49 46.1 1.8 45.0 36 41 20

Mar 49 40.6 1.8 38.5 43 41 40

Apr 49 30.6 1.7 30.1 28 21 35

May 49 19.3 1.9 17.0 44 38 47

Jun 48 9.7 2.4 5.4 47 47 47

Jul 46 4.0 1.2 2.5 42 39 44

Aug 47 3.0 0.7 2.6 34 39 23

Sep 47 5.4 1.0 5.9 14 18 8

Oct 48 18.3 2.6 21.4 7 6 11

Nov 50 34.0 2.1 36.2 7 7 19

Dec 50 43.7 1.9 43.5 32 30 22

Ann 46 25.1 0.8 24.6 36 29 39
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Maps depicting daily, weekly, and monthly con-
ditions, daily and monthly anomalies, and monthly 
climatologies for the entire period of record may be 
viewed at the Rutgers Global Snow Lab website (http://
snowcover.org). Monthly SCE for the NH, EU, NA, 
contiguous U.S., Alaska, and Canada are also posted, 
along with information on how to access weekly areas 
and weekly and monthly gridded products.

3) aLpine gLacierS and ice SheetS—M. S. Pelto
The World Glacier Monitoring Service (WGMS) 

record of mass balance and terminus behavior provides 
a global index for alpine glacier behavior. The WGMS 
dataset for terminus change contains 42 000 observa-
tions from 2000 glaciers extending from the mid-19th 
century. There are 5200 geodetic and glaciological 
mass balance observations in this dataset. Annual 
mass balance is the annual change in volume due to 
snow and ice accumulation and snow and ice losses. 
Here, WGMS mass balance is reported in mm of water 
equivalent (Fig. 2.13). In 2014 mean mass balance was 
−798 mm for the 41 long-term reference glaciers and 
−586 mm for all 130 observed glaciers. Preliminary 
data for 2015 from 16 nations with more than one 
reporting glacier from Argentina, Austria, Canada, 
Chile, Italy, Kyrgyzstan, Norway, Switzerland, and the 
United States indicate that 2015 will be the 36th con-
secutive year of negative annual balances with a mean 
loss of −1162 mm for 27 reporting reference glaciers and 
−1481 mm for all 59 reporting glaciers (WGMS 2016). 
Reference glaciers are those with records longer than 
30 years, hence the increase from 37 in 2014 to 41 this 
year. The number of reporting reference glaciers is 90% 
of all reporting glaciers but only 50% of all glaciers that 
have reported to date. The preliminary data indicate 
2015 mass balance will be one of the two most negative 
along with 2003, with 2003 at −1268 mm for reference 
glaciers and −1198 mm for all glaciers.

The unprecedented ongoing retreat is a result of 
strongly negative mass balances over the last 32 years 
(Zemp et al. 2015). An examination of the WGMS 
record by Zemp et al. (2015) found that the rates of 
early 21st century mass loss are without precedent on 
a global scale, at least for the time period observed. 
The Randolph Glacier Inventory version 3.2 (RGI) 
was completed in 2014, compiling digital outlines of 
alpine glaciers using satellite imagery from 1999 to 
2010. The inventory identified 198 000 glaciers, with a 
total extent estimated at 726 800 ± 34 000 km2 (Pfeffer 
et al. 2014). This inventory was crucial for glacier run-
off modelling that indicates 11 of 13 alpine regions are 
experiencing decreased runoff (Bliss et al. 2014). This 
is due to a greater loss of glacier area than increased 
rate of glacier melt. The volume loss of alpine glaciers 
has led to a current sea level rise equivalent of ap-
proximately 0.8–1.0 mm year−1 (Marzeion et al. 2012).

The cumulative mass balance loss from 1980 to 
2015 is 18.8 m, the equivalent of cutting a 20.5 m thick 
slice off the top of the average glacier (Fig. 2.13). The 
trend is remarkably consistent from region to region 
(WGMS 2015a). The decadal mean annual mass 
balance was −261 mm in the 1980s, −386 mm in the 
1990s, −727 mm for 2000s, and −818 mm from 2010 to 
2015. The declining mass balance trend during a pe-
riod of glacier retreat indicates alpine glaciers are not 
approaching equilibrium and retreat will continue 
to be the dominant terminus response (Zemp et al. 
2015). The recent rapid retreat and prolonged negative 
balances have led to many glaciers disappearing and 
others fragmenting (Pelto 2010; Carturan et al. 2015).

In South America, seven glaciers in Colombia, 
Argentina, and Chile reported mass balance in 2015. 
All seven glaciers had losses greater than 1200 mm, 

Fig. 2.12. Twelve-month running anomalies of monthly 
snow cover extent over Northern Hemisphere lands 
as a whole and Eurasia and North America (including 
Greenland) separately between Nov 1966 and Dec 2015. 
Anomalies are calculated from NOAA snow maps (http://
snowcover.org) relative to 1981–2010. Monthly means 
for the period of record are used for 9 missing months 
between 1968 and 1971 in order to create a continuous 
series of running means. Missing months fall between Jun 
and Oct; no winter months are missing.

Fig. 2.13. Mean annual (red bars) and cumulative (red 
line) annual balance reported for the 41 reference 
glaciers to the WGMS (1980–2015). The data for 2015 
are preliminary, only including 27 reference glaciers 
at the time of publication.
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with a mean of −2200 mm. These Andean glaciers 
span 58° of latitude.

In the European Alps, mass balance has been 
reported for 15 glaciers from Austria, France, Italy, 
Spain, and Switzerland. All 15 had negative balances 
exceeding −1000 mm, with a mean of −1860 mm. 
This is an exceptionally negative mass balance, rival-
ing 2003 when average losses exceeded −2000 mm. 
The negative mass balances were largely due to an 
exceptionally hot summer (see section 7f), as in 2003.

In Norway, mass balance was reported for seven 
glaciers in 2015; all seven were positive with a mean 
of 860 mm. This is the only region that had a positive 
balance for the year. In Svalbard six glaciers reported 
mass balances, with all six having a negative mass 
balance averaging −675 mm.

In North America, Alberta, British Columbia, 
Washington (state), and Alaska mass balance data 
from 17 glaciers were reported with a mean loss of 
−2590 mm, with all 17 negative. This is the largest 
negative mass balance for the region during the 
period of record. From Alaska south through British 
Columbia to Washington the accumulation season 
temperature was exceptional with the mean for No-
vember–April being the highest observed (Fig. 2.14).

In the high mountains of central Asia, seven 
glaciers from China, Russia, Kazakhstan, and Kyr-
gyzstan reported data; all were negative with a mean 
of –705 mm.

d. Hydrological cycle
1) Surface humidity—K. M. Willett, D. I. Berry, M. G. Bosilovich, 

and A. Simmons
Surface moisture values in 2015 were at their high-

est level since the last El Niño event in 2010 (Fig. 2.15). 
Over land, levels of water vapor in the air (specific 
humidity) were well above the 1981–2010 average and 
approaching those of 1998 and 2010. Over oceans, 
annual average specific humidity values were higher 
than at any other point in the record that began in 
the early 1970s. The ability of the atmosphere to 
carry water vapor is limited by its temperature. The 
extra warmth associated with the El Niño, ongoing 
in some respects since 2014, together with generally 
above-average global temperatures, is consistent with 
the high atmospheric humidity seen in 2015. Similar 
anomalously high humidity levels are seen in the 
years following previous El Niño events, with the 
atmospheric humidity typically lagging the tempera-
ture changes by a few months.

Relative humidity levels in 2015 remained well 
below average, continuing an apparent declining 
trend since the early 2000s. While the land in situ data 

(HadISDH.2.1.0.2015p) are in broadscale agreement 
with the ERA-Interim and JRA-55 reanalyses in terms 
of overall behavior, HadISDH presents 2015 as slightly 
more moist than 2014 whereas both reanalyses pres-
ent 2015 as slightly more arid. However, for HadISDH 
at least, the 2015−2014 difference is smaller than the 
annual uncertainty estimate for 2015 (±0.2% rh)

All estimates contain uncertainty. Arguably the 
largest sources of uncertainty, generally, are the gaps 
in sampling both in space and time. There is also 
uncertainty stemming from systematic errors in 
the data and the different methods for dealing with 
these by bias correction or homogeneity detection 
and adjustment. Over the ocean (Berry and Kent 
2009, 2011), ship heights have increased over time, 
requiring height adjustment to avoid erroneously 
decreasing specific and relative humidity. Systematic 
biases have also been found between psychrometers 
housed within screens versus those that are hand 
held. Over land (Willett et al. 2013b, 2014b), changes 
to observing instruments, locations, or processes have 
been common and poorly documented, requiring 
statistical methods to account for them. Measurement 
uncertainty also plays a role. Reanalyses (Simmons 
et al. 2010; Simmons and Poli 2014) have the benefit 

Fig. 2.14. Columbia Glacier, Washington: 1 of 41 
WGMS reference glaciers, viewed on 4 Aug 2015 from 
(a) below the terminus and (b) above the head of the 
glacier. Note the lack of retained snowcover with seven 
weeks left in the melt season. Numerous annual firn 
and ice layers exposed. (Photo credit: M. Pelto)
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of the physical model and 
assimilation of high density 
observations with which to 
reduce the errors. However, 
they are not fully immune 
to such issues, and changing 
data streams over time can 
introduce inhomogeneities 
that can be substantial (Kent 
et al. 2014).

Despite these uncertain-
ties, there is generally good 
agreement between the vari-
ous estimates presented here 
[described more fully in 
Willett et al. (2013a, 2014a)]. 
The new MERRA-2 reanaly-
sis (R. Gelaro et al. 2016 
unpublished manuscript; 
Bosilovich et al. 2015) shows 
better agreement than the 
previously used MERRA, 
owing to improved data se-
lection, inclusion of mod-
ern data, and model and 
data assimilation advances. 
MERRA-2 uses observation-
corrected precipitation for 
forcing the land surface, which helps constrain the 
near-surface temperature and moisture over land 
(Reichle and Lui 2015). While the year-to-year vari-
ability is similar to the other estimates, there are 
some deviations around 2002 and 2007–09 (Fig. 2.15). 
These are thought to be linked to variability in the 
precipitation forcing at those times. All agree on the 
most recent period having the highest specific humid-
ity levels on record while also being the most arid in 
relative humidity terms (Fig. 2.15).

Spatially, specific humidity was anomalously high 
over much of the land, especially over India and 
Southeast Asia, which was also common to 1998 and 
2010 (Plate 2.1k; Online Figs. S2.10, S2.11). In contrast 
to 2014, the United States experienced almost entirely 
above-average specific humidity. Southern Africa 
was particularly dry. Over oceans, data quality sig-
nificantly impacts the spatial coverage of the in situ 
data, meaning that the key El Niño–Southern Oscil-
lation (ENSO) region of the Pacific Ocean is not well 
observed. ERA-Interim and MERRA-2 show strong 
moist anomalies there, in good agreement with the 
other hydrological cycle ECVs and the very warm 
SSTs (Plate 2.1c, Online Figs. S2.1 to S2.3).

Relative humidity was anomalously low over much 
of the land (Plate 2.1l; Online Fig. S2.12). Interestingly, 
some regions, such as southern Africa and Australia, 
experienced both below-average water vapor amounts 
(specific humidity) and levels of saturation (relative 
humidity), while other regions, such as the United 
States and southern India, experienced above-average 
water vapor but below-average saturation. The regions 
of low relative humidity are broadly, but not exactly, 
consistent with below-average precipitation (Plate 
2.1h). Over the oceans there was a strong dipole along 
the equatorial Pacific with much lower-than-average 
values to the south. This was slightly farther north 
than the specific humidity dipole associated with the 
El Niño warm pool.

2) totaL coLumn water vapor—C. Mears, S. Ho, J. Wang, 
H. Huelsing, and L. Peng

Total column water vapor (TCWV) rapidly 
increased during 2015 in response to the 2015/16 
El Niño event (Fig. 2.16), with the annual average 
anomaly lying well above the long-term average. 
Estimates come from satelliteborne microwave ra-
diometers over ocean (Wentz 1997, 2015), COSMIC 

Fig. 2.15. Global average surface humidity annual anomalies (base period: 
1979–2003). For in situ datasets, 2-m surface humidity is used over land and 
~10-m over the oceans. For the reanalysis, 2-m humidity is used across the 
globe. For ERA-Interim, ocean-only points over open sea are selected and 
background forecast values are used as opposed to analysis values because of 
unreliable use of ship data in producing the analysis. All data have been adjusted 
to have a mean of zero over the common period 1979–2003 to allow direct 
comparison, with HOAPS given a zero mean over the 1988–2003 period. ERA 
values over land are from ERA-40 prior to 1979 and ERA-Interim thereafter. 
[Sources: HadISDH (Willett et al. 2013a, 2014a); HadCRUH (Willett et al. 
2008); Dai (Dai 2006); HadCRUHext (Simmons et al. 2010); NOCSv2.0 (Berry 
and Kent, 2009, 2011); HOAPS (Fennig et al. 2012) and reanalyses as described 
in Fig. 2.1. Data provide by authors, A. Dai, M. Bosilovich and S. Kobayashi.]
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GPS-RO (Global Positioning System–Radio Occulta-
tion) over land and ocean (Ho et al. 2010; Teng et al. 
2013; Huang et al. 2013), and ground-based GNSS 
(Global Navigation Satellite System) stations (Wang 
et al. 2007) over land. The 2015 anomaly map (Plate 
2.1o) combines data from satellites over ocean and 
COSMIC GPS-RO over land with ground-based 
GNSS stations (Wang et al. 2007) also shown. Most 
of the tropical Pacific showed a large wet anomaly, 
which grew to unprecedented size by the end of 2015. 
Wet anomalies, albeit less pronounced, covered most 
of the rest of the globe, except for dry anomalies over 
the Maritime Continent, north of New Zealand, to the 
south of Greenland, southern Africa, and the Ama-
zon basin. The spatial patterns in TCWV over the 
ocean (Plate 2.1o) are confirmed by similar features 
in COSMIC ocean measurements and supported by 
reanalysis output.

Over the ocean, the TCWV anomaly time series 
(Fig. 2.16a,b) from reanalysis and microwave radi-
ometers show maxima in 1983/84, 1987/88, 1997/98, 
2009/10, and late 2015, each associated with El Niño 
events. The December 2015 anomaly is the largest 
recorded for any month, particularly in the satel-
lite radiometer data. This is a result of the large wet 

anomaly in the tropical Pacific Ocean, coupled with 
the lack of large dry anomalies across the rest of 
the world. The radiometer data show a discernible 
increasing trend over the period. The different re-
analysis products show reasonable agreement from 
the mid-1990s but deviations prior to that, resulting 
in a range of long-term trends. Minima are apparent 
in Northern Hemisphere winters during the La Niña 
events of 1984/85, 1988/89, 1999/2000, 2007/08, and 
late-2010 to mid-2012. The ocean-only COSMIC data 
are in general agreement with the reanalysis and 
radiometer data, but show a sharp peak in early 2012 
and a small dip relative to the other data after 2013.

Over land, average anomalies from the ground-
based GNSS stations are used in place of the satellite 
radiometer measurements (Figs. 2.16c,d), providing 
a record back to 1995, alongside the much shorter 
COSMIC record. The various reanalysis products, 
COSMIC, and GNSS are in good agreement through-
out the record and all show a subtle increase in 
TCWV, similar to over ocean.

A land-and-ocean time–latitude plot derived 
from JRA-55 (Fig. 2.17) indicates that the long-term 
increase in TCWV is occurring at all latitudes, with 
less variability outside the tropics. The El Niño events 
are clear, especially the 1997/98 event. The previous 
strong El Niño events during 1983/84 and 1997/98 
showed pronounced drying in the northern tropics 
that accompanied moistening on the equator and the 
southern subtropics. Although similar in strength in 
terms of sea surface temperature, the TCWV response 
to the current El Niño does not show this feature (see 
Sidebar 1.1; Online Fig. S2.13).

Fig. 2.16. Global average total column water vapor 
anomalies (mm; 1981–2010 reference period) for (a,b) 
ocean only and (c,d) land only for observations and 
reanalyses (see Fig. 2.1 for reanalyses references) av-
eraged over 60°S–60°N. The shorter time series have 
been given a zero mean over the period of overlap with 
ERA-Interim (1988–2015 for RSS Satellite, 1995–2015 
for GNSS, 2007–15 for COSMIC).

Fig. 2.17. Hovmöller plot of total column water vapor 
anomalies (mm; base period 1981–2010) including land 
and ocean derived from JRA-55 reanalysis.
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3) upper tropoSpheric humidity—V. O. John, L. Shi,  
and E.-S. Chung

Global scale monitoring of upper tropospheric 
relative humidity (UTH) was first reported last year, 
using one dataset of satellite origin and one reanalysis. 
However, the reanalysis data showed drying of the 
upper troposphere since 2001 that was not present 
in the satellite data. Therefore, for this year, two 
independent UTH satellite datasets are used. One 
is the infrared-based HIRS dataset (Shi and Bates 
2011) which was used last year, and the other is the 
microwave-based UTH dataset (Chung et al. 2013). 
UTH represents a weighted average of relative humid-
ity in a broad layer, roughly between 500 and 200 hPa.  
Humidity distribution at these levels of the atmo-
sphere is a key climate variable due to its strong con-
trol on the outgoing longwave radiation (OLR) which 
makes a strong feedback factor in the climate system.

Area-weighted anomaly time series of UTH for 
the 60°N–60°S latitude belt are shown in Fig. 2.18. 
The anomalies are computed relative to 2001–10 
because the microwave-based UTH dataset begins 
only in 1999. A slightly below-average 2015 anomaly 
is observed. A near-zero trend in the UTH time se-
ries indicates an increase in specific humidity in the 
warming upper troposphere and is consistent with a 
positive water vapor feedback (Chung et al. 2016). It 
is encouraging to see good agreement between the 
two independent datasets despite their differences 
in sampling: microwave data have an almost all-sky 
sampling whereas HIRS data samples mainly clear-
sky areas. The annual average of UTH for 2015 (Plate 
2.1n; Online Fig. S2.14) shows large moist anomalies 
over the central and eastern tropical Pacific and dry 
anomalies over the Maritime Continent, which re-
sults from the strong El Niño of 2015. This signal is 
stronger in the microwave dataset (Online Fig. S2.14) 
compared to HIRS (Plate 2.1n), possibly because of the 
sampling differences. The weak dry anomalies over 
India are an indication of the weak monsoon season 
in 2015 (see section 7g4).

4) precipitation—R. S. Vose, A. Becker, K. Hilburn,  
G. Huffman, M. Kruk, and X. Yin

Precipitation over the global land surface in 2015 
was far below the long-term average (Fig. 2.19). In fact, 
2015 was the driest year on record in two prominent 
global products: the Global Precipitation Climatology 
Centre (GPCC) dataset (Schneider et al. 2011; Becker 
et al. 2013), which is based on surface stations, and 
the Global Precipitation Climatology Project (GPCP) 
version 2.3 (Adler et al. 2003), which is based on both 
satellite data and surface stations. Last year was also 
among the five driest years on record in a new (experi-
mental) version of another prominent global product, 
the Global Historical Climatology Network (GHCN) 
dataset (Peterson and Vose 1997; Menne et al. 2012), 
which contains about five times as many surface sta-
tions as its operational counterpart (version 2).

From a spatial perspective, coherent anomaly 
patterns were evident across the global land surface 
in 2015 (Plate 2.1h). El Niño affected precipitation in 
many areas; in particular, below-average precipita-
tion fell over much of northeastern South America, 
southern Africa, the Maritime Continent, and north-
ern Australia, while above-average precipitation fell 
over the southeastern quadrants of North and South 
America. Relative to 2014, northern and eastern Asia 
became much wetter while western Europe became 
much drier.

In contrast to global land areas, precipitation over 
the global ocean surface in 2015 was much above the 
long-term average, continuing the general increase 
of the last five years (Fig. 2.19). Above-normal pre-
cipitation over the ocean served as a counterpoint to 
below-normal precipitation over land, and thus the 
global value for 2015 was slightly above the long-term 

Fig. 2.18. Anomaly time series of upper tropospheric 
humidity using HIRS (black) and microwave (blue) da-
tasets. The anomalies are computed based on 2001–10 
average, and the time series is smoothed to remove 
variability on time scales shorter than 3 months.

Fig. 2.19. Globally averaged precipitation anomalies 
(mm) for (a) four in situ datasets over land (1961–90 
base period) and (b), (c) one satellite-based dataset 
over ocean (1988–2010 base period). Ocean averages 
are for the global ocean equatorward of 60° latitude 
using a common definition of “ocean” and the annual 
cycle has been removed.
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average. The ongoing El Niño, which was particularly 
dominant in the tropics in the latter half of the year, 
resulted in several distinct anomaly patterns over the 
ocean (Plate 2.1h). In particular, an intense positive 
anomaly of rainfall stretched across the Pacific Ocean 
along the Inter-Tropical Convergence Zone, just north 
of the equator. The western Pacific experienced two 
distinct anomaly maxima (a larger one slightly to 
the south of the equator and a secondary one to the 
north). In addition, there was a strong negative rain-
fall anomaly over the seas of the Maritime Continent. 
Other large anomalies for 2015 include above-normal 
rainfall over the central Indian Ocean and the eastern 
Pacific Ocean (east of the Hawaiian Islands) as well as 
below-normal precipitation in parts of the northern 
and southern Pacific Oceans.

5) cLoudineSS—M. J. Foster, S. A. Ackerman, K. Bedka,  
R. A. Frey, L. Di Girolamo, A. K. Heidinger, S. Sun-Mack,  
B. C. Maddux, W. P. Menzel, P. Minnis, M. Stengel, and G. Zhao

Based on the longest continuous record of cloud 
cover, PATMOS-x (Pathfinder Atmospheres Extend-
ed; Heidinger et al. 2013), 2015 was 1.4% less cloudy 
than the 35-year average, making it the 10th least 
cloudy year on record. Global mean annual cloudi-
ness anomalies from eight satellite records are shown 
in Fig. 2.20. Four of the records—MISR (Multiangle 
Imaging Spectroradiometer; Di Girolamo et al. 2010), 
Aqua MODIS C6 (Moderate Resolution Imaging 
Radiospectrometer Collection 6; Ackerman et al. 
2008), CALIPSO (Cloud-Aerosol Lidar and Infrared 
Pathfinder Satellite Observation; Winker et al. 2007), 
and CERES (Clouds and the Earth’s Radiant Energy 
System) Aqua MODIS (CERES-MODIS; Minnis et al. 
2008; Trepte et al. 2010) show little change in global 
cloudiness from 2014 to 2015 (<0.1%). PATMOS-x and 
HIRS (High Resolution Infrared Sounder; Wylie et 
al. 2005; Menzel et al. 2014)—show modest increases 
of 0.30% and 0.29%, respectively, while SatCORPS 
(Satellite ClOud and Radiative Property retrieval 
System; Minnis et al. 2015) shows an increase of 1.1%, 

and CLARA-A2 (Cloud, ALbedo and RAdiation data-
set; Karlsson et al. 2013) shows a modest decrease of 
0.25%. Three of the records—PATMOS-x, CLARA-
A2, and SatCORPS—are derived from the AVHRR 
(Advanced Very High Resolution Radiometer) on the 
NOAA Polar Orbiter Environmental Satellite series 
and more recently the EUMETSAT Polar System 
Metop series. SatCORPS is the most recent addition 
and was developed through the NOAA Climate Data 
Record program. CLARA-A2 is the successor to 
CLARA-A1 and includes several changes, the most 
notable to impact global cloudiness being improve-
ments in cloud detection over semiarid regions. In 
addition to instrument sensitivity and calibration, 
several factors contribute to differences among the 
records. For example, the AVHRR-derived records 
use different methods to account for satellite diurnal 
drift, while HIRS is primarily focused on detection 
of cirrus cloud.

The satellite records are in good agreement post-
2000, but prior to 2000, global cloudiness was more 
variable among the records and was relatively higher 
for all series with the exception of SatCORPS. Four of 
the records in Fig. 2.20 are derived from instruments 
flown on the NASA Earth Observing System (EOS) 
satellite missions, beginning in 1999 with the launch 
of Terra. MISR is flown on Terra, while CERES and 
MODIS are flown on Terra and Aqua (launched in 
2002). Recent calibration issues with IR channels 
on Terra/MODIS have resulted in artificial positive 
trends in cloudiness, noticeable from around 2010, 
so only Aqua/MODIS is included here. CALIPSO was 
launched in 2006.

One explanation posited for the discrepancy be-
tween pre- and post-2000 is the lack of strong El Niño 
events in recent years. The last strong El Niño event 
was observed in 1997/98. Thus 2015 is significant in 
that it is the first year with a strong El Niño event 
during the NASA EOS/post-2000 era. The close 
agreement between cloud records and lack of a large 
positive cloudiness anomaly in relation to the current 
El Niño suggest that El Niño events in the 1980s and 
1990s are, by themselves, not sufficient to explain the 
larger variability and higher cloudiness seen in the 
records of that time.

Figure 2.21 shows the shift in the tropical ice 
clouds during the 2015/16 and 1997/98 El Niño events 
(see Sidebar 1.1). The 1998 and 2016 images show 
observations during strong El Niño months while the 
1997 and 2015 images show the same month of the 
previous year (preceding the El Niño). Both El Niño 
events see a dramatic shift of ice clouds in January 
from the Warm Pool region of the western Pacific to 

Fig. 2.20. Annual global cloudiness anomalies for 
1981–2015 (base period, 2003–14, a period common to 
the satellite records excluding CALIPSO, where the entire 
record was used instead).  Datasets include PATMOS-x, 
HIRS, MISR, AQUA MODIS C6, CALIPSO, CERES, 
SatCORPS and CLARA-A2.
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central Pacific. This caused statistically significant 
(at the 5% level) lower cloud cover over the Maritime 
Continent and the equatorial western Pacific and 
correspondingly significant higher cloud cover across 
the central and eastern Pacific (see Plate 2.1m). As 
the warm SSTs shift to the east, so do the tropical 
convection and the associated ice cloud. The 1997/98 
data were taken from the AVHRR PATMOS-x record, 
which spans 1982–present. The 2015/16 data were 
generated using the SNPP/VIIRS instrument, which 
is the successor to the AVHRR.

Smaller, but still statistically significant, anomalies 
were observed across the globe, with many regional 
anomalies being attributable to teleconnections asso-
ciated with El Niño. For example, the Amazon basin 
experienced significant drought, which corresponded 
to a reduction in cloud cover. The cloud cover over 
the southeast Pacific off the coast of Peru and the 
stratocumulus deck off the coast of southwest North 
America were both anomalously low. Interestingly, 
other atmospheric oscillations such as the record 
positive Pacific decadal oscillation (PDO) showed 
little impact on the annual and monthly cloud cover.

Other anomalies, not statistically significant for 
the entire year, were observed in the first half of the 
year, prior to El Niño (see Online Figs. S2.15, S2.16). 
Some of these anomalies corresponded with a record 
positive PDO, but were not directly attributable to 
it. Large positive anomalies in cloud cover over the 

southern United States coincided with its wettest 
month on record in May (see section 7b2).

6) river diScharge—H. Kim
Runoff is one of the key components of the terres-

trial water cycle. It serves as an integrated residual of 
the various hydraulic and hydrological processes after 
water has fallen on the land as precipitation. River 
discharge accumulates and transports total runoff 
generated in upstream watersheds to the ocean, play-
ing a significant role in the freshwater balance and 
the salinity of the ocean.

Because of the lack of an observational methodol-
ogy for real-time global long-term monitoring (Fekete 
et al. 2012), offline model simulation has been the 
primary method rather than in situ networks [e.g., 
the Global Runoff Data Centre (GRDC); Fekete, 
2013]. A 58-year (1958–2015) terrestrial hydrologic 
simulation is performed by the ensemble land surface 
estimator (ELSE; Kim et al. 2009). The atmospheric 
boundary condition has been updated to use the sec-
ond Japanese global atmospheric reanalysis (JRA-55; 
Kobayashi et al. 2015) and the Monitoring Product 
version 5 (Schneider et al. 2015) monthly obser-
vational precipitation by the Global Precipitation 
Climatology Centre (GPCC). The other parts of the 
simulation framework remain as described by Kim 
and Oki (2015). ELSE has been validated against the 
GRDC and also terrestrial water storage from GRACE 
(Kim et al. 2009).

The global distributions of runoff and river dis-
charge anomalies in 2015 (relative to the 1958–2015 
base period) are illustrated in Plates 2.1i and 2.1j, 
respectively. Most river basins in the tropics, such as 
the Congo, Zambezi, Tocantins, and São Francisco, 
show anomalously dry conditions. Among the major 
river basins in the subtropics and temperate regions, 
the Danube, La Plata, Indus, and Yangtze were wetter 
than the climate normal. The Mississippi, Nile, and 
Volga were drier than their long-term mean states. 
Many of the basins in northern latitudes (e.g., Ob, 
Yenisei, and Lena) were wetter than their climato-
logical mean.

The 58-year time series of total terrestrial runoff 
anomalies and of the ENSO intensity are shown in 
Fig. 2.22. Variations of annual mean runoff and the 
oceanic Niño index (ONI) time series, smoothed by 
12-month window moving average, are significantly 
anticorrelated with each other (R = −0.63). Because 
a strong El Niño developed through 2015, at the 
global scale the mean anomaly turned into a dry 
phase. However, it still remained close to the climate 
normal because of the lingering effect of La Niña 

Fig. 2.21. Mean ice cloud fractions for Jan 1997, 1998, 
2015 and 2016. Data from 1997 and 1998 are from 
NOAA-14/AVHRR and data from 2015 and 2016 from 
SNPP/VIIRS.  
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after the 2009/10 El Niño. As shown in Fig. 2.23, 
seasonal variations of global runoff remained near 
the long-term mean during the boreal spring and 
summer and turned into a strong dry phase (~2σ) 
from the boreal autumn onwards. Regionally, North 
America, Asia, and Europe experienced significantly 
dry conditions during the latter half of 2015, and the 
dry condition was persistent in Africa through the 
entire year. During the most recent four years, large 
interannual variability affected South America, Eu-
rope, and Australia during February–July while the 
seasonal fluctuations in Africa were weak.

7) groundwater and terreStriaL water Storage—
M. Rodell, D. P. Chambers, and J. S. Famiglietti

Terrestrial water storage (TWS) comprises 
groundwater, soil moisture, surface water, snow, 
and ice. Groundwater varies more slowly than the 
TWS components that are more proximal to the 
atmosphere, but often it is more dynamic on multian-
nual timescales (Rodell and Famiglietti 2001). In situ 
groundwater data are archived and made public by 
only a few countries. However, since 2002 the Gravity 
Recovery and Climate Experiment (GRACE; Tapley 
et al. 2004) satellite mission has been providing ob-

servations of TWS variations which are a reasonable 
proxy for unconfined (having a free water table that 
responds to atmospheric pressure and processes like 
plant uptake and evaporation) groundwater varia-
tions at climatic scales.

Changes in mean annual TWS from 2014 to 2015 
are plotted in Plate 2.1g as equivalent heights of wa-
ter in cm. TWS can be thought of as an integrator 
of other hydroclimatic variables (see Plates 2.1f–p). 
In addition to being very warm, 2015 was a dry year 
in terms of water in the ground, particularly in the 
southern tropics. TWS decreased in central and east-
ern South America, in southern Africa, and in central 
Australia. In 2014 the former two regions mostly had 
gained TWS. The year 2015 was also dry for much of 
the western United States and Canada, as the historic 
drought in California reached a crescendo in autumn 
before El Niño brought some relief. Drought dimin-
ished water levels across a swath of central Europe, 
from France across to western Russia. A combination 
of drought and water consumption most likely con-
tinued to diminish groundwater in the Middle East 
(Voss et al. 2013), northern India (Rodell et al. 2009; 
Panda and Wahr 2016), and the North China Plain 
(Feng et al. 2013). On the other hand, Turkey recov-
ered from a major drought, and TWS also increased 
in a longitudinal band from Pakistan north through 
Afghanistan, Kazakhstan, and west central Russia. 
TWS also increased appreciably in Morocco (heavy 
rainfall in August), Texas and northern Mexico 
(continued recovery from a deep drought), central 
Argentina (heavy rains in February and August), and 
Peru and western Brazil. Northern Africa and eastern 
Asia were a mosaic of increasing and decreasing TWS, 
as seen in Plate 2.1g. Significant reductions in TWS in 
Greenland, Antarctica, and southern coastal Alaska 
represent ongoing ice sheet and glacier ablation, not 
groundwater depletion.

Figures 2.24 and 2.25 show time series of zonal 
mean and global, deseasonalized monthly TWS 
anomalies from GRACE, excluding Greenland and 
Antarctica. Data gaps occur in months when the 
satellites were powered down during certain parts of 
the orbital cycle to conserve battery life. Relative dry-
ness in the southern tropics and northern equatorial 
zone in 2015 is clear in Fig. 2.24, while the northern 
midlatitudes maintained their low TWS conditions. 
All told, Earth’s nonpolar TWS hit a new GRACE-
period low in 2015, −2.3 cm equivalent height of water 
(Fig. 2.25), equivalent to about 9 mm of sea level rise 
across the global oceans.

Fig. 2.22. (a) Interannual variability of global runoff 
anomalies relative to the 1958–2015 base period (thick 
line for 12-month window moving average) and (b) 
the oceanic Niño index (ONI) [red and blue shades 
for positive and negative phases, respectively, with 
lighter (darker) shades representing weaker (stronger) 
phases in (a)].

Fig. 2.23. Seasonal variations of global and continen-
tal runoff. Gray bars show the 58-year climatology 
(1958–2015) with error bars for 2σ and colored lines 
for the most recent 4 yrs.
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8) SoiL moiSture—W. A. Dorigo, D. Chung, A. Gruber,  
S. Hahn, T. Mistelbauer, R. M. Parinussa, C. Paulik, C. Reimer,  
R. van der Schalie, R. A. M. de Jeu, and W. Wagner

Satellite-mounted microwave instruments can 
measure the moisture content of the upper few centi-
meters of the unsaturated soil column. Dedicated soil 
moisture missions, such as the Soil Moisture Active 
Passive (SMAP) mission launched in 2015 by NASA, 
are able to provide nearly contiguous global spatial 
coverage at daily time scales but, as stand-alone 
missions, are too short for assessing soil moisture 
variability and change in the context of a changing 
climate. To bridge this gap, the ESA Climate Change 
Initiative (CCI) developed the first multisatellite 
surface soil moisture dataset (ESA CCI SM), which 
combines observations from a large number of his-
torical and present-day passive and active microwave 
instruments (De Jeu et al. 2012b; Liu et al. 2012; 
Wagner et al. 2012). The current version of the dataset 
combines nine different sensors (SMMR, ERS-1/2, 
TMI, SSM/I, AMSR-E, ASCAT, WindSat, AMSR2, 
and SMOS) between late 1978 and December 2015. It 
has been used for a wide range of applications (e.g., 
Dorigo and De Jeu 2016) and has been benchmarked 
against a large number of land surface models and in 
situ datasets (Albergel et al. 2013; Dorigo et al. 2015b; 

Loew et al. 2013), revealing a good performance 
across the globe except for densely vegetated areas. 
The surface soil moisture content sensed by the mi-
crowave satellites is closely linked to that of the root 
zone (Paulik et al. 2012), except for very dry condi-
tions where they may become decoupled (Hirschi 
et al. 2014). Based on the ESA CCI SM dataset, the 
yearly and monthly anomalies are computed here 
with respect to a 1991–2014 climatology.

For 2015, spatial anomaly patterns (Plate 2.1f) 
are markedly different from 2014 when, on a global 
scale, near-normal conditions prevailed (Dorigo et al. 
2015a). The anomalous dry conditions in central-
eastern Europe and Spain mainly resulted from the 
excessively warm and dry summer and autumn in 
this region (http://edo.jrc.ec.europa.eu/; ZAMG 2016, 
see October monthly anomalies; Online Fig. S2.17j). 
For eastern Brazil, strong anomalous negative soil 
moisture conditions were observed for the fourth 
consecutive year (Dorigo et al. 2014, 2015a; Parinussa 
et al. 2013), which may further exacerbate shortfalls in 
water supply in the states of São Paulo, Rio de Janeiro, 
and Minas Gerais. Below-average soil moisture condi-
tions in southern Africa resulted from a dry episode 
in the southwest in early 2015, in combination with 
aggravating drought conditions towards the end of 
the year in the southeastern part of the continent 
(Online Fig. S2.17), increasing the risk of crop failure 
and food shortage in South Africa, Mozambique, 
Madagascar, Malawi, and Zimbabwe. For parts of 
Queensland, Australia, negative anomalies were a 
continuation of drought conditions observed in this 
region over the past three years (BoM 2016; Dorigo 
et al. 2014, 2015a). Even though most parts of Indo-
nesia and Papua New Guinea are masked as missing 
because of dense vegetation, which is impenetrable for 
the microwave sensors used in ESA CCI SM, strong 
negative anomalies were still observed in the agricul-
tural areas. Dry conditions promoted deforestation 
and biomass burning practices in this area, causing 
severe air quality problems during several months 
(sections 2g3, 2h3; Sidebar 2.2).

Prevailing wet soil moisture anomalies were 
observed for most of the United States, including 
the southwest, which was previously plagued by a 
persistent drought for several years (Dorigo et al. 
2014, 2015a). Large parts of the United States experi-
enced their wettest May on record (see section 7b2), 
which is reflected by the strong positive soil moisture 
anomalies (Online Figs. S2.17e,f). The shift from dry 
to wet conditions from October through November 
was remarkable, following the passage of Hurri-
cane Patricia (Online Fig. S2.17). Anomalous wet 

Fig. 2.24. GRACE zonal mean terrestrial water stor-
age anomalies (cm equivalent height of water; base 
period: 2005–10). Gray areas indicate months when 
data were unavailable.

Fig. 2.25. GRACE global average terrestrial water 
storage anomalies (cm equivalent height of water, base 
period: 2005–10).
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Fig. 2.27. Time–latitude diagram of soil moisture 
anomalies (base period: 1991–2014). Data were masked 
as missing where retrievals are either not possible or of 
low quality (dense forests, frozen soil, snow, ice, etc.). 
(Source: ESA CCI.)

soil moisture conditions were 
also observed in eastern China 
with reported severe f loods in 
May–June. The southern part of 
South America also experienced 
wetter-than-usual conditions, 
including severe flooding in Ar-
gentina and heavy precipitation 
in the Chilean Atacama Desert 
in March (see section 7c3).

To a large extent, the spa-
tially distinct patterns in 2015 
can be related to the strong El Niño conditions 
during the second half of the year (NOAA/ESRL 
2016). ENSO anomalies are known to potentially 
cause continentwide deviations in terrestrial water 
storages (Bauer-Marschallinger et al. 2013; Boening 
et al. 2012; De Jeu et al. 2011, 2012a; Miralles et al. 
2014c). ENSO-driven global negative soil moisture 
anomalies were clear during the 1997/98 El Niño, 
while positive anomalies were observable for the 
strong La Niña episode of 2010/11, especially for the 
Southern Hemisphere (Fig. 2.26). The negative soil 
moisture anomalies in the Southern Hemisphere 
are visible in the time–latitude diagram (Fig. 2.27), 
which shows the strongest anomalies in the southern 
tropics. However, even though El Niño conditions in 
2015 were almost as strong as in 1997/98, its impact 
up to the end of 2015 on global soil moisture was not 
as strong. This suggests that other climate oscilla-
tions may have partly counterbalanced the effects of 
El Niño during 2015 at least.

No evident large-scale, long-term global soil 
moisture trends can be observed (Figs. 2.26, 2.27). 
However, this does not exclude the existence of long-
term trends at the regional or local scale (Dorigo et al. 
2012). Trends in average global soil moisture should 
be treated with caution owing to dataset properties 
changing over time and the inability to observe 
beneath dense vegetation, for mountain areas, or 
frozen soils (cf. gray regions in Plate 2.1f and Online 
Fig. S2.17).

9) monitoring gLobaL drought uS ing the 
SeLf-caLibrating paLmer drought Severity  
index—T. J .  O sbo r n , J .  Ba r i c h i v i c h , I .  Ha r r i s ,  
G. van der Schrier, and P. D. Jones

Hydrological drought results from a period of 
abnormally low precipitation, sometimes exacerbated 
by additional evapotranspiration (ET), and its occur-
rence can be apparent in reduced river discharge, soil 
moisture, and/or groundwater storage, depending 
on season and duration of the event. Here, an esti-

mate of drought called the self-calibrating Palmer 
drought severity index is presented (scPDSI; Palmer 
1965; Wells et al. 2004; van der Schrier et al. 2013a) 
using precipitation and Penman–Monteith potential 
ET from an early update of the CRU TS 3.24 dataset 
(Harris et al. 2014). Moisture categories are calibrated 
over the complete 1901–2015 period to ensure that 
“extreme” droughts and pluvials relate to events that 
do not occur more frequently than in approximately 
2% of the months. This affects direct comparison with 
other hydrological cycle variables in Plate 2.1, which 
use a different baseline period. Other drought indices 
can give varied results (see van der Schrier et al. 2015).

van der Schrier et al. (2015) noted that 2014 ap-
peared to have a remarkably small global area affected 
by drought, but the updated analysis (Fig. 2.28, with 
additional precipitation data that was not available at 
the time) now suggests that 2014 was affected by more 
extensive droughts (8% of land in severe drought at 
the end of 2014, compared with only 5% previously 
estimated). See Online Fig. S2.18 for a comparison 
with last year’s analysis.

Fig. 2.26. Time series of average global soil moisture anomalies for 
1991–2015 (base period: 1991–2014). Data were masked as missing where 
retrievals were either not possible or of very low quality (dense forests, 
frozen soil, snow, ice, etc.). (Source: ESA CCI.)
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There was a large expansion in the overall area 
of drought across the globe in 2015 (Fig. 2.28, inset), 
with 14% of global land seeing severe drought condi-
tions (scPDSI < –3) by the end of the year. The areas 
where scPDSI indicates moderate (30%), severe (14%), 
or extreme (5%) droughts by the end of 2015 are 
among the highest in the post-1950 record, exceeded 
only by some years in the mid-1980s. The 2015 peak 
should be interpreted cautiously, given that more 
observations for the final months of 2015 will become 
available in due course (see Online Fig. S2.18).

 The regional patterns of drought (Plate 2.1p) are 
partly associated with the strong El Niño event that 
developed during 2015. The full effect of this event 
may not be apparent until 2016, and other factors 
dominate in regions where the influence of the tropi-
cal Pacific is weak. Averaged over 2015, almost no 
regions of Africa experienced wet spells, and indeed 
most land areas south of 20°N across all continents 
were either near-normal (31% with scPDSI within 
±1) or subject to some degree of drought (56% with 
scPDSI <–1).

Extensive severe or extreme drought affected 
many countries in southern Africa, intensifying as 
the 2015 El Niño progressed. These areas had been 
slowly recovering since a dry spell that began with 
the previous El Niño in 2010. In the Horn of Africa, 
severe drought affected Ethiopia and some neighbor-
ing regions in 2015, with significant impacts despite 
being apparent only over a relatively small region in 
the scPDSI data (Plate 2.1p). Very few areas of Africa 
exhibited wet spells in the 2015 mean scPDSI.

The effects of the 2014 drought in southeastern 
Brazil continued to be felt in 2015, though high rain-
fall farther south over the Paraná basin (consistent 
with previous strong El Niño events) replaced drought 
with wet conditions. New regions of drought emerged 

in the El Niño-sensitive regions of northeastern Bra-
zil, Venezuela, and Colombia; these are expected to 
impact water supplies, hydroelectric power, and crop 
yields as El Niño continues into 2016. Parts of Chile 
remained in a severe 6-year drought in 2015 despite 
wetter El Niño conditions (www.cr2.cl/megasequía).

Drought conditions developed in some Central 
American and Caribbean nations, such as Guatemala 
and Haiti, contributing to food insecurity in the re-
gion. California continued to experience severe or 
extreme drought conditions, while most of the U.S. 
Midwest, South, and East were moderately or very 
wet, extending into Ontario, Canada.

Dry conditions were widespread across Australia, 
continuing from 2014. Severe or extreme drought 
conditions were apparent along the west coast, the 
southeast, and parts of Queensland, a region par-
ticularly susceptible to drought during protracted 
El Niño events, like the current one (section 2e1). 
Farther north, dry conditions were established across 
many parts of the Maritime Continent and parts of 
Southeast Asia, especially Myanmar and southwest-
ern China (Plate 2.1p). Drought also affected parts 
of northern China and Mongolia in 2015 according 
to the scPDSI metric. In contrast with 2014, drought 
conditions were not evident in India despite a dry 
monsoon season. This was due to heavy out-of-season 
rainfall both early and late in the year. Dry condi-
tions were, however, apparent over many Middle East 
countries.

In Europe, there was a strong contrast between 
the wet conditions of the southeast and Turkey and 
the severe drought indicated by scPDSI in eastern 
Europe and western Russia, affecting important 
crop production regions. Though not apparent in the 
annual-mean scPDSI (Plate 2.1p), July to December 
was very dry in Turkey, consistent with the strong 
positive North Atlantic Oscillation in late 2015 (sec-
tions 2e1, 7f).

The expansion in drought-affected areas during 
2015 is similar to the earlier expansion during 1982 
(Figs. 2.28, 2.29a), also a year when a strong El Niño 
developed, and is consistent with the reduction in 
the atmospheric transport of moisture from oceans 
to land during El Niño events (Dai 2013). The pat-
terns of scPDSI drought (Plate 2.1p) correspond 
partly to those regions where El Niño events are as-
sociated with reduced rainfall (southeastern Africa, 
northeastern Australia, the Maritime Continent, and 
northeastern Brazil). There is weaker agreement with 
the 1997 pattern (Fig. 2.29b), which had less extensive 
droughts than in 2015, contributing to the absence 
of a clear signal in drought-affected area during the 

Fig. 2.28. Percentage of global land area (excluding ice 
sheets and deserts) with scPDSI indicating moderate 
(< –2), severe (< –3) and extreme (< –4) drought for 
each month of 1950–2015. Inset: 2015 monthly values.
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SIDEBAR 2.1: GLOBAL LAND EVAPORATION—D. G. MIRALLES, B. MARTENS,  
A. J. DOLMAN, C. JIMÉNEZ, M. F. MCCABE, AND E. F. WOOD

Evaporation of water from soils, snow-covered surfaces, 
continental water bodies, and vegetation (either via transpiration 
or interception loss) accounts for approximately two-thirds of 
continental precipitation. As such, land evaporation represents 
a key mechanism governing the distribution of hydrological re-
sources, spanning catchment to planetary scales. The ability to 
monitor land evaporation dynamics is also critical in climatologi-
cal applications, since evaporation 1) represents the exchange 
of latent energy from land to atmosphere, directly affecting air 
temperature; 2) influences air humidity and cloud formation, 
playing a strong role in driving atmospheric feedbacks; and 3) 
is intrinsically connected to photosynthesis, echoing changes 
in vegetation carbon fixation. A number of recent studies have 
highlighted the impact of evaporation on climate trends (e.g., 
Douville et al. 2013; Sheffield et al. 2012) and hydrometeoro-
logical extremes (e.g., Teuling et al. 2013; Miralles et al. 2014a).

To date, land evaporation cannot be observed directly from 
space. However, a range of approaches have been proposed to 
indirectly derive evaporation by applying models that combine 
the satellite-observed environmental and climatic drivers of the 
flux (e.g., Price 1982, Nemani and Running 1989; Anderson et al. 
1997; Su 2002). Pioneering efforts targeting the global scale (Mu 
et al. 2007; Fisher et al. 2008) have been advanced by interna-
tional activities to further explore and develop global datasets, 
such as the European Union Water and global Change (WATCH) 
project, the LandFlux initiative of the Global Energy and Water-
cycle Exchanges (GEWEX) project, and the European Space 
Agency (ESA) Water Cycle Multi-mission Observation Strategy 
(WACMOS)-ET project.

Nonetheless, continental evaporation remains one of the 
most uncertain components of Earth’s energy and water balance. 
Both the WACMOS-ET and LandFlux projects have brought to 
light the large discrepancies among widely used, observation-
based evaporation datasets, particularly in semiarid regimes 
and tropical forests (e.g., Michel et al. 2016; Miralles et al. 2016; 
McCabe et al. 2016). Figure SB2.1 displays the spatial variability 
of land evaporation over the 2005–07 period based on data from 
the Penman–Monteith model that forms the basis of the official 
MODIS product (PM–MOD; Mu et al. 2007), the Priestley and 
Taylor Jet Propulsion Laboratory model (PT–JPL; Fisher et al. 
2008), the Model Tree Ensemble (MTE; Jung et al. 2010), and the 
Global Land Evaporation Amsterdam Model (GLEAM; Miralles 
et al. 2011). The ERA-Interim reanalysis (Dee et al. 2011) is also 
included for comparison. Global estimates range between the 
low values of PM–MOD and the high values of ERA-Interim, 
with the remaining models showing a higher degree of spatial 
agreement.

Records of observation-based global evaporation only span 
the satellite era. This has not prevented a handful of studies from 
attempting to disentangle the impact of climate change on trends 
in evaporation. Jung et al. (2010) suggested a reversal in the rise 
of evaporation since the late 1990s, which was later shown to 
be a temporary anomaly caused by ENSO (Miralles et al. 2014b). 
Nonetheless, these studies, together with more recent contribu-
tions (Zhang et al. 2015, 2016), have indicated the existence of 
a slight positive trend over the last few decades, in agreement 
with expectations derived from temperature trends and global 
greening, and the theory of an accelerating hydrological cycle.

Although many of the models used for global flux estimation 
were originally intended for climatological-scale studies, some 
have evolved to provide estimates of evaporation in operational 

Fig. SB2.1. Mean land evaporation patterns for differ-
ent datasets. The right panel illustrates the latitudinal 
averages over the 2005–07 period. Adapted after  
Miralles et al. (2016).
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SIDEBAR 2.1: GLOBAL LAND EVAPORATION—D. G. MIRALLES, B. MARTENS,  
A. J. DOLMAN, C. JIMÉNEZ, M. F. MCCABE, AND E. F. WOOD

Fig. SB2.2. (a) 2015 land evaporation anomalies. (Source: GLEAM). (b) Mean continental evapo-
ration anomaly time series for the satellite era, based on an ensemble of GLEAM datasets (after 
Miralles et al. 2014b). The MTE dataset (Jung et al. 2010), the satellite-based multimodel range 
by Mueller et al. (2013), and the Southern Oscillation index (SOI) are also shown. GLEAM runs 
for 2012–15 incorporate SMOS data. Anomalies are calculated relative to the 1997–2007 period 
in which all datasets overlap.

mode, with ongoing efforts aiming to reduce product latency 
and improve spatial resolution. This opens up a range of pos-
sible applications, from global drought monitoring to irrigation 
management. Some examples of evaporation datasets targeting 
near-real-time simulation at continental scales include the Land 
Surface Analysis Satellite Applications Facility (LSA SAF) product 
(Ghilain et al. 2011) and the Atmosphere–Land Exchange Inverse 
(ALEXI) datasets (Anderson et al. 1997, 2011). While GLEAM 
was not deliberately designed with an operational intent, the 
current version 3 dataset has been updated to include 2015, using 
observations from the Soil Moisture and Ocean Salinity (SMOS) 
mission (www.gleam.eu). Figure SB2.2 shows the anomalies in 
evaporation for 1980–2015 based on this new dataset.

Periods of global decline in evaporation typically coincide 
with El Niño conditions, and are associated with drought in the 
water-limited ecosystems of the Southern Hemisphere (Miralles 
et al. 2014b). The year 2015 was no exception: despite El Niño 
conditions intensifying only in the second half of 2015, Fig. SB2.2 
shows anomalously low evaporation in central Australia, eastern 
South America, Amazonia, and southern Africa. Considering the 
entire multidecadal record, the continental evaporation in 2015 

does not seem particularly anomalous, as climate variability is 
superimposed on a positive trend of ~0.4 mm yr–1. For most 
of the Northern Hemisphere, evaporation was above the 
multidecadal mean, with the notable exception of California, 
which experienced extraordinary drought conditions.

With the development of improved algorithms dedicated 
to estimating evaporation from satellite observations, global 
operational monitoring of land evaporation is becoming a 
realistic proposition. While discrepancies amongst current 
models are still large (Michel et al. 2016; McCabe et al. 2016), 
several of the existing datasets compare well against each 
other and against in situ measurements. These datasets open 
new pathways to diagnose large-scale drought and irrigation 
needs, and to improve water resources management and the 
characterization of hydrological cycles. Satellite-based evapora-
tion estimates respond to long-term changes in Earth’s water 
and energy budgets and are able to capture fluctuations due to 
internal climate variability. The mean distribution of evapora-
tion anomalies in 2015 (Fig. SB2.2) is a clear example of the 
underlying effects of multidecadal climate trends and climate 
oscillations on the terrestrial water cycle.
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strong 1997/98 El Niño (Fig. 2.28). Indeed, the other 
post-1950 years with scPDSI drought areas as large 
as in 2015 (31% in moderate drought; e.g., 1985 and 
1987) have quite different spatial patterns (Online 
Fig. S2.19), with severe drought in the Sahel and India, 
for example; 1985 was not a strong El Niño while 1987 
was part of the long 1986/87 event.

e. Atmospheric circulation
1) mean Sea LeveL preSSure and reLated modeS of 

variabiLity—R. Allan and C. K. Folland
Mean sea level pressure (MSLP) provides diag-

nostics of the major modes of variability that drive 
significant weather and climate events (Kaplan 2011). 
Arguably, the most globally impactful mode is the 
El Niño–Southern Oscillation (ENSO), for which the 
sea level pressure-derived Southern Oscillation index 
[SOI; Allan et al. 1996; normalized MSLP difference 
between Tahiti and Darwin (various other indices are 
also commonly used); Kaplan 2011; section 4b] is an 
indicator. For 2015, the SOI was negative, indicating 
the presence of the strongest El Niño since 1997/98 
(see Sidebar 1.1).

The SOI trace since 2009 highlights the shift from 
El Niño to strong La Niña conditions around mid-

2010, continuation as a protracted La Niña (with cold 
SST anomalies in the Niño-4 region) until its demise 
in early 2012, and then near-normal conditions until 
early 2013. Mainly positive (La Niña–type) values 
followed until a swing to negative (El Niño–type) 
conditions since early 2014 (Fig. 2.30; with warm SST 
anomalies in the Niño-4 region). Apart from April 
and May 2014, the SOI was negative from February 
2014 onwards (Fig. 2.30). Accordingly, the Niño-3 
and 4 regional SST anomalies have been positive 
since April and February 2014 respectively (section 
4b). Following Allan and D’Arrigo (1999), by these 
measures this constitutes a protracted El Niño epi-
sode: “….periods of 24 months or more when the SOI 
and the Niño 3 and 4 SST indices were of persistently 
negative or positive sign, or of the opposite sign in a 
maximum of only two consecutive months during the 
period….” Figure 2.30 shows the presence of these 
protracted El Niño and La Niña episodes in the SOI 
record since 1876, demonstrating that they can last 
up to six years (e.g., the 1990–95 protracted El Niño; 
see Gergis and Fowler 2009).

Major El Niño and La Niña events can be near-
global in their influence on world weather patterns, 
owing to ocean–atmosphere interactions across the 
Indo-Pacific region, with teleconnections to higher 
latitudes in both hemispheres. Protracted El Niño 
and La Niña episodes tend to be more regional in 

Fig. 2.29. Mean scPDSI for (a) 1982 and (b) 1997, years 
in which a strong El Niño developed. No calculation is 
made (gray areas) where a drought index is meaning-
less (e.g., ice sheets and deserts with approximately 
zero mean precipitation).

Fig. 2.30. Time series for modes of variability described 
using sea level pressure for the (left) complete period 
of record and (right) 2006–15. (a),(b) Southern Oscilla-
tion index (SOI) provided by the Australian Bureau of 
Meteorology; (c),(d) Arctic Oscillation (AO) provided 
by NCEP Climate Prediction Center; (e),(f) Antarctic 
Oscillation (AAO) provided by NCEP Climate Predic-
tion Center; (g),(h) Winter (Dec–Feb) North Atlantic 
Oscillation (NAO) average provided by NCAR (pre-
sented for early winter of each year so winter 2015/16 
is not shown); (i),(j) Summer (Jul–Aug) North Atlantic 
Oscillation (SNAO) average (Folland et al. 2009).
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their impacts (Allan and D’Arrigo 1999; Allan et al. 
2003). The main inf luence appears to be periods 
of persistent drought (widespread f looding) in 
Queensland, Australia, which often occur during 
protracted El Niño (La Niña) episodes (Murphy 
and Ribbe 2004). The dry 2014/15 across much of 
Queensland reflects this latest protracted El Niño 
episode (section 2d9).

More regionally, the Arctic Oscillation (AO), 
North Atlantic Oscillation (NAO), and the Antarctic 
Oscillation (AAO) indices can also be derived from 
mean sea level pressure. In the Northern Hemisphere, 
the last five boreal winters have displayed broadly 
positive NAO conditions but a diverse range of cir-
culation patterns. In the winter of 2013/14, a strong 
northeastward-displaced North Pacific anticyclone 
(Fig. 2.31a) was accompanied by a positive AO and 
a deep trough over central Canada and the United 
States. The subtropical jet stream was enhanced and 
displaced southward, extending across the Atlantic to 
the United Kingdom and Europe under strong posi-
tive NAO conditions (Fig. 2.31d). This led to severe 
cold winter conditions across much of the United 
States and a succession of major midlatitude storms 
being steered across the Atlantic to Ireland and the 
United Kingdom. By contrast, during the 2014/15 bo-
real winter the North Pacific anticyclone was weaker 
and the Aleutian low was prominent (Fig. 2.31b). The 
exceptional storm track from the United States to 
Europe in the 2013/14 boreal winter was not evident 
in 2014/15. During early winter of 2015/16, a deep 
trough over the North Atlantic led to an enhanced jet 
stream that directed a series of extratropical cyclones 
towards northern Ireland and Scotland–northern 
England (Figs. 2.31c,f). By the mid-to-latter part of 
the 2015/16 winter, the pattern had changed, with the 
Aleutian low enhanced and troughing over the North 
Atlantic–northern Europe. Midlatitude storm tracks 
were displaced farther north.

In the Southern Hemisphere, the AAO was in 
its positive phase during 2015/16 (Fig. 2.30), which 
favors reduced sea ice extent in the West Antarctic 
Peninsula (WAP) region, owing to enhanced west-
erly wind conditions (Stammerjohn et al. 2008). 
During the current situation, however, the WAP sea 
ice margins were extended (http://nsidc.org/data 
/seaice_index/), because in the interplay between the 
protracted El Niño, which should favor a weaker polar 
jet stream, and the positive AAO mode, with stronger 
westerly winds, the former appeared to have domi-
nated. Related positive wind speed anomalies were 
noted at 850 hPa (section 2e3) over the midlatitude 
Southern Ocean.

In 2015, the summer NAO (SNAO), defined over 
July and August as in Folland et al. (2009), continued 
its marked tendency to a more negative state in the last 
decade. Only 2013 was a prominent exception. The 

Fig. 2.31. Boreal winter sea level pressure anomalies 
(hPa, base period: 1981–2010) averaged over Dec–Feb 
for (a) 2013/14, (b) 2014/15, and (c) 2015/16. NAO daily 
time series (hPa) for winter (d) 2013/14, (e) 2014/15, 
and (f) 2015/16. The 5-day running mean is shown 
by the solid black line. The data are from HadSLP2r 
(Allan and Ansell 2006).
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irregular decline in the SNAO index since its peak in 
the 1970s is striking (Fig. 2.30i). A negative state of 
the SNAO is consistent with generally strongly posi-
tive Atlantic multidecadal oscillation conditions over 
the last decade (Sutton and Dong 2012). However, 
evidence is strengthening that reductions in summer 
Arctic sea ice due to warming of the Arctic may also 
favor a negative SNAO (e.g., Knudsen et al. 2015, Pet-
rie et al. 2015). The July 2015 MSLP anomaly pattern 
strongly resembled the negative SNAO. Although Au-
gust also projected weakly onto the negative SNAO, 
Scandinavia had a high pressure anomaly with very 
warm temperatures over and to its south (Figs. 2.32a, 
b). Daily SNAO values reflect the somewhat different 
characters of July and August (Fig. 2.32c), with fewer 
days of negative SNAO in August. Despite this, the 
Central England Temperature (Parker et al. 1992) 
was close to its 1961–90 normal in both months. The 
HadCRUT4 temperature for July and August (Online 
Fig. S2.20) shows that central England was on the 

boundary between warmer-than-normal conditions 
over most of Europe and distinctly cool conditions in 
the central extratropical North Atlantic Ocean. The 
latter is consistent with the July and August MSLP 
anomalies, but its strength may also reflect a persis-
tent tendency to cool conditions in this region over 
the last few years. The pattern of rainfall anomalies 
varied consistently with MSLP patterns between July 
and August; most of northwestern Europe had above-
average rainfall in July, with most of southern Europe 
drier than normal. In August, most of Scandinavia 
and eastern Europe were drier than normal, with a 
more restricted wet area than in July extending from 
Ireland through France to the Netherlands (section 
7f; Online Fig. S2.21).

2) Surface windS—R. J. H. Dunn, C. Azorin-Molina,  
C. A. Mears, P. Berrisford, and T. R. McVicar

During 2015, over land, observational datasets 
have revealed generally higher surface wind speeds 
(Plate 2.1s; Fig. 2.33a) than in the last 20 years. This 
“recovery” continues the behavior observed since 2013 
and concurs with Kim and Paik (2015), who reported 
a break from the decreasing trend in surface wind 
speed around the Republic of Korea during the most 
recent decade.

Fig. 2.32. HadSLP2r mean sea level pressure anomalies 
for Europe for (a) Jul and (b) Aug 2015.  (c) EMULATE 
PMSL daily SNAO time series for Jul–Aug 2015 normal-
ized over 1850–2015.

Fig. 2.33. Global (excluding Australia) and regional 
annual time series of land surface wind speed for 
1981–2015 using HadISD and ERA-Interim showing 
(a) wind speed anomaly (m s−1) relative to 1981–2010, 
and occurrence frequencies (in %) for wind speeds (b) 
>3 m s−1 and (c) >10 m s−1. Frequencies for Australia 
are not shown in (b) and (c).
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The observed global (excluding Australia) aver-
age anomaly from the 1981–2010 climatology was 
+0.025 m s−1 (Table 2.5) compared to −0.030 m s−1 in 
2014. As a result of unresolved differences between 
the two observing systems used in Australia (wind 
run, compared to wind speed in HadISD), and given 
agreement of modeling pan evaporation trends when 
using wind run (Roderick et al 2007), Australia is 
treated separately and the wind run results updated 
from McVicar et al. (2008) are used. In Australia, 
the positive anomaly made 2015 the fourth windiest 
year in the 1979–2015 record. There were positive 
anomalies in all other regions, with the exception of a 
noticeable negative anomaly in North America. Over 
this latter region, 2015 was the ninth calmest year in 
the observed record, with a slightly lower occurrence 
of both moderate (>3 m s−1) and strong (>10 m s−1) 
winds (Figs. 2.33b,c), in agreement with Iacono and 
Azorin-Molina (2014). Overall increases in Europe, 
central Asia, and East Asia reflected a higher occur-
rence of moderate winds, and particularly of strong 
winds in Europe (Fig. 2.33b,c).

Adapting the approach of Berrisford et al. (2015), 
two quality-controlled wind speed datasets from 
instrumental records are used: 1) the global HadISD 
(1973–2015, Dunn et al. 2012), with the highest sta-
tion density in the Northern Hemisphere, and 2) an 
Australian database (1979–2015, McVicar et al. 2008). 
The 10-m wind speed fields from ERA-Interim (Dee 
et al. 2011) are also used to investigate the spatial and 
temporal variability of winds over regions that have 
few observations. Over land surfaces with high-den-
sity wind observations, the large-scale anomaly pat-
terns from ERA-Interim (Plate 
2.1s) are relatively consistent 
with the instrumental records. 
Reanalysis products provide 
contiguous global informa-
tion but have shortcomings 
in their representation of sur-
face layer processes and hence 
near-surface winds speeds (see 
McVicar et al. 2008; Pryor et al. 
2009; Vautard et al. 2010 for 
examples). In addition, reana-
lyzed winds are representative 
of larger spatial and temporal 
scales than point observations.

The percentage of stations 
showing positive and negative 
anomalies in 2015 from Had-
ISD is split almost evenly, with 
a slight dominance of stations 

with positive anomalies. At 15% of the stations, the 
wind speed was at least 0.5 m s−1 above the 1981–2010 
climatology while it was at least 0.5 m s−1 below it 
at 11% of the stations. The wind speed was at least 
1.0 m s−1 above and below the climatology at 3.4% and 
2.3% of stations, respectively.

Continentally, negative long-term trends of 
observed land surface wind speed dominate over 
1979–2015, with a terrestrial global (excluding 
Australia) change of −0.087 m s−1 decade−1, varying 
from −0.070 (East Asia) to −0.151 (Central Asia) 
m s−1 decade−1 (Table 2.5, Fig. 2.34), with Australia at 
−0.062 m s−1 decade−1. Although the ERA-Interim pat-
tern of reanalyzed trends (Fig. 2.34) is consistent with 
the observational HadISD dataset, the magnitude 
of changes is underestimated, as previously noted 
for other reanalysis products (McVicar et al. 2008; 

Fig. 2.34. Land surface wind speed trends for the ob-
servational HadISD and Australian datasets (points) 
and the ERA-Interim reanalysis (worldwide grids) 
over 1979–2015.

table 2.5. Global and regional statistics for land surface wind speed using 
observational HadISD and Australian (McVicar et al. 2008) datasets.

Region
Mean 

1981–2010 
(m s–1)

Anomaly 2015 
(m s–1)

Trend 1979–2015 
(m s–1 decade–1) and 

5th to 95th percentile 
confidence range

Number of 
stations

Globe 
 (excluding 
Australia)

3.309 +0.025 −0.087  
(−0.094)–(−0.081)

2264

North America 3.685 −0.130
−0.100 

(−0.111)–(−0.088)
587

Europe 3.747 +0.063 −0.087 
(−0.100)–(−0.071)

589

Central Asia 2.887 +0.212 −0.151 
(−0.162)–(−0.133)

263

East Asia 2.623 +0.092 −0.070 
(−0.079)–(−0.060) 

399

Australia 2.066 +0.160 −0.062 41
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Pryor et al. 2009; Vautard et al. 2010). This worldwide 
slowdown of land surface wind speed observed since 
the 1980s has been reported over many regions (see 
McVicar et al. 2012 for a review).

The precise causes of this weakening in wind speed 
remain largely uncertain and do not necessarily re-
flect wind tendency at higher altitudes (McVicar and 
Körner 2013) than the standard 10-m observations 
(Vautard et al. 2010; Troccoli et al. 2012). Increase 
of surface roughness due to forest growth, land use 
changes, and urbanization (Vautard et al. 2010; Bichet 
et al. 2012; Wever 2012; Wu et al. 2016); changes in 
large-scale atmospheric circulation (Azorin-Molina 
et al. 2014, 2016); instrumentation changes (Wan et al. 
2010); and air pollution (Xu et al. 2006) are among the 
major identified hypothetical causes, which differ in 
importance regionally. Unlike the long-term declin-
ing trend over land, there is an apparent reversal of 
the trends since 2013, but still with overall negative 
anomalies.

Over oceans, estimates of globally-averaged wind 
obtained from satelliteborne microwave radiometers 
(Wentz 1997; Wentz et al. 2007) were slightly lower 
than average in 2015 (Fig. 2.35). Estimates from re-
analysis products differ, with JRA-55 and ERA-Interim 
showing that 2015 was above average, and MERRA-2 
showing the opposite. Reanalysis winds, which are in 
relatively good agreement with both the satellite data 
and each other from 1990 to 2009, diverge after 2010 
(Figs. 2.35a–c). A comparison of annual mean anomaly 
global ocean average wind speed between ERA-Interim 
and satellite radiometers shows moderate agreement 
on short time scales and poorer agreement on long 
time scales, with the ERA-Interim results showing a 
larger long-term increasing trend. All products show 
an increasing trend from 1990 to 2007, followed by a 
drop-off in 2008–09, and a recovery in 2010. Since 
then, the winds have fallen slightly in most products.

During 2015, ocean winds showed large negative 
anomalies in the central tropical Pacific associated 
with the ongoing El Niño event (Plate 2.1s), similar 
to those found above the surface at 850 hPa (Plate 
2.1r). This weakening was most apparent in the lat-
ter half of 2015. Compared to the 1997/98 El Niño, 
the region of weakening did not extend as far east, 
and Indian and Atlantic Ocean patterns were much 
less striking (Online Fig. S2.22). Other regions with 
negative anomalies include much of the tropical 
Indian Ocean and the southern Pacific midlatitudes 
between New Zealand and Chile. Other regions of the 
Southern Ocean showed positive anomalies, which 
were also present in the western Pacific surrounding 
the Maritime Continent and in the eastern tropical 
Pacific south of the equator. Over land, the anomalies 
were less pronounced, with most land areas showing 
small positive anomalies.

3) upper air windS—L. Haimberger and M. Mayer
Upper air wind is measured routinely with bal-

loons and aircraft. Today it is also inferred from satel-
lite imagery, at least in the lower to midtroposphere. 
Historical upper air wind data are particularly crucial 
for detecting signals associated with meridionally 
asymmetric aerosol forcing (Allen et al. 2014), for 
example, or with ENSO.

The buildup of a strong El Niño event was one 
of the major large-scale climate anomaly signals in 
2015. There are many ways to depict this event, but 
it is useful to see its impact on upper level divergent 
flow. Figure 2.36 compares divergent wind anomalies 
at 200 hPa in late 2015 (3-month average centered 
around November 2015 to maximize the signal) 
with those from the strongest ENSO event in recent 
history (also centered around November 1997). The 
divergent f low of the 2015 event, while having the 
strongest divergence maximum east of the date line, 
was much more confined to the tropical Pacific than 
was the case in 1997, where the flow patterns over the 
whole tropics were massively perturbed. Regions with 
divergent flow are associated with deep convection 
and strong thermodynamic coupling between sea 
surface and the atmosphere, which also has a strong 
imprint on regional-scale energy flows (Mayer et al. 
2013, 2014). Regions with strong convergence at this 
level are associated with large-scale subsidence and 
suppressed convection.

As may be expected (Zhang and Zhu 2012), this 
pattern fits well with the activity pattern of tropical 
cyclones in late 2015. There was an all-time record 
of 13 tropical cyclones in the central Pacific and 
enhanced tropical cyclone activity in the east Pa-

Fig. 2.35. Global average surface wind anomaly over 
ocean relative to the 1981–2010 base period from (a) 
satellite radiometers, (b) ships, and (c) reanalyses (as 
described in Fig. 2.1).
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cific (www.nhc.noaa.gov/text/MIATWSEP.shtml; 
see section 4e3). It is also interesting to note that the 
anomalous divergence pattern over the Arabian Sea 
coincided with the occurrence of two strong tropical 
cyclones in this region (on average there is less than 
one tropical cyclone per year), affecting Yemen and 
Oman (see section 4e5). Tropical cyclone activity over 
the western Pacific (which is the region of strongest 
divergence in the climatological mean) and Atlantic 
was normal or below normal. This can be seen in 
Fig. 2.36a from the locations of peak intensities of 
tropical cyclones that reached at least Category 1 on 
the Saffir–Simpson scale. The near-average cyclone 
activity in the western Pacific can partly be explained 
by cyclones originating in the central Pacific that 
reached peak intensity farther west.

The upper level convergence over Indonesia and 
particularly Australia in late 2015 is also consistent 
with the observed severe drought conditions over 
parts of these regions (see Fig. 2.29). As can be seen 
from Fig. 2.36, the upper level divergence pattern is 
generally less perturbed in 2015 than in 1997. If the 
RMS of the divergent wind speed in the tropics is used 
as a measure, it was 1.4 m s−1 in late 1997 compared 
to 1.3 m s−1 in late 2015. Nevertheless, its spread over 
the whole tropics is remarkable.

The imprint of the 2015 El Niño event can also 
be seen in the 850-hPa wind speed anomaly map in 
Plate 2.1r. There is a distinct weakening of the tropi-
cal easterlies just west of the upper level divergence 
maximum in Fig. 2.36a or the SST anomaly maxi-
mum in Plate 2.1c. Other features of the anomaly map 
are a slight poleward shift of Southern Hemisphere 
midlatitude westerlies that leads to enhanced wind 
speeds over the seas adjacent to Antarctica. These 
are likely related to the positive phase Antarctic 
Oscillation (AAO) during 2015 (section 2e1), and 
possibly enhanced through the exceptionally warm 
troposphere farther equatorward (Plate 2.1b). The 
positive wind speed anomaly over the eastern North 
Atlantic is consistent with the positive phase of the 
North Atlantic Oscillation (NAO) prevailing in 2015 
(section 2e1).

Radiosonde and pilot balloon are the best sources 
for station-based upper air wind climatologies, dating 
back to the early 1940s in the northern extratropics. 
Maps of upper air winds are best inferred from at-
mospheric reanalyses, which are well constrained by 
observations. It is difficult to get wind climatologies 
from satellite data because the altitude of observations 
(mostly cloud-based atmospheric motion vectors) is 
highly variable. Since last year’s article, early upper 
air data have been assimilated in an experimental 

reanalysis run called ERA-preSAT (1939–67, H. 
Hersbach et al. 2016,unpublished manuscript) which 
helped to extend the quasi-biennial oscillation (QBO) 
time series from reanalyses backward in time to at 
least the late 1940s.

Figure 2.37 shows time series of zonal belt mean 
wind speeds in the tropics at 50 hPa to cover the 
QBO signal. The experimental ERA-preSAT shows 
potential to extend reanalysis time series backward 
in a more realistic manner than the surface data only 
reanalyses (Haimberger 2015). The depiction of the 
QBO signal back to the early 1950s is particularly 
encouraging. There are practically no digitized upper 
air data prior to the early 1950s reaching high enough 
altitudes in the tropical belt.

f. Earth radiation budget
1) earth radiation budget at top-of-atmoSphere—

P. W. Stackhouse, Jr., T. Wong, D. P. Kratz, P. Sawaengphokhai,  
A. C. Wilber, S. K. Gupta, and N. G. Loeb

The Earth’s radiation budget (ERB) at the top-of-
atmosphere (TOA) is the balance between the incom-
ing total solar irradiance (TSI) and the sum of the 

Fig. 2.36. Three-month averages of velocity poten-
tial and divergent wind at 200 hPa compared to the 
1979–2014 climatology. Anomalies centered around 
(a) Nov 2015 and (b) Nov 1997. On panel (a) crosses 
indicate location of peak intensities for Category 1 
or higher tropical cyclones in second half of 2015. 
Percentage of tropical cyclone frequency compared 
to the National Hurricane Center’s 1966–2009 clima-
tology is also indicated.
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reflected shortwave (RSW) and outgoing longwave ra-
diation (OLR). This balance defines the energetic state 
of the Earth–atmosphere system that drives weather 
processes, climate forcing, and climate feedbacks.

The year 2015 is remarkable due to the development 
of an intense El Niño that reached official status in 
April–May according to the multivariate ENSO index 

(MEI; Wolter and Timlin 1993, 1998; www.esrl.noaa 
.gov/psd/enso/mei/) and intensified into late 2015. Note 
that the MEI index is more appropriate than the SOI for 
comparing to radiative fluxes because it integrates in-
formation from across the Pacific. In contrast, 2013 was 
a neutral year while 2014 featured a slight shift from 
typical east–west Pacific conditions toward El Niño, 
becoming “marginal” by year end. Global annual 
mean OLR in 2015 increased ~0.15 W m−2 since 2014, 
but was ~0.30 W m−2 larger than for 2013 (Table 2.6). 
Meanwhile, the global-annual mean RSW decreased by 
~0.45 W m−2 from 2014 and was ~0.75 W m−2 smaller 
than for 2013. In 2015, the global annually-averaged 
TSI was ~0.05 W m−2 larger than that of both 2013 and 
2014. The combination of these components amounts 
to an addition of 0.40 W m−2 in the total net radiation 
into the Earth climate system relative to 2014 and 
corresponded to a ~0.50 W m−2 increase relative to 
2013. All the global annual mean changes appear to be 
amplifying relative to the neutral ENSO year of 2013, 
perhaps indicative of the atmospheric response due 
to the circulation anomalies over the last two years. 
Relative to the 2001–14 average, the 2015 global an-
nual mean flux anomalies (Table 2.6) are +0.30, +0.10, 
−0.55, and +0.35 W m−2 for OLR, TSI, RSW, and total 
net flux, respectively. These changes, except for the 
RSW anomaly, are within the corresponding 2-sigma 
interannual variability (Table 2.6) for this period and 
thus not viewed as particularly large anomalies. The 
2015 global annual mean RSW flux anomaly greatly 
exceeds typical variability, implying a darkening of 
Earth’s TOA albedo. Attribution of this to El Niño 
and/or other large-scale processes requires further 
analysis. However, it appears that reduction of the an-
nually averaged RSW is resulting in a relative increase 
to the total net absorbed flux of the Earth–atmosphere 
system, indicating a net heating over the last two years.

table 2.6. Global-annual mean TOA radiative flux changes between 2013 and 2015, 2014 and 
2015, the 2015 global-annual mean radiative flux anomalies relative to their corresponding 
2001–14 mean climatological values, and the 2-σ interannual variabilities of the 2001–14 
global-annual mean fluxes (all units in W m−2) for the outgoing longwave radiation (OLR), 
total solar irradiance (TSI), reflected shortwave (RSW), and total net fluxes. All flux values 
have been rounded to the nearest 0.05 W m−2.

Global-annual Mean 
Difference  

(2015 minus 2013) 
(W m–2)

Global-annual Mean 
Difference 

 (2015 minus 2014) 
(W m–2)

2015 Anomaly 
(relative to  
climatology)  

(W m–2)

Interannual variability 
(2001 to 2014) 

(W m–2)

OLR  +0.30 +0.15 +0.30 ±0.50

TSI  +0.05 +0.05 +0.10 ±0.20

RSW −0.75 −0.45 −0.55 ±0.40

Net +0.50 +0.40 +0.35 ±0.65

Fig. 2.37. Time series of zonal mean U-wind com-
ponent in the (a) 20°–40°N belt at 300 hPa and (b) 
tropical belt 20°S–20°N at 50 hPa, calculated from 
ERA-Interim, MERRA, JRA-55, and ERA-preSAT re-
analyses and pilot balloon/radiosonde winds (GRASP; 
Ramella-Pralungo et al. 2014). Note that positive 
(negative) changes in the zonal wind sped imply an 
increase in westerlies (easterlies). Data have been 
smoothed using a 12-point boxcar filter.
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Monthly mean anomaly TOA f lux time series 
(Fig. 2.38) show that the OLR anomaly began 2015 
with a value of 0.9 W m−2, but then mostly oscil-
lated between −0.2 and +0.7 W m−2, which led to the 
slightly positive annual OLR anomaly (see Table 2.6) 
with higher values toward the end of 2015. This ob-
served OLR variability is generally consistent with 
the NOAA-HIRS OLR (Lee et al. 2011). The absorbed 
shortwave (TSI − RSW) anomaly started the year with 
a value of 0.2 W m−2, increased to just over 1.1 W m−2 in 
September, but then decreased the last few months of 
the year. The positive values towards the latter half of 
the year were large enough to dominate the annual av-
erage, leading to a large absorbed shortwave anomaly 
for the year. The total net anomaly, which contains the 
combined OLR and absorbed shortwave anomalies, 
began 2015 with a value of −0.7 W m−2, then jumped 
to positive values, peaking in September at 0.9 W m−2 
before falling below 0 W m−2 by the end of the year. 
The positive absorbed shortwave anomaly dominates 
the net, resulting in the positive annual total net 
anomaly. Long-term trend analyses that include the 
last two months of the merged dataset are discouraged 
due to the natural fluctuation in ERB components, 
the uncertainty from the data merging process, and 
potential for drift in the FLASHFlux product.

TSI data are from the Total Irradiance Monitor 
(TIM) instrument aboard the Solar Radiation and 
Climate Experiment (SORCE) spacecraft (Kopp and 
Lean 2011) and the Royal Meteorological Institute of 
Belgium (RMIB) composite dataset (Dewitte et al. 
2004), both renormalized to the SORCE Version 
15 data. RSW and OLR data were obtained from 
the Clouds and the Earth’s Radiant Energy System 
(CERES) mission (Wielicki et al. 1996, 1998), deriving 
flux data from the Terra and Aqua spacecraft.

Time series (Fig. 2.38) were constructed from the 
CERES EBAF (Energy Balanced And Filled) Ed2.8 
product (Loeb et al. 2009, 2012) from March 2000 
to October 2015 and the CERES Fast Longwave and 
Shortwave Radiative Fluxes (FLASHFlux) products 
(Kratz et al. 2014; Stackhouse et al. 2006), for Novem-
ber and December 2015. The FLASHFlux data are 
normalized to the EBAF data using the following pro-
cedure based on overlapping data from January 2009 
through December 2014. First, successive versions of 
globally-averaged FLASHFlux TOA components are 
normalized to each other relative to the current ver-
sion 3B. Then, this unified 6-year FLASHFlux dataset 
is cross-calibrated to the corresponding EBAF Ed2.8 
data using TOA fluxes from both datasets, account-
ing for multiyear bias, linear change, and seasonal 
dependent differences. Finally, these coefficients 
are used to cross-normalize FLASHFlux to EBAF 
and provide an estimate of monthly globally aver-
aged TOA flux components. The resulting 2-sigma 
monthly uncertainty of the normalization procedure 
for the 6-year overlap period was ±0.22, ±0.07, ±0.19, 
and ±0.22 W m−2 for the OLR, TSI, RSW, and total 
net radiation, respectively.

2) mauna Loa cLe ar-Sky “apparent” SoL ar  
tranSmiSSion—K. Lantz

NOAA’s Global Monitoring Division (GMD) 
maintains one of the longest continuous records of 
solar transmission at the Mauna Loa Observatory 
(MLO) in Hawaii. Because of the observatory’s remote 
Pacific location and high elevation above local influ-
ences (3400 m a.s.l.), the solar transmission represents 
the free troposphere and above with limited local 
inf luences. This record is often used to show the 
influence of large explosive volcanic eruptions and 
is useful as an indicator of changes in background 
stratospheric aerosols. The “apparent” clear-sky 
solar transmission (AT) is calculated from the ratio 
of direct-beam broadband irradiance measurements 
from a pyrheliometer using fixed atmospheric paths 
(Ellis and Pueschel 1971). This technique is advanta-
geous because using the ratio of fixed atmospheric 

Fig. 2.38. Time series of global-monthly mean 
deseasonalized anomalies (W m−2) of TOA earth 
Radiation Budget for OLR (upper panel), absorbed 
shortwave (TSI–RSW; middle panel), and total net 
(TSI–RSW–OLR; lower panel) from Mar 2000 to Dec 
2015. Anomalies are relative to their calendar month 
climatology (2001–2014). The time series shows the 
CERES EBAF Ed2.8 1Deg data (Mar 2000 to Oct 
2015) in red and the CERES FLASHFlux version 3B 
data (Nov–Dec 2015) in blue (Source: https://eosweb.
larc.nasa.gov/project/ceres/ceres_table.)
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paths removes influences due to extraterrestrial ir-
radiance and instrument calibrations. Past studies 
of changes in clear-sky AT at MLO have looked at 
the influence of volcanic aerosol, aerosol transport 
from Asia, water vapor, ozone, and inf luences of 
the quasi-biennial oscillation (QBO; Bodhaine et al. 
1981; Dutton et al. 1985; Dutton 1992; Dutton and 
Bodhaine 2001). Effects due to aerosol are the most 
prominent in the record.

The monthly record of clear-sky apparent solar 
transmission has been updated through December 
2015 (Fig. 2.39). The monthly values are calculated 
using morning values to remove boundary layer in-
fluences that occur predominantly in the afternoon 
due to prevailing upslope wind conditions (Ryan 
1997). Major eruptions from Agung, El Chichón, 
and Mount Pinatubo are clearly visible in the record 
in 1964, 1982, and 1991, respectively (Fig. 2.39). The 
cleanest period of observations is between 1958 and 
1962, except for a brief period in 1978. As such, this 
period is treated as the “clean” background with 
which to compare all other variations (dashed line 
in Fig. 2.39). Seasonal trends are highlighted by a 
6-month running smoothed fit to the monthly values 
and have been attributed primarily to Asian aerosol 
transport in the spring (Bodhaine et al. 1981). Long-
term changes are highlighted by a 24-month running 
smoothed fit. The monthly clear-sky AT eventually 
returned to near-background conditions in mid-1998 
after the eruption of Mount Pinatubo in 1991. The 
24-month fit shows a slow decrease in AT over the 
subsequent decade (Fig. 2.39b). This slow decrease in 
clear-sky AT was attributed to increased stratospheric 
aerosol due to small volcanic eruptions (Solomon 
et al. 2011; Vernier et al. 2011). These eruptions have 
been shown to contribute aerosol to the layer between 
the tropopause and 15 km in mid- to high latitudes 
(Ridley et al. 2014). The last several years have not 
shown a continued increase in the clear-sky AT. There 
is a negligible change in the mean of the monthly 
clear-sky AT in 2015 with respect to 2014 (−0.0006). 
The amplitude of the seasonal changes in clear-sky 
AT in 2015 is ~0.006, which is comparable to results 
reported previously of ~0.007 (Bodhaine et al. 1981).

g. Atmospheric composition
1) Long-Lived greenhouSe gaSeS—E. J. Dlugokencky,  

B. D. Hall, M. J. Crotwell, S. A. Montzka, G. Dutton, J. Mühle, 
and J. W. Elkins

Carbon dioxide (CO2), methane (CH4), and ni-
trous oxide (N2O), in decreasing order, are the most 
dominant long-lived greenhouse gases (LLGHG) 
contributing to climate forcing. Systematic measure-

ments of CO2 began at Mauna Loa, Hawaii (MLO), 
in 1958, when the atmospheric mole fraction was 
~315 ppm (parts per million in dry air). In 2015 the 
MLO annual average mole fraction of CO2 exceeded 
400 ppm (400.8 ± 0.1 ppm) for the first time (www.esrl 
.noaa.gov/gmd/ccgg/trends/), while the global aver-
age CO2 mole fraction at Earth’s surface was 399.4 
± 0.1 ppm (Fig. 2.40a, www.esrl.noaa.gov/gmd/ccgg 
/trends/global.html).

Atmospheric CO2 growth since 1958 is largely 
attributable to a concurrent, fourfold increase in 
anthropogenic emissions from fossil fuel combus-
tion and cement production (Boden et al. 2015). 
About half of this anthropogenic CO2 remains in 
the atmosphere, while the other half is taken up by 
the terrestrial biosphere and oceans, where it acidi-
fies seawater (see section 3l). The global growth rate 
of CO2 has risen from 0.6 ± 0.1 ppm yr−1 in the early 
1960s to an average of 2.1 ± 0.1 ppm yr−1 during the 
past 10 years. However, the increase at MLO during 
2015 was 3.05 ± 0.11 ppm (0.76 ± 0.03%), the largest 
annual increase observed in the 56-year measurement 
record. The largest previous increase (2.93 ppm) oc-
curred in 1998, which was also a strong El Niño year. 
ENSO plays a role in the interannual variability of the 
CO2 growth rate through its influence on terrestrial 
carbon fluxes (Bastos et al. 2013). 

Methane is emitted from both anthropogenic 
(60%) and natural (40%) sources (Fung et al. 1991). 
Anthropogenic sources include agriculture (e.g., 
ruminants and rice), fossil fuel extraction and use, 
biomass burning, landfills, and waste. Natural sources 
include wetlands, geological sources, oceans, and 

Fig. 2.39. (a) Monthly mean of the clear-sky Appar-
ent Transmission at Mauna Loa Observatory. The 
dashed line is the background level from 1958 to 1972.  
(b) Enlarged plot to highlight the seasonal (red line, 
6-month running smoothed fit) and long-term (blue 
line, 24-month smoothed fit) changes in the clear-sky 
AT record.  
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termites (Dlugokencky et al. 2011). Fossil fuel exploi-
tation (coal, oil, and natural gas) contributes ~20% 
of total global CH4 emissions (Kirschke et al. 2013). 
Having increased 250% since pre industrial time, 
the atmospheric CH4 burden currently contributes 
~0.5 W m−2 direct radiative forcing, with an additional 
~0.3 W m−2 indirect radiative forcing coming from 
the production of tropospheric O3 and stratospheric 
H2O from methane (Myhre et al. 2013). Total global 
CH4 emissions are estimated at ~540 Tg CH4 yr−1 
(1 Tg = 1012 g), with a relatively small uncertainty 
of ~±10%, based on observations of globally aver-
aged CH4, its rate of increase, and an estimate of its 
lifetime (~9.1 yr). The complexity of the atmospheric 
CH4 budget, with many sources that are difficult to 
quantify individually, makes bottom-up estimates by 
country and source difficult. The rate of CH4 increase 
slowed from more than 10 ppb yr−1 in the 1980s to 

nearly zero in the early 2000s, then increased to an 
average of ~7 ppb yr−1 since 2007 (Fig. 2.40b). Surface 
observations, including its rate of increase and spatial 
distribution, provide strong top-down constraints on 
the CH4 source and sink budgets. Based on NOAA 
background air sampling sites, the 2015 globally aver-
aged CH4 mole fraction at Earth’s surface was 1834.0 ± 
0.8 ppb. The 11.5 ± 0.9 ppb increase in annual means 
from 2014 to 2015 is the largest since 1997/98.

Nitrous oxide is a powerful greenhouse gas pro-
duced by natural (~60%) and anthropogenic (~40%) 
sources and is also an ozone-depleting substance 
(Ciais et al. 2013; Ravishankara et al. 2009). The 
observed 21% increase in atmospheric N2O over pre-
industrial levels (270 to 328 ppb) is largely the result 
of nitrogen-based fertilizer use (Park et al. 2012). The 
mean global atmospheric N2O mole fraction in 2015 
was 328.2 ± 0.1 ppb, an increase of 1.1 ppb from the 
2014 mean (Fig. 2.40c). The average N2O growth rate 
since 2010 is 0.98 ± 0.02 ppb yr−1, higher than the 
0.75 ± 0.02 ppb yr−1 average growth over the previous 
decade.

Halogenated gases, such as chlorofluorocarbons 
(CFCs), hydrochlorof luorocarbons (HCFCs), hy-
drofluorocarbons (HFCs), and CCl4 also contribute 
to radiative forcing. Atmospheric mole fractions of 
some CFCs, such as CFC-12 and CFC-11, have been 
decreasing for a decade or more in response to pro-
duction and consumption restrictions imposed by the 
Montreal Protocol and its Amendments (Fig. 2.40d; 
Table 2.7). However, as a result of the CFC phase-
out, the atmospheric burdens of CFC replacement 
gases—HCFCs and HFCs—have increased (Fig. 2.41; 
Table 2.7; Carpenter et al. 2014; Montzka et al. 2014). 
Interestingly, of the most abundant ozone-depleting 
substances that were controlled initially by the Mon-
treal Protocol, the surface mole fraction of only one 
chemical, halon-1301, is not yet decreasing (Table 2.7).

Trends in the combined direct radiative forcing 
by five major LLGHGs (CO2, CH4, N2O, CFC-11, 
and CFC-12) and 15 minor gases are summarized by 
the NOAA Annual Greenhouse Gas Index (AGGI; 
Hofmann et al. 2006; www.esrl.noaa.gov/gmd/aggi/). 
This index represents their annual cumulative radia-
tive forcing relative to the Kyoto Protocol baseline 
year of 1990. The AGGI does not include indirect 
radiative forcings (e.g., influences on ozone and water 
vapor). In 2015, CO2 contributed 1.94 W m−2 direct 
radiative forcing, 65% of the combined forcing of 2.98 
W m−2 by the 5 major LLGHGs and 15 minor gases 
(Fig. 2.42). The combined forcing in 2015 represents 
a 38% increase (2015 AGGI = 1.38) since 1990, and a 
1.4% increase over 2014 (AGGI = 1.36).

Fig. 2.40. Global mean surface mole fractions (in dry 
air) of (a) CO2 (ppm), (b) CH4 (ppb), (c) N2O (ppb), 
and (d) CFC-12 and CFC-11 (ppt) derived from the 
NOAA sampling network.   
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table 2.7. Summary table of long-lived greenhouse gases for 2015 (CO2 mixing ratios are in ppm, N2O 
and CH4 in ppb, and all others in ppt). 

Industrial Designation 
or Common Name

Chemical 
Formula AGGI ODGI

Radiative 
Efficiency 

(W m–2 ppb–1)a

Mean Surface Mole 
Fraction, 2015 

(change from prior 
year)b

Lifetime 
(years)

Carbon Dioxide CO2 Y N 1.37×10–5 399.4 (2.3) c

Methane CH4  Y N 3.63×10–4 1834.0 (11.5) c 9.1

Nitrous Oxide N2O Y N 3.00×10–3 328.2 (1.1) c,d 123
Chlorofluorocarbons

CFC-11 CCl3F Y Y 0.26 232.1 (−1.4) c,d 52
CFC-12 CCl2F2 Y Y 0.32 516.1 (−3.4) c,d 102
CFC-113 CCl2FCClF2 Y Y 0.30 71.9 (−0.5) c,d 93

Hydrochlorofluorocarbons

HCFC-22 CHClF2 Y Y 0.21 233.0 (4.1) c 11.9

HCFC-141b CH3CCl2F Y Y 0.16 24.3 (0.5) c 9.4

HCFC-142b CH3CClF2 Y Y 0.19 21.8 (−0.1) c 18
Hydrofluorocarbons

HFC-134a CH2FCF3 Y N 0.16 83.5 (5.9) c 14
HFC-152a CH3CHF2 Y N 0.10 6.6 (0.2) c 1.6
HFC-143a CH3CF3 Y N 0.16 16.1 (1.4) c 51
HFC-125 CHF2CF3 Y N 0.23 17.0 (1.9) c 31
HFC-32 CH2F2 N N 0.11 9.9 (1.6) c 5.4
HFC-23 CHF3 Y N 0.18 28.1 (1.0) c 228
HFC-365mfc CH3CF2CH2CF3 N N 0.22 0.8 (0.08) c 8.7
HFC-227ea CF3CHFCF3 N N 0.26 1.1 (0.09) c 36

Chlorocarbons

Methyl Chloroform CH3CCl3 Y Y 0.07 3.1 (−0.6) c 5.0

Carbon Tetrachloride CCl4 Y Y 0.17 82.5 (−1.3) c,d 26

Methyl Chloride CH3Cl N Y 0.01 550 (6) c 0.9
Bromocarbons

Methyl Bromide CH3Br N Y 0.004 6.6 (−0.04) c 0.8
Halon 1211 CBrClF2 Y Y 0.29 3.61 (−0.08) c 16

Halon 1301 CBrF3 Y Y 0.30 3.27 (0.01) c 72

Halon 2402 CBrF2CBrF2 Y Y 0.31 0.43 (−0.01) c 28
Fully fluorinated species

Sulfur Hexafluoride SF6 Y N 0.57 8.60 (0.33) c >600

PFC-14 CF4 N N 0.09 81.9 (0.7) c ~50 000

PFC-116 C2F6 N N 0.25 4.49 (0.08) c ~10 000

a Radiative efficiencies were taken from IPCC AR5 (Myhre et al. 2013). Steady-state lifetimes were taken from Myhre et al. (2013) (CH4), 
Ravishankara et al. (2009) (SF6), Ko et al. (2013), and Carpenter et al. (2014). For CO2, numerous removal processes complicate the 
derivation of a global lifetime.

b Mole fractions are global, annual surface means for the indicated calendar year determined from the NOAA global cooperative air 
sampling network (Hofmann et al. 2006), except for PFC-14, PFC-116, and HFC-23, which were measured by AGAGE (Mühle et al. 2010; 
Miller et al. 2010). Changes indicated in brackets are the differences between the 2015 and 2014 global mean mole fractions.

c Preliminary estimate.
d Global means derived from multiple NOAA measurement programs (“Combined Dataset”).
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2) ozone-depLeting gaSeS—B. D. Hall, S. A. Montzka,  
G. Dutton, and J. W. Elkins

In addition to direct radiative forcing, chlorine- 
and bromine-containing gases contribute indirectly 
to radiative forcing through their destruction of 
stratospheric ozone. The emissions and atmospheric 
burdens of many of the most potent ozone-depleting 
gases have been decreasing in response to produc-
tion and consumption restrictions imposed by the 
Montreal Protocol and its Amendments (Figs. 2.40d, 
2.41). For example, the abundance of CH3CCl3 at 
Earth’s surface has declined 98% from its peak in 
1992 (Fig. 2.41). CFC-11 and CFC-12, which have 
much longer atmospheric lifetimes (Table 2.7), have 
declined by 7.7% and 2.3%, respectively, from their 
peak mole fractions in 1994 and 2002.

Equivalent effective stratospheric chlorine (EESC) 
is a measure of the ozone-depleting potential of the 
halogen loading in the stratosphere at a given time 
and place. As EESC declines, stratospheric ozone is 
expected to show signs of recovery. Some recovery is 
indeed evident in the upper stratosphere, and is at-
tributable, in part, to the decrease in EESC (Pawson 
et al. 2014; see section 2g4). EESC is calculated from 
surface measurements of halogenated, ozone-deplet-
ing gases and weighting factors that include surface-
to-stratosphere transport times, mixing during 
transit, photolytic reactivity, and ozone-destruction 
efficiency (Daniel et al. 1995; Schauffler et al. 2003; 
Newman et al. 2007). Progress towards reducing the 

stratospheric halogen load is evaluated by the NOAA 
Ozone-Depleting Gas Index (ODGI; Hofmann and 
Montzka 2009). The ODGI relates EESC in a given 
year to the EESC maximum (ODGI = 100) and 1980 
value (ODGI = 0), a benchmark often used to assess 
progress towards reducing stratospheric halogen to 
pre-ozone hole levels (Fig. 2.43).

The EESC and ODGI are calculated for two repre-
sentative stratospheric regions—Antarctica and the 
midlatitudes—that differ in total available reactive 
halogen (Fig. 2.43a). At the beginning of 2015, EESC 
values were ~3820 ppt and ~1620 ppt over Antarctica 
and the midlatitudes, respectively. EESC is larger in 
the Antarctic stratosphere than in the midlatitudes 
because more ozone-reactive halogen is released dur-
ing transit to the Antarctic. Corresponding ODGI 
values at the beginning of 2015 were 82.9 and 59.5, 
compared to 84.3 and 61.5 at the beginning of 2014. 
These represent ~17% and ~40% reductions from the 
peak values in EESC over Antarctica and the mid-
latitudes, respectively, towards the 1980 benchmarks 
(Fig. 2.43b).

3) aeroSoLS—S. Rémy, A. Benedetti, and O. Boucher
Aerosol particles play an important role in the 

atmosphere through various mechanisms. They in-
fluence the radiation budget, directly by scattering 
and absorbing short- and long-wave radiation, and 
indirectly by affecting the concentrations, sizes, and 
chemical composition of cloud condensation nuclei 
(CCN) that impact the life cycle, optical properties, 
and precipitation activity of clouds. More information 
about the radiative forcing by aerosols is provided 
by Boucher et al. (2013). Aerosols also impact air 
quality and may cause serious public health issues, 

Fig. 2.41. Global mean surface mole fractions at 
Earth’s surface (ppt, dry air) for several halogenated 
long-lived greenhouse gases. See Table 2.7 for the 
2015 global mean mole fractions of these gases.  

Fig. 2.42. Direct radiative forcing (W m−2) due to 5 
major LLGHG and 15 minor gases (left axis) and the 
Annual Greenhouse Gas Index (right axis).
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as documented by the world media during strong 
particulate pollution outbreaks in 2015 in parts of 
western Europe (March), Indonesia and adjacent 
countries (September–October), and northern China 
(November).

For the first time in this section, a new interim 
reanalysis of global aerosols is utilized that spans 
2003–15. This was developed within the framework 
of the Copernicus Atmosphere Monitoring Service 
(CAMS; J. Flemming, personal communication, Feb 
2016). Collection 5 retrievals of aerosol optical depth 
(AOD) at 550 nm from the satellite-based Moderate 
Resolution Imaging Spectroradiometer (MODIS; 
Remer et al. 2005) were used as observational con-
straints. All relevant physical aerosol processes, such 
as emissions, wet/dry deposition, and sedimentation, 
are included and fully coupled with the meteorology. 
The aerosol types treated are naturally produced sea 
salt and desert dust, as well as black carbon, organic 

matter, and sulfate aerosols produced by anthropo-
genic and natural sources. Biomass burning aerosol 
emissions are the sum of the black carbon and organic 
matter emitted by open fires and biofuel combustion. 
Open fire emissions for this new reanalysis were 
provided by the Global Fire Assimilation System 
(GFAS) inventory (Kaiser et al. 2012) that estimates 
emissions from MODIS observations of fire radiative 
power. Preliminary verification of total AOD using 
independent observations from the ground-based 
Aerosol Robotic Network (AERONET) shows that 
the reanalysis has a global average bias of −2.5% but 
is consistent over time (J. Flemming, personal com-
munication, Feb 2016).

The 2015 annual average anomalies of AOD due 
to total aerosols, dust, and biomass burning (Plates 
2.1v,w,x, respectively) depict strong regional anoma-
lies from biomass-burning events in Alaska, Siberia, 
Canada, and Indonesia. Overall, the 2015 anomalies 
of biomass burning aerosols (Plate 2.1x) are consis-
tent with those of tropospheric ozone (section 2g6), 
carbon monoxide (section 2g7), and fires (section 
2h3). Besides the large events already mentioned, the 
anomaly map of biomass burning aerosols reveals that 
the 2015 seasonal burning in Africa was more severe 
than usual south of the equator and less severe north 
of it. Biomass burning in the Amazon basin in 2015 
was similar to the 2003–14 average, interrupting the 
decreasing trend observed for several previous years. 
There is a positive anomaly of dust extending west 
from western Sahara across the tropical Atlantic to 
Central America (Plate 2.1w), pointing to more active 
transatlantic dust transport in 2015 than in previous 
years. On the other hand, dust episodes were less 
important in 2015 over the northern Sahara and the 
Mediterranean Sea, and less dust was transported 
from the Taklamakan and Gobi Deserts into China. 
Sea salt aerosol anomalies (not shown) were strongly 
negative in the equatorial Pacific Ocean and west of 
Indonesia, probably due to disturbances in the trade 
winds by the strong El Niño conditions during the 
second half of the year. Positive anomalies of sea salt 
in the North Atlantic Ocean were caused by a string 
of active storms there in November–December.

Global maps of the total 550-nm AOD average for 
2003–14 and statistically significant (95% confidence) 
linear trends from 2003 through 2015 are shown in 
Fig. 2.44. The highly polluted areas of eastern Asia 
and India are prominent features in the map of 
long-term average total AOD (Fig. 2.44a), as are the 
dust-producing regions of the Sahara, the Arabian 
Peninsula, the Middle East, and the Taklamakan and 
Gobi Deserts. Large AOD values over the Amazon 

Fig. 2.43. (a) Equivalent Effective Stratospheric Chlo-
rine (EESC) and (b) the NOAA Ozone-Depleting 
Gas Index (ODGI). The ODGI represents the rela-
tive mole fractions of reactive halogen in the mid-
latitude and Antarctic stratosphere scaled such that 
ODGI=100 at maximum EESC and zero in 1980. Both 
EESC and ODGI are derived from NOAA surface 
measurements of ozone-depleting gases (symbols) 
or, for earlier years, WMO scenarios (dashed lines, 
Harris and Wuebbles 2014). The EESC and ODGI 
values from 1992 forward are for Jan of each year. 
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basin, equatorial Africa, and Indonesia are caused 
by seasonal biomass burning. The linear trends high-
light long-term decreases in anthropogenic aerosols 
over the eastern United States, Europe, and parts of 
southern China, while increases occurred over most 
of the Indian subcontinent. The area of decreasing 
trends in the southern Amazon basin is associated 
with reduced deforestation there (Chen et al. 2013). 
The decreasing trends over the northern Sahara and 
western Mediterranean indicate lower frequencies or 
intensities of dust episodes in these regions. Though 
many positive trends over the Southern Hemisphere 
oceans are not statistically significant, those that are 
could be an artefact of the MODIS Collection 5 obser-
vations used in the reanalysis. Time series of globally-
averaged total AOD during 2003–15 (Fig. 2.45) show 
strong seasonality, typically with yearly maxima in 
March–April and August–September driven mainly 
by dust episodes and biomass burning in Africa and 
South America.

Aerosol monitoring relies on a multistream global 
observing system. Routine aerosol observations are 
mainly provided by two federated, ground-based 
networks: AERONET and Global Atmospheric Watch 
(GAW), which in 2015 operated 311 and >220 stations, 
respectively. MODIS satellite instruments on Aqua 
and Terra have continued to provide retrievals of 
AOD during 2015, while the Visible Infrared Imaging 
Radiometer Suite (VIIRS) on Suomi NPP has provided 
aerosol data products since 2013. Geostationary sat-
ellites are also increasingly being used to measure 
aerosols. For instance, AOD derived from Meteosat 
Second Generation (MSG) observations over Europe 
and Africa is available from 2014 (Carrer et al. 2014). 
AOD observations are now routinely incorporated 
into atmospheric models using data assimilation al-
gorithms (e.g., Zhang et al. 2008; Benedetti et al. 2009; 
Inness et al. 2015b) to combine them with short-term 
forecasts. Such observationally constrained models 
can be used to build a reanalysis of atmospheric 
composition. Reanalyses can, to a large extent, be con-
sidered a good proxy for observed conditions. They 
provide whole atmosphere coverage and the ability 
to provide variables not routinely observed, such as 
the AOD of different aerosol types (e.g., dust, sea salt, 
and carbonaceous). However, their limitations should 
be kept in mind. To accommodate limited computing 
resources, models usually simplify aerosol processes 
and may not take into account all of the aerosol spe-
cies and/or their interaction. This means that the 
atmospheric composition reanalysis aerosol products 
usually do not capture all of the observed variability 
and complexity of aerosol fields. Assessing the relative 
weight of observations and model values in the data 
assimilation scheme of such systems is not trivial; 
this can also lead to uncertainties (Inness et al. 2013).

4) StratoSpheric ozone—M. Weber, W. Steinbrecht, C. Roth, 
M. Coldewey-Egbers, D. Degenstein, Y. E. Fioletov, S. M. Frith,  
L. Froidevaux, J. de Laat, C. S. Long, D. Loyola, and J. D. Wild

Total ozone columns in 2015 were close to the 
1998–2008 average for most of the globe, except in ex-
tended regions at high latitudes in both hemispheres, 

Fig. 2.45. Global averages of total AOD at 550 nm 
averaged over monthly (red) and annual (blue) peri-
ods for 2003–15.

Fig. 2.44. (a) Total 550-nm AOD averages for 2003–14. 
(b) Linear trends from 2003 through 2015 of total 
AOD (AOD unit per year). Only trends that are 
statistically significant at the 95% level of confidence 
are shown. 
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where ozone columns were largely below average 
(Plate 2.1q). The strong negative anomalies at high 
Southern Hemisphere latitudes reflect the large Ant-
arctic ozone hole observed in September–December, 
whose size reached maximum values that were near 
the all-time record high (see section 6h).

In Fig. 2.46 the total ozone annual means from 
different data sources are shown for 1970–2015 in 
various zonal bands: near-global (60°S–60°N), mid-
latitudes in both hemispheres (35°–60°), and the inner 
tropics (20°S–20°N). Also shown are the polar time 
series in March (Northern Hemisphere, 60°–90°N) 
and October (Southern Hemisphere, 60°–90°S), the 
months when polar ozone losses are largest in each 
hemisphere. Poleward of 60°S, a record low October 
mean was observed (Fig. 2.46e). Weaker-than-usual 
dynamical wave activity in the Southern Hemisphere 
winter diminished transport from the tropics, reduc-
ing ozone at Southern Hemisphere midlatitudes and 
in the collar region of the polar vortex, and permitting 
a very stable and cold polar vortex. The high vortex 
stability and low temperatures resulted in larger-than-
usual polar ozone losses and a near-record ozone hole 
in terms of size and persistence. Ozone annual mean 
columns at mid- to polar latitudes (35°–90°) in each 
hemisphere are largely determined by winter/spring 
ozone levels. These vary considerably with changes 
in stratospheric meteorological conditions (e.g., 
Steinbrecht et al. 2011; Weber et al. 2011; Kuttippurath 
et al. 2015). The year-to-year variability seen in all 
ozone time series also reflects quasi-biennial oscil-
lation (QBO)-related variations extending from the 
tropics into the extratropics (Randel and Wu 1996; 
Strahan et al. 2015).

It is clear that the Montreal Protocol and its 
Amendments have been successful in stopping the 
multidecadal decline in stratospheric ozone by the 
late 1990s (WMO 2011). However, at most latitudes, 
it has not yet been possible to determine a statisti-
cally significant increase in total column ozone or 
lower stratosphere ozone because the expected small 
increases are masked by large interannual variability 
(e.g., Chehade et al. 2014; Coldewey-Egbers et al. 
2014; Frith et al. 2014; Kuttippurath et al. 2015; Nair 

Fig. 2.46. Time series of annual mean total ozone in (a–d) four zonal bands and (e) polar (60°–90°) total 
ozone in Mar (Northern Hemisphere) and Oct (Southern Hemisphere). Data are from WOUDC ground-
based measurements combining Brewer, Dobson, SAOZ, and filter spectrometer data (red: Fioletov 
et al. 2002, 2008); the BUV/SBUV/SBUV2 V8.6 merged products from NASA (MOD V8.6, dark blue, 
Chiou et al. 2014; Frith et al. 2014) and NOAA (light blue, Wild et al. 2012); the GOME/SCIAMACHY/
GOME-2 products GSG from University of Bremen (dark green, Weber et al. 2011) and GTO from ESA/
DLR (light green, Coldewey-Egbers et al. 2015); and the MSR V2 assimilated dataset extended with 
GOME-2 data (van der A et al. 2015). WOUDC values for 2015 are preliminary because not all ground 
station data were available in early 2016.
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et al. 2015; de Laat et al. 2015). The 2015 total ozone 
columns in Fig. 2.46 are consistent with this overall 
picture and lie within the expected usual variations.

In the tropics, no discernible long-term trends in 
total column ozone have been observed for the entire 
1970–2015 period (see Fig. 2.46). Ozone trends in the 
tropical lower stratosphere are mainly determined by 
tropical upwelling (related to changes in sea surface 
temperature). In a changing climate it is expected 
that tropical upwelling will increase and thus ozone 
will continue to decline (Zubov et al. 2013; WMO 
2014). However, there is some evidence of a hiatus in 
tropical upwelling trends and corresponding lower 
stratospheric ozone trends during the last decade 
(Aschmann et al. 2014). Because tropospheric ozone 
contributes to the total ozone columns, trends in 
total ozone, despite major contributions from the 
lower stratosphere, may differ from trends in lower 
stratospheric ozone (Shepherd et al. 2014).

The most recent ozone assessment (WMO 2014) 
and studies (Nair et al. 2015; Harris et al. 2015) 
indicate that the clearest signs of significant ozone 
increases should occur in the upper stratosphere 
(2%–4% decade−1 at ~2 hPa or 40 km; see Fig. 2.47). 
However, there still are uncertainties associated 
with the various available data records and with the 
proper interpretation of statistical approaches used 
to derive and attribute trends (e.g., Nair et al. 2015; 
Kuttippurath et al. 2015; Harris et al. 2015). This is 
reflected in the updated Stratospheric Aerosol and 
Gas Experiment (SAGE)–Optical Spectrograph and 
Infrared Imager System (OSIRIS) record, which now 
better accounts for tangent altitude drifts, and in the 
updated Solar Backscatter Ultraviolet (SBUV) data 
from NOAA with improved inter-satellite adjust-
ments. Overall, the 2015 annual means in Fig. 2.47 
support the claim of recent increases in upper strato-
spheric, extra-polar ozone. These suggest the Mon-
treal Protocol has successfully turned the previous 
downward trend in ozone into an ozone increase, at 
least in the upper stratosphere.

5) Str atoSpher ic water vapor— S .  M .  Dav i s ,  
K. H. Rosenlof, D. F. Hurst, and H. B. Selkirk

Variations in stratospheric water vapor (SWV) 
over interannual-to-decadal timescales have the 
potential to affect stratospheric ozone (Dvortsov 
and Solomon 2001) and surface climate (Solomon 
et al. 2010). Throughout the first 10 months of 2015, 
water vapor mixing ratios in the tropical lowermost 
stratosphere were within 10% (0.4 ppm, μmol mol−1) 
of the previous decade’s average. Then, starting 
in November and continuing through December, 

tropical lowermost SWV increased to near-record 
levels, especially over the tropical western Pacific and 
Indian Ocean regions. The deep tropical-averaged 
(15°S–15°N) SWV anomaly at 82 hPa, based on data 
from the Aura Microwave Limb Sounder (MLS), was 
+0.7 ppm (+17%) in November and +0.9 ppm (+24%) 
in December. These values are in stark contrast to 
the weak negative (dry) tropical average anomalies 
of about −0.2 ppm (−6%) in November–December 
2014 (Figs. 2.48, 2.49). Since the MLS record began in 
August 2004, the November–December 2015 anoma-
lies at 82 hPa are surpassed only by +0.9 ppm (+25%) 
deep tropical anomalies in February–March 2011. 
The +0.7 ppm (+19%) average deep tropical anomaly 
at 100 hPa in November–December 2015 is the high-

Fig. 2.47. Annual mean ozone anomalies at 2 hPa 
(~40 km, upper stratosphere) in three zonal bands. 
Data are from the merged SAGE II/OSIRIS (Bourassa 
et al. 2014) and GOZCARDS (Froidevaux et al. 
2015) records and from the BUV/SBUV/SBUV2 v8.6 
merged products from NASA (McPeters et al. 2013; 
Frith et al. 2014) and NOAA (Wild et al. 2012) (base 
period: 1998–2008). The orange curves represent 
EESC (effective equivalent stratospheric chlorine), 
scaled to reflect the expected ozone variation due 
to stratospheric halogens. Data points for 2015 are 
preliminary, because SAGE-OSIRIS data were not 
yet available after July 2015, and adjusted SBUV2 
v8.0 data are used after July 2015 instead of v8.6 data, 
which are not available in early 2016.
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est ever observed by MLS at that pressure level. The 
change in tropical lower SWV from December 2014 
to December 2015 was +1.1 ppm, ~50% of the typi-
cal seasonal mixing ratio amplitude at 82 hPa in the 
tropics. Strong water vapor increases in the tropical 
lower stratosphere at the end of 2015 were also ob-
served at Hilo, Hawaii (20°N), and San José, Costa 
Rica (10°N), by balloonborne frost point hygrometers 
(Figs. 2.50b,c).

The seasonal variability of water vapor in the 
tropical lower stratosphere is predominantly con-
trolled by the annual cycle of cold-point temperatures 
(CPTs) in the tropical tropopause layer (TTL). These 
minimum temperatures determine the amounts of 
water vapor that remain as moist tropospheric air 
masses are freeze-dried during their slow ascent into 
the stratosphere. Seasonal-to-interannual variations 
in tropical lower SWV are highly correlated with CPT 

variations in the TTL. The dramatic increase in tropi-
cal lower SWV at the end of 2015 is consistent with 
the observed ~1°C increase in tropical CPTs over the 
same period (Fig. 2.50c).

Interannual variations in CPTs are potentially re-
lated to the changing phases of the El Niño–Southern 
Oscillation (ENSO) and the stratospheric quasi-bien-
nial oscillation (QBO). In October, the QBO phase 
transitioned from easterly (cold) to westerly (warm) 
and persisted in the westerly phase through the end 
of 2015 (see sections 2b3, 2e3). The evolution towards 
a warmer TTL and wetter tropical lower stratosphere 
at the end of 2015 is consistent with this reversal of 
the QBO phase. Regionally, the enhancement of SWV 
in the tropical western Pacific and Indian Ocean 
regions is consistent with the adiabatic response of 
the TTL to reduced convection in this region as a 
result of the El Niño conditions present during 2015. 
Other factors such as variations in the strength of the 
Brewer–Dobson circulation can also impact SWV 
anomalies on an interannual timescale. However, 
given the potential interrelationships between ENSO, 
QBO, and the Brewer–Dobson circulation, a rigorous 
attribution of the positive SWV anomalies present at 
the end of 2015 is not possible.

Fig. 2.48. (a) Vertical profiles of MLS tropical (15°S–
15°N) water vapor anomalies (μmol mol−1) and (b) 
latitudinal distributions of MLS water vapor anoma-
lies (μmol mol−1) at 82 hPa. Anomalies are differences 
from the 2004–15 mean water vapor mixing ratios 
for each month.

Fig. 2.49. Global stratospheric water vapor anomalies 
(μmol mol−1) centered on 82 hPa in (a) Dec 2014 and 
(b) Dec 2015 from the Aura Microwave Limb Sounder. 
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Anomalies in tropical lower SWV propagate from 
the tropics to the midlatitudes of both hemispheres, 
as is visually demonstrated by the many “C”-shaped 
contours in Fig. 2.48b. The late 2015 wet anomaly 
in tropical lower SWV (Figs. 2.48b, 2.50c) was just 
starting to reach the midlatitudes of each hemisphere 
at the end of 2015.

During 2015, SWV anomalies over Lauder, New 
Zealand, were close to zero or slightly positive 
(Fig. 2.50d). These are consistent with the poleward 
transport of weak dry tropical SWV anomalies pres-
ent at the end of 2014 and early 2015 (Fig. 2.49a), and 

the 2014 Antarctic vortex being anomalously weak, 
warm, and less dehydrated (Davis et al. 2015; see sec-
tions 2b3 and 6h). In general, Southern Hemisphere 
midlatitude SWV can vary interannually with the 
degree of seasonal dehydration within the Antarctic 
vortex and the strength of the poleward transport of 
dehydrated air masses (Fig. 2.48b). Indeed, the 2015 
Antarctic vortex was particularly strong (see section 
6h), as evidenced by the appearance of a −0.5 ppm 
anomaly in the high southern latitudes near the end 
of 2015 (Fig. 2.48b).

6) tropoSpheric ozone—J. R. Ziemke and O. R. Cooper
Two of the most important reasons to monitor tro-

pospheric ozone are that it is a surface pollutant with 
harmful biological effects and is a greenhouse gas that 
affects long-term climate change. Tropospheric ozone 
is also the primary source of the hydroxyl radical 
(OH), the main oxidizing agent for pollutants in the 
troposphere. Sources of tropospheric ozone include 
transport from the stratosphere, photochemical 
production from lightning NOx, and photochemi-
cal production from precursor gases emitted by the 
combustion of fossil fuels, biofuels, and biomass (e.g., 
Sauvage et al. 2007; Martin et al. 2007; Leung et al. 
2007; Murray et al. 2013; Hess and Zbinden 2013; 
Young et al. 2013).

The variability of tropospheric ozone, from urban 
to hemispheric scales, is driven by a combination of 
photochemical ozone production and atmospheric 
transport. Tropospheric ozone production varies 
because its precursor gases and sunlight are vari-
able. Transport phenomena that drive large-scale 
variability include ENSO (e.g., Chandra et al. 1998, 
2009; Sudo and Takahashi 2001; Doherty et al. 2006; 
Koumoutsaris et al. 2008; Voulgarakis et al. 2011) 
and the Madden–Julian oscillation (MJO: Sun et al. 
2014). Small- to large-scale tropospheric ozone vari-
ability also occurs over shorter periods, including 
weekly baroclinic timescales (e.g., Ziemke et al. 2015, 
and references therein), and finer scale airstream 
transport on the order of hours to days. Changes in 
tropospheric ozone at hemispheric and global scales 
include decadal trends (e.g., Hess and Zbinden 2013; 
Cooper et al. 2014; Lin et al. 2014; Parrish et al. 2014).

Global maps of annual means and anomalies of 
tropospheric column ozone from the satellite-based 
Ozone Monitoring Instrument (OMI) and MLS for 
2015 are shown in Fig. 2.51 and Plate 2.1u, respective-
ly. As in previous reports, OMI/MLS ozone trends are 
calculated only for latitudes 60°S–60°N where there is 
full annual coverage by OMI. In 2015, as for the last 
decade, annual average tropospheric column ozone 

Fig. 2.50. Lower stratospheric water vapor anomalies 
(μmol mol−1) at 82 hPa over four balloonborne frost 
point (FP) hygrometer stations. (a)–(d) show the 
anomalies of individual FP soundings (black) and of 
monthly zonal averages of MLS retrievals in the 5° 
latitude band containing the FP station (red). High-
resolution FP vertical profile data were averaged be-
tween 70 and 100 hPa to emulate the MLS averaging 
kernel for 82 hPa. Each MLS monthly zonal mean was 
determined from 2000 to 3000 profiles. Tropical cold-
point temperature anomalies based on the MERRA re-
analysis [(c), blue curve] are generally well correlated 
with the tropical lower SWV anomalies.
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amounts in the Northern Hemisphere exceeded those 
in the Southern Hemisphere. Some basic features 
of tropospheric column ozone include strong topo-
graphical effects, such as greatly reduced amounts 
over the Tibetan Plateau and the western U.S. Rocky 
Mountain region, with much larger amounts east and 
west of these regions over both land and ocean. The 
greatest annual mean tropospheric column values 
were observed over the Mediterranean–South Asian 
region and from eastern China eastward toward 
North America. In the tropics, the west-to-east zonal 
wave-1 pattern (Fishman et al. 1990) is evident, with 
high values over the Atlantic and low values over the 
Pacific. An extended band of high ozone was present 
at 30°S, with the greatest amounts between southern 
Africa and Australia. Zonally-averaged tropospheric 
column averages and their 95% confidence intervals 
for 2015 were 30.7 ± 2.2 DU for 60°S–60°N, 32.1 ± 
2.6 DU for 0°–60°N, and 29.4 ± 1.9 DU for 0°–60°S. 
These column averages convert to tropospheric bur-
dens of 291.2 ± 20.9, 152.1 ± 12.3, and 139.1 ± 9.0 Tg, 
(Tg = 1012 g), respectively. For comparison, the tro-
pospheric column averages for 2005–15 for the three 
regions were 29.5 ± 2.1, 30.7 ± 2.5, and 28.2 ± 2.2 DU 
(279.0 ± 19.9, 145.4 ± 11.8, and 133.6 ± 10.4 Tg).

The 2015 average tropospheric ozone burdens for 
each hemisphere and the globe were greater than 
those in 2014, and 12-month running averages of each 
show steady increases since October 2004 (Fig. 2.52). 
Linear trends (in Tg yr−1) with their ± 2σ statistical 
uncertainties are also given. The increasing trends in 
OMI/MLS tropospheric column ozone are statisti-
cally significant for both hemispheric means and the 
near-global mean. Relative to the average burdens for 
2005–15 the three trends all depict increases of 0.8% 

yr−1. The combined OMI/MLS record now exceeds 
11 years and the measured increases are becoming 
more indicative of true long-term trends, building on 
similar findings from previous reports.

Cooper and Ziemke (2013) reported surface ozone 
increasing since 1990 over eastern Asia and the west-
ern United States, but decreasing over the eastern 
United States, using measurements by ground- and 
satellite-based instruments. Cooper and Ziemke 
(2014) presented a time series of near-global (60°S–
60°N) tropospheric burdens determined from satellite 
measurements that indicated a statistically significant 
increase over 2005–13 and Cooper and Ziemke (2015) 
showed that the increase in global tropospheric ozone 
continued through 2014.

For the past two years, the State of the Climate 
tropospheric ozone summary was based upon only 
the OMI/MLS satellite measurements (Ziemke et 
al. 2006) due to insufficient updated analyses of 
the ground-based measurement network data since 
2012. Updates of the surface ozone data and trends 
have continued to be infrequent during 2015, so once 
again only the OMI/MLS satellite data are used. One 
significant change from previous reports is the use of 
new MLS version 4.2 ozone retrievals. A new activity 
of the International Global Atmospheric Chemistry 
(IGAC) project began in earnest in 2015 to produce 
a Tropospheric Ozone Assessment Report (TOAR). 
The TOAR is expected to be completed by the end 
of 2016 and will summarize the global distribution 

Fig. 2.51. Average OMI/MLS tropospheric ozone col-
umn ozone for 2015. Data poleward of ±60° are not 
shown due to the inability of OMI to measure ozone 
during polar night. 

Fig. 2.52. Monthly averages of OMI/MLS tropo-
spheric ozone burdens (Tg) from Oct 2004 through 
Dec 2015. The top curve (black) shows 60°S–60°N 
monthly averages with 12-month running means. 
The bottom two curves show monthly averages and 
running means for the Northern Hemisphere (red) 
and Southern Hemisphere (blue). Slopes of linear fits 
(Tg yr-1) of all three curves are also listed along with 
their ±2σ statistical uncertainties.
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and trends of tropospheric ozone through 2014/15 
(depending on the product) using a variety of satel-
lite, surface, ozonesonde, lidar, and aircraft ozone 
measurements (www.igacproject.org/TOAR).

7) carbon monoxide—J. Flemming and A. Inness
Carbon monoxide (CO) is not a greenhouse 

gas, but plays a significant role in determining the 
abundance of climate forcing gases like methane 
(CH4), through hydroxyl radical (OH) chemistry, 
and tropospheric ozone (O3), as a chemical precursor 
(Hartmann et al. 2013). Thus, CO is regarded as an 
indirect climate forcing agent. Sources of CO include 
incomplete fossil fuel and biomass combustion and 
in situ production via the oxidation of CH4 and other 
organic trace gases. Combustion and chemical in 
situ sources typically produce similar amounts of 
CO each year.

New in 2015 is a CAMS-based retrospective 
analysis of CO for the period 2003–15 based on total 
column CO retrievals from the Measurements of 
Pollution in the Troposphere (MOPITT) instrument 
(Deeter et al. 2013, Version 5). This dataset is part of 
the CAMS interim reanalysis of atmospheric compo-
sition, an extended and temporally more consistent 
dataset than the previous Monitoring Atmospheric 
Composition and Climate (MACC) reanalysis (Inness 
et al. 2013). The MACC has been used in previous 
State of the Climate assessments of CO and aerosols. 
MOPITT retrievals between 65°N and 65°S were 
assimilated into the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated 
Forecasting System (IFS) that has been extended to 
simulate atmospheric chemistry (Flemming et al. 
2015). The assimilation technique is documented in 
Inness et al. (2015b). The anthropogenic emissions for 
the assimilating model were taken from the MACCity 
inventory (Granier et al. 2011) that accounts for 
projected emission trends. Biomass burning emis-
sions were taken from the Global Fire Assimilation 
System (v1.2, Kaiser et al. 2012). The global three-
dimensional CO distribution from the CAMS interim 
reanalysis is used here to assess the anomalies in CO 
total columns for 2015.

The global CO burden in 2015 was significantly in-
creased by the intensive El Niño-induced wildfires in 
Indonesia from mid-August to mid-November (Side-
bar 2.2). Annual wildfire emissions from this region 
contributed 31% (140 Tg) of the global wildfire emis-
sions in 2015, whereas for 2003–14 the contributions 
ranged from 5% to 20%. The highest total (biomass 
burning and anthropogenic) monthly CO emissions 
since 2003 were injected into the atmosphere during 

the 2015 Indonesian fire period. This El Niño–related 
increase in Indonesian fires and CO emissions was 
already reported for 2014 (Flemming and Inness 2015) 
and high fire activity is anticipated for the March–
April fire season in 2016. An analysis by Huijnen 
et al. (2016) suggests that the 2015 carbon emissions 
from the Indonesia fires were the second largest since 
the extreme El Niño year of 1997, although the 2015 
emissions were only 25% of those in 1997.

Plate 2.1ac shows the relative 2015 anomalies of the 
total column CO (TCCO) from the CAMS interim re-
analysis with respect to 2003–15. The strong positive 
TCCO anomalies were located predominately over 
the Indonesian region and the eastern Indian Ocean, 
but the fire emissions increased CO over much of the 
tropics. Tropospheric CO mixing ratios between 50° 
and 100°E in the tropics in September and October 
were 50%–100% higher than the CO climatology. 
Larger-than-usual wildfire activity in North America 
during 2015 produced >10% anomalies in June–Au-
gust and led to a positive anomaly in total column 
CO for the year. The CO anomaly of −10% over the 
Amazon basin reflects a decadal decrease in fires in 
that region, but the 2015 anomaly was not as strongly 
negative as in the two previous years.

The high global CO burden in 2015 occurred 
against a 12-year backdrop of a decreasing global 
CO burden. Figure 2.53 shows the time series of 
monthly mean global CO burdens since 2003. A 
decreasing linear trend of −0.86 ± 0.23% yr−1 is 
evident, yet the monthly averaged global burdens for 
October–December 2015 are the highest values in the 
entire record. Worden et al. (2013) estimate trends of 
−1% yr−1 for both the globe and Northern Hemisphere 
over the last decade by studying observations from 

Fig. 2.53. Time series of monthly global CO burdens 
(Tg) from the CAMS interim reanalysis. 
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SIDEBAR 2.2: ATMOSPHERIC COMPOSITION CHANGES DUE TO 
THE EXTREME 2015 INDONESIAN FIRE SEASON TRIGGERED BY 
EL NIÑO—A. BENEDETTI, F. DI GIUSEPPE, J. FLEMMING, A. INNESS, M. PARRINGTON, S. RÉMY,  
AND J. R. ZIEMKE

Fig. SB2.3. Fire radiative power (W m−2) accumu-
lated over Indonesia during the 2015 fire season 
(Aug–Oct).

One of the most extreme events of 2015 was the ex-
tensive burning of peat throughout large parts of Indonesia. 
As a common practice in Indonesia, fires are set during 
the dry season (July–October) to clear land and remove 
agricultural residues. During intense dry seasons these 
fires can penetrate into degraded subsurface peat soil with 
enhanced flammability. They are extremely difficult to ex-
tinguish and can burn continuously until the return of the 
monsoon rains, usually in late October or early November. 
In 2015, the annual fires were more widespread and intense 
than those that have typically occurred in Kalimantan since 
the 1980s and in Sumatra since at least the 1960s (Field 
et al. 2009). The strength and prevalence of these fires 
are strongly influenced by large-scale climate patterns like 
El Niño (Field et al. 2004; van der Werf 2008). Research 
started after the strong 1997/98 El Niño, which induced a 
severe fire/haze disaster in Indonesia, has provided a reli-
able understanding of how much fire and haze may occur 
for a given drought strength (Usup et al. 2004; Field et al. 
2009). Despite this predictive capability, the 2015 fires in 
Indonesia still escalated to an environmental and public 
health catastrophe (Thielen et al. 2015; Inness et al. 2015; 
Field et al. 2015, manuscript submitted to Proc. Natl. Acad. 
Sci. USA).

The 2015 Indonesia fire season began in August, and 
by September much of Sumatra, Kalimantan, Singapore, 
and parts of Malaysia and Thailand were covered in thick 
smoke, affecting the respiratory health of millions of people. 
Visibility was also reduced to less than 10% of normal over 
Borneo, and large parts of the region could not be seen 
from space, as was documented for previous fire events 
in that region (Marlier et al. 2013; Wang et al. 2004). Pre-
liminary estimates suggest that greenhouse gas emissions 
from the burning (in CO2 equivalent) exceeded Japan’s 2013 
emissions from fossil fuel combustion (Van der Werf 2015). 
Even after the worst of the 2015 Indonesian fires were no 
longer burning, the remaining pollution stretched halfway 
around the globe.

Ongoing research into the socioeconomic drivers of 
the fires is beginning to identify the responsibilities of the 
landholders and the need for political action in regulating 
the agricultural practices in the region (Tacconi 2003). While 
finding the socioeconomic causes of this event is beyond the 
scope of this work, we can utilize analytical results from ob-
servations and reanalyses of atmospheric composition over 
Indonesia to provide an assessment of the current monitoring 
capabilities of observational and modeling systems.

To this end, we use the data assimilation system of 
the Copernicus Atmosphere Monitoring Service (CAMS) 
developed at the ECMWF since 2005. The interim CAMS 
reanalysis is an improved version of the previous MACC 
reanalysis (Inness et al. 2013) and is updated in quasi near–
real time. Observational datasets used, among others, are 
the NASA MODIS Aerosol Optical Depth Collection 5 
product (Remer et al. 2005) and the MOPITT V5 total 
column carbon monoxide (CO) retrievals. A reanalysis 
dataset provides a dynamically consistent 3D estimate of 
the climate state at each time step and can be considered a 
good proxy for atmospheric conditions, including variables 
that are not directly observed. Here, 2015 anomalies of 
CO and carbonaceous aerosols are determined from the 
2003–15 CAMS reanalysis, while the ozone anomalies are 
based on the 2005–14 ozone records from NASA’s Ozone 
Monitoring Instrument (OMI) and Microwave Limb Sounder 
(MLS) (Ziemke et al. 2006).

Realistic biomass burning emissions estimates, provided 
by the Global Fire Assimilation System (GFAS; Kaiser et 
al. 2012; Di Giuseppe et al. 2016, manuscript submitted 
to J. Geophys. Res. Atmos.), are an important input to the 
CAMS system. In the GFAS, the fire radiative power (FRP) 
measured by the MODIS sensors on the Aqua and Terra 
satellites is converted into emissions of 44 constituents 
using the regression coefficients of Wooster et al. (2003). 
The FRP observations accumulated over the period Au-
gust–October 2015 (Fig. SB2.3) provide an overview of 
the extent and severity of the 2015 Indonesian fire season.

Fire emissions in Indonesia during August–October 
were consistently and extraordinarily strong, as clearly 
shown by the number of days in 2015 when daily emissions 
of CO and biomass burning aerosols [black carbon (BC), 
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Fig. SB2.5. Anomalies (%) averaged over the 2015 Indone-
sian fire season (Aug–Oct) from the CAMS reanalysis of (a) 
total column CO and (b) biomass burning AOD at 550 nm. 
(c) Mean OMI/MLS tropospheric column ozone anomalies 
for Aug–Oct 2015, with contours drawn every 5%.

Fig. SB2.4. (a) Daily Indonesian fire emissions in 2015 of CO (Mt day−1) and OM+BC aerosols (kt day−1). Red 
bars show the days in 2015 with emissions greater than the previous (2003–14) maximum emission estimate 
for that day. (b) Annual fire emissions of CO and OM+BC aerosols (Mt yr−1) from Indonesia indicating their 
scale relative to the 2015 total anthropogenic CO emissions from the United States (red line) and Europe (blue 
line) from the MACCity emissions inventory. GFASv1.2 emissions of CO and OM+BC from biomass burning 
are directly proportional.

and organic matter (OM)] exceeded the maximum daily 
emissions during the same days in 2003–14 (Fig. SB2.4a). 
Total annual fire emissions over Indonesia (10°S–5°N, 
60°–180°E) computed by the GFASv1.2 system for CO and 
BC+OM are substantially greater for El Niño years 2006, 
2009, and 2015 (Fig. SB2.4b). For perspective, CO emissions 
from the Indonesian fires for 2015 were approximately 
three times the 2015 total anthropogenic emissions from 
the continental United States (25°–50°N, 70°–130°W) and 
Europe (30°–70°N, 10°W–45°E).

Inness et al. (2015a) utilized reanalysis data to investigate 
connections between El Niño/La Niña and atmospheric 
composition fields such as ozone, CO, and aerosols. They 
concluded that anomalies of CO and biomass burning 
aerosols depend mainly on local emissions. Hence, their 
strong positive anomalies over Indonesia during August–
October 2015 (Figs. SB2.5a,b) were a direct consequence 
of the widespread fires in that region. Anomalies in ozone 
(O3; Fig. SB2.5c), also produced by these fires, were further 
affected by El Niño–induced dynamical changes that altered 
the downward transport of O3 from the stratosphere and 
modified O3 photolysis rates. Total column CO anomalies 
that reached 500% in the core of the fire region were 
remarkable (Fig. SB2.5a), but even more striking were the 
extremely large anomalies (~2000%) in total AOD at 550 
nm for biomass burning (OM+BC) aerosols that covered 
large areas of the Indian and western Pacific Oceans (Fig. 
SB2.5b). For tropospheric ozone (Fig. SB2.5c), the positive 
anomalies over Indonesia were a more modest 30%–40%.

The CAMS reanalysis is a valid tool for monitoring the 
evolution of large-scale pollution events in quasi near–real 
time and providing useful information at the onset of a 
pollution-related crisis. Because El Niño is highly predict-
able on a seasonal timescale and Indonesian fires are known 
to assume catastrophic proportions during exceptionally in-
tense El Niño years, further development of CAMS towards 
integrating a seasonal prediction system with fire risk and 
air quality forecasts would provide comprehensive informa-
tion for early warnings and planning of mitigation actions.
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different satellite-based instruments. The spatial 
distribution of CO trends from the CAMS reanaly-
sis (Fig. 2.54) shows significant decreasing trends 
of −1.0% to −1.5% year−1 in most regions north of 
40°N, up to −3.0% year−1 over the Amazon basin and 
its outflow regions, −0.5% to −1.0% year−1 for most 
of the rest of the globe, and almost no trends over 
India, eastern China, and a large region surrounding 
Indonesia. Diminished anthropogenic emissions in 
North America and Europe as well as strong reduc-
tions in fire emissions over South America are the 
main causes for the decreasing global CO burden 
during 2003–15.

h. Land Surface Properties
1) Land Surface aLbedo dynamicS—B. Pinty and  

N. Gobron
The land surface albedo is the fraction of solar 

radiation scattered backward by land surfaces. In 
the presence of vegetation, surface albedo results 
from complex nonlinear radiation transfer processes 
determining the amount of radiation that is scattered 
by the vegetation and its background, transmitted 
through the vegetation layer, or absorbed by the veg-
etation layer and its background (Pinty 2012).

The geographical distribution of normalized 
anomalies in visible and near-infrared surface albedo 
for 2015 calculated with respect to a 2003–15 base 
period [for which two MODIS sensors are available 
(Schaaf et al. 2002)] are shown in Plates 2.1z and 2.1aa, 
respectively. Mid- and high-latitude regions of the 
Northern Hemisphere are characterized by both posi-
tive and negative anomalies, mainly as a consequence 
of interannual variations in cover, amount, and dura-
tion of snow in winter and spring seasons. The large 
negative anomalies over eastern Europe, southern 
Sweden, western Russia, Caucasus, southwestern 
Siberia, and northern China are probably associated 
with a below-average snow cover in winter and early 
spring seasons, due to the occurrence of relatively 
high temperatures in some of these regions. Similarly, 
negative anomalies over Canada can be related to an 
unusually small snow cover extent (section 2c2). The 
amplitude of these negative changes can reach (or lo-
cally exceed) ±30% in relative units and is larger in 
the visible than the near-infrared domain, although 
with the same sign. By contrast, the average February 
snow cover extent across the eastern United States 
resulted in a positive annual anomaly.

A few snow-free regions show positive anomalies, 
especially in the visible domain. In the equatorial 
regions, these are well marked over Indonesia and, 
with more limited amplitude, over Amazonia, cen-

tral Africa and Queensland, Australia. These are 
generally associated with less favorable vegetation 
growing conditions compared with previous years 
(section 2h2), although contamination of the albedo 
retrievals by clouds and aerosol load, especially in 
Indonesia (Sidebar 2.2), may also have induced some 
artifacts. The majority of snow-free regions exhibit 
noticeable negative anomalies, particularly in the 
visible domain, across Mexico and the southern 
United States and over the southern regions of South 
America, Australia, India, and China. The unusu-
ally warm conditions over northern regions such as 
western Europe, Turkey, and northwestern Iran may 
have contributed to the observed limited negative 
anomalies. A significant fraction of these variations 
are attributable to vegetation dynamics (Pinty et al. 
2011a, 2011b) over these regions, which are sensitive 
to stress from ambient conditions and, in particular, 
water availability. Although weaker in the near-
infrared, these negative anomalies sometimes occur 
simultaneously in the visible and the near infrared. 
Generally, the amplitude of both positive and negative 
anomalies changes seasonally.

Analysis of the zonally-averaged albedo anomalies 
in the visible and near-infrared (Fig. 2.55) spectral 
domains indicates considerable interannual varia-
tions related to the occurrence of snow events in 
winter and spring at mid- and high latitudes but also 
in vegetation conditions during the spring and sum-
mer periods. Strong negative anomalies are noticeable 
between 20° and 45°S, featuring a deviation from 
average conditions mainly over the southern regions 
in Latin America, Africa, and Australia. Limited but 
consistent positive anomalies are discernible across 
equatorial regions in 2015.

Fig. 2.54. Linear trends (% yr−1) in total column CO 
from the CAMS interim reanalysis for the period 
2003–15. All trends are statistically significant at 
the 95% level of confidence except for those inside 
red contours. 
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The 12-month running mean globally averaged 
normalized anomalies (Fig. 2.56) vary within ~±5% 
(~±3%) in the visible (near-infrared) domain. Antarc-
tica is excluded owing to missing data. The year began 
with globally averaged negative albedo anomalies and 
ended with slightly positive anomalies. The trend 
towards positive anomalies was driven by contribu-
tions from the Southern Hemisphere. Figure 2.56 
also shows analogous interannual and multiannual 
variations in the visible and near infrared during the 
2003–15 base period, with mostly positive anomalies 
at the beginning of this base period.

2) terreStriaL vegetation dynamicS—N. Gobron
Analysis of the 18-year record shows that large 

spatiotemporal deviations in vegetation dynamics oc-
curred at regional and continental scales during 2015 
(Plate 2.1y). The state of vegetation is examined by 
merging 1998–2015 estimates of the Fraction of Ab-

sorbed Photosynthetically Active Radiation (FAPAR) 
from three different sensors: SeaWiFS (NASA), 
MERIS (ESA), and MODIS (NASA) (Gobron et al. 
2010; Pinty et al. 2011b; Gobron and Robustelli 2013).

A large number of regions experienced seasonal 
precipitation deficits in 2015 (sections 2d4 and 2d9), 
especially in the Southern Hemisphere, along with 
much higher-than-average annual temperatures 
across most of the globe (section 2b1). This translates 
into a large variation in vegetated surface conditions.

The largest annual negative anomalies (not favor-
able for vegetation) occurred over the high northern 
latitudes from Alaska to Sweden and Norway, and 
also over the equatorial belt from central and north-
eastern Brazil, central Africa, and Indonesia. To a 
lesser extent, regions near the Black and Caspian Seas 
were also affected.

The largest positive annual anomalies appeared 
over Mexico, the southern United States, Minas 
Gerais (Brazil), Turkey, and China. Limited positive 
anomalies occurred over eastern parts of Europe, 
India, and the Ural region of Russia.

Below-normal precipitation occurred during the 
second half of the year in Brazil and Indonesia, im-
pacting the annual anomalies. The anomalies over 
southwestern and central Africa were mainly due to 
a warmer-than-normal spring together with below-
normal precipitation.

Higher precipitation in spring over Mexico and the 
southern United States and in autumn over western 
China contributed to favorable conditions for vegeta-
tion health and growth, as was the case in 2014. Over 
Turkey, the positive anomalies were mainly correlated 
with a slight excess of rainfall and higher tempera-
tures compared to previous years.

Zonally averaged monthly mean anomalies 
(Fig. 2.57) illustrate the differences between the two 

Fig. 2.55. Zonal means of the MODIS White Sky 
broadband surface albedo (NASA) normalized anom-
alies in the (a) visible and (b) near-infrared domain 
relative to a 2003–15 base period.  

Fig. 2.56. Globally-averaged MODIS White Sky 
broadband surface albedo (NASA) normalized anom-
alies with a 12-month running mean in the (a) visible 
and (b) near-infrared domain relative to a 2003–15 
base period at the global scale (black), Northern 
Hemisphere (blue), and Southern Hemisphere (red).
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hemispheres, with persistent negative anomalies 
over the Southern Hemisphere during all seasons 
from around 2002 to 2009. A succession of positive 
and negative anomalies, suggesting a seasonal cycle, 
are depicted between 10°S and 30°S since 2010. In 
contrast, strong positive anomalies are observed 
over regions between 20° and 60°N since 2012; these 
persisted during 2015. Larger seasonal negative 
anomalies are seen over mid- and high latitudes in the 
Northern Hemisphere since mid-2012. A strong nega-
tive anomaly is depicted in 2015 around the equatorial 
regions, likely influenced by low precipitation and 
severe fires over Indonesia (Sidebar 2.2); it appeared 
to extend into the entire Southern Hemisphere during 
the last quarter of 2015.

The monthly mean averaged anomalies smoothed 
using a 12-month running average (Fig. 2.58) indicate 
that 2015 shows a relatively unhealthy state of the veg-
etation over the Southern Hemisphere compared with 
a more healthy state over the Northern Hemisphere.

3) biomaSS burning—J. W. Kaiser, G. R. van der Werf, and 
A. Heil

Climate and weather provide boundary conditions 
for biomass burning or landscape fires to occur; in 
return these fires inf luence climate and weather 
by emitting greenhouse gases and aerosols and by 
modifying surface properties such as albedo and 
roughness. Generally, most fires occur in the tropics 
where they are often started by humans to manage the 
landscape. This includes frequent burning in many 

savannas and the use of fire to clear forest and make 
way for agricultural land. In temperate and boreal 
regions, fires tend to occur less frequently and can 
be either human or lightning ignited.

Since the late 1990s, fire occurrence and the as-
sociated burned area has been routinely detected 
by satellites. The Global Fire Assimilation System 
(GFAS) builds on active fire detections and their as-
sociated fire radiative power to estimate emissions in 
near–real time (Kaiser et al. 2012). GFAS is calibrated 
to partly match the Global Fire Emissions Database 
(GFED), which estimates emissions based on burned 
area and fuel consumption which have a much longer 
latency (van der Werf et al. 2010). The combined use 
of GFAS (2001–15) and GFED (1997–2014) indicates 
that fire emissions were on average 2.1 Pg C year−1  
(Pg = 1015 g), with substantial interannual variability, 
the latter mostly stemming from tropical deforestation 
zones and the boreal region where fire activity varies 
more from year to year than in most savanna areas.

In 2015, total global fire emissions were somewhat 
above average (+4%, see Table 2.8). By far, the largest 
anomaly was found in tropical Asia, where emis-
sions were almost three times as high as the 2001–14 
average (Plate 2.1ab, Fig. 2.59). As in 2014, North 
America also saw higher-than-average emissions 
(see sections 7b1 and 7b2). These positive anomalies 
were partially compensated for on a global scale by 
below-average emissions from South America and 
Northern Hemisphere Africa. The former is related 
to a downward trend in deforestation during the last 
decade (Chen et al. 2013), although fire emissions 
in 2015 were somewhat higher than in the previous 
two years. The latter is in line with an ongoing trend, 
possibly due to expansion of cropland (Andela and 
van der Werf 2014)

The exceptional fire season in tropical Asia is 
apparent in the pronounced aerosol and carbon 
monoxide (CO) anomalies (sections 2g3, 2g7; Sidebar 
2.2). The fires were most active during September and 
October (see Fig. 2.60) and located predominantly in 

Fig. 2.57. Time series of monthly zonal anomalies (base 
period: 1998–2015) of the Fraction of Absorbed Photo-
synthetic Radiation (FAPAR) from SeaWiFS, MERRIS, 
and MODIS sensors. Gray areas indicate missing data.

Fig. 2.58. Average monthly FAPAR anomalies with a 
12-month running mean (base period: 1998–2015) at 
the global scale (black), Northern Hemisphere (blue), 
and Southern Hemisphere (red). 
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can burn easily under El Niño-induced drought con-
ditions. Such peat fires are difficult to extinguish and 
usually last until the onset of the wet season in late 
October or early November. Accordingly, increased 
emissions were observed during the previous El Niño 
years of 2004, 2006, and 2009 (Fig. 2.60a).

Smoke from open fires in Indonesia has a strong 
impact on residents and economy (Marlier et al. 2013; 
Sidebar 2.2). In addition, peat burning represents a 
net source of CO2 to the atmosphere because drainage 
prevents regrowth of peat. During the 2015 fire season 
of tropical Asia, about 80% of the pyrogenic carbon 
flux occurred in peatlands. Both the carbon flux and 
its relative peatland contribution were the highest 
since the MODIS record started in 2001 (Fig. 2.60a).

Pinpointing the exact magnitude of emissions 
remains challenging. This is largely due to difficul-
ties in estimating the burn depth of peat fires, lead-
ing to larger-than-average uncertainties in any kind 

table 2.8. Annual continental-scale biomass burning budgets in terms of carbon emission (Tg C 
yr–1). 2001–02 from GFASv1.0 (Remy and Kaiser 2014), 2003–15 from GFASv1.3.

Time Period 2001−14 2015

Quantity 
Tg C yr–1

Mean Value 
(Range) Value Anomaly 

(%)

Global 2116 (1803–2371) 2201 86 (4%)

North America
30°–57°N 

170°W–30°W
117 (50–171) 172 +55 (+47%)

Central America
0°–30°N 

170°W–30°W
71 (54–102) 72 +1 (+1%)

S. Hem. America
0°–60°S 

170°W–30°W
314 (170–477) 246 −68 (−22%)

Europe and Mediterranean
30°–75°N 

30°W–60°E
39 (26–60) 36 −3 (−9%)

N. Hem. Africa
0°–30°N 

30°W–60°E
405 (337–506) 369 −36 (−9%)

S. Hem. Africa
0°–35°S 

30°W–60°E
519 (473–585) 509 −10 (−2%)

Northern Asia
30°–75°N 

60°E–170°W
227 (122–449) 202 −25 (−11%)

Southeast Asia
10°–30°N 

60°E–170°W
129 (83–173) 116 −13 (−10%)

Tropical Asia
10°N–10°S 

60°E–170°W
123 (40–240) 340 +217 (+176%)

Australia
10°–50°S 

60°E–170°W
172 (58–296) 140 −32 (−18%)

Sumatra 65 (17–147) 183 +118 (+182%)

Borneo 41 (8–93) 99 +58 (+142%)

Fig. 2.59. Global map of fire activity in 2015 in terms 
of actual carbon consumption. (Source: GFASv1.3.)

Sumatra and Kalimantan (see Table 2.8, Plate 2.1ab, 
Fig. 2.59 and Fig. SB2.3). These regions are most vul-
nerable to ENSO because drainage and deforestation 
have created large areas with degraded peatlands that 
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of emission assessment. Instead of fire 
observations, Huijnen et al. (2016) used 
satellite-based CO observations of the 
smoke plume and in situ measurements 
of the CO emission factors to estimate 
a carbon flux of 227 ± 66 Tg C for the 
most affected subregion of tropical 
Asia during September and October. 
The corresponding values for GFASv1.2 
and GFASv1.3 are 320 and 250 Tg C, 
respectively, while preliminary GFED4 
estimates are about 400 Tg C (www 
.globalfiredata.org/updates.html), but 
this estimate includes the full fire season. 
Compared to GFASv1.2, GFASv1.3 in-
cludes an improved representation of the 
diurnal variability of cloud cover, which 
prevents satellite observations of fires, 
and a higher-resolution peat map based 
on Wetland International (Wahyunto 
et al. 2003, 2004). While 2015 was the 
highest fire year in the GFAS record in 
tropical Asia, scaling the 2015 GFAS re-
cord to GFED based on a common base 
period in 2006 indicates that 2015 was 
only about half as strong as the extreme 
year 1997 (Fig. 2.60b).

Fig. 2.60. (a) Temporal evolution of fire emissions in tropical 
Asia during the Sep–Oct 2015 fire season, compared to the four 
most active fire seasons since 2003 (5-day smoothed GFASv1.3 
data). The inset shows annual total emissions since 2003 and the 
relative contribution of fire emissions from peat fires, highlight-
ing the increased relative importance of these fires in high fire 
years. (b) Monthly fire activity in tropical Asia for 1997–2015. 
The y-axis ranges are adjusted so that GFED4s and GFASv1.3 
coincide graphically in Oct 2006. 
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